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PREFACE

This book focuses on the theory and applications of quaternions. Chapter
One collects some old problems on lattice orders and directed partial orders on
complex numbers and quaternions, and summarizes recent development in
answering those questions. Chapter Two discusses spin 1 particles with
anomalous magnetic moments in the external uniform electric field. Chapter
Three examines techniques of projective operators used to construct solutions
for a spin 1 particle with anomalous magnetic moment in the external uniform
magnetic field. Chapter Four analyzes the implementation of a cheap Micro
AHRS (Attitude and Heading Reference System) using low-cost inertial
sensors. Chapter Five reviews the basic concepts of quaternion and reduced
biquaternions algebra. It introduces the 2D Hermite-Gaussian functions (2D-
HGF) as the eigenfunction of discrete quaternion Fourier transform (DQFT)
and discrete reduced biquaternion Fourier transform (DRBQFT), and the
eigenvalues of two dimensional Hermite-Gaussian functions for three types of
DQFT and two types of DRBQFT. Chapter Six investigates a leader-follower
formation control problem of quadrotors. Chapter Seven considers
determinantal representations the Drazin and weighted Drazin inverses over
the quaternion skew field.

Chapter 1 collects some old problems on lattice orders and directed partial
orders on complex numbers and quaternions, and summarizes recent
development in answering those questions. Within the matrix 10-dimensional
Duffin-Kemmer-Petiau formalism applied to the Shamaly-Capri field, Chapter
2 studies the behavior of a vector particle with anomalous magnetic moment in
the presence of an external uniform electric field. The separation of variables
in the wave equation is performed by using projective operator techniques and
the theory of DKP-algebras. The whole wave function is decomposed into the
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viii Sandra Griffin

sum of three components ¥, ¥, , ¥, . Itis enough to solve the equation for

the main component @, the two remaining ones being uniquely determined

by it. Consequently, the problem reduces to three independent differential
equations for three functions, which are of the type of one-dimensional Klein-
Fock-Gordon equation in the presence of a uniform electric field modified by
the non-vanishing anomalous magnetic moment of the particle. The solutions
are constructed in terms of confluent hypergeometric functions. For assigning
physical sense for these solutions, one must impose special restrictions on a
certain parameter related to the anomalous moment of the particle. The neutral
spin 1 particle is considered as well. In this case, the main manifestation of the
anomalous magnetic moment consists in the modification of the ordinary plane
wave solution along the electric field direction. Again, one must impose
special restrictions on a parameter related to the anomalous moment of the
particle.

Chapter 2 - Within the matrix 10-dimensional Duffin-Kemmer-Petiau
formalism applied to the Shamaly-Capri field, Chapter 3 studies the behavior
of a vector particle with anomalous magnetic moment in presence of an
external uniform magnetic field. The separation of variables in the wave
equation is performed by using projective operator techniques and the theory
of DKP-algebras. The whole wave function is decomposed into the sum of
three components $\Psi_0, \Psi_{+}, \Psi_{+}$. It is enough to solve the
equation for the main component $\Phi_0$, the two remaining ones being
uniquely determined by it. Consequently, the problem reduces to three
independent differential equations for three functions, which are of the type of
one-dimensional Klein--Fock--Gordon equation in the presence of a uniform
electric field modified by the non-vanishing anomalous magnetic moment of
the particle. The solutions are constructed in terms of confluent
hypergeometric functions. For assigning physical sense for these solutions,
one must impose special restrictions on a certain parameter related to the
anomalous moment of the particle. The neutral spin 1 particle is considered as
well. In this case, the main manifestation of the anomalous magnetic moment
consists in the modification of the ordinary plane wave solution along the
electric field direction. Again, one must impose special restrictions on a
parameter related to the anomalous moment of the particle.

Chapter 3 - The separation of variables in the wave equation is performed
using projective operator techniques and the theory of DKP-algebras. The
problem is reduced to a system of 2-nd order differential equations for three
independent functions, which is solved in terms of confluent hypergeometric
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functions. Three series of energy levels are found, of which two substantially
differ from those for spin 1 particles without anomalous magnetic moment.
For assigning to them physical sense for all the values of the main quantum
number n=0,12, ..., one must impose special restrictions on a parameter

related to the anomalous moment. Otherwise, only some part of the energy
levels corresponds to bound states. The neutral spin 1 particle is considered as
well. In this case no bound states exist in the system, and the main qualitative
manifestation of the anomalous magnetic moment consists in the occurrence of
a space scaling of the arguments of the wave functions, compared to a particle
without such a moment. Traditionally, the automotive industry has been the
largest employer of robots, but their control is inline and programmed to
follow planning trajectories. As shown in Chapter 4, in this case, in the
department motor’s test of Volkswagen Mexico a semi-autonomous robot is
developed. To date, some critical technical problems must be solved in a
number of areas, including in dynamics control. Generally, the attitude
estimation and the measurement of the angular velocity are a requirements for
the attitude control. As a result, the computational cost and the complexity of
the control loop is relatively high.

Chapter 4 deals with the implementation of a cheap Micro AHRS
(Attitude and Heading Reference System) using low-cost inertial sensors. In
Chapter 4, the technique proposed is designed with attitude estimation and the
prediction movement via the kinematic of a 4GDL robot. With this approach,
only the measurements of at least two non-collinear directional sensors are
needed. Since the control laws are highly simple and a model-based observer
for angular velocity reconstruction is not needed, the proposed new strategy is
very suitable for embedded implementations. The global convergence of the
estimation and prediction techniques is proved. Simulation with some
robustness tests is performed.

Chapter 5 - The quaternions, reduced biquaternions (RBs) and their
respective Fourier transformations, i.e., discrete quaternion Fourier transform
(DQFT) and discrete reduced biquaternion Fourier transform (DRBQFT), are
very useful for multi-dimensional signal processing and analysis. In Chapter 5,
the basic concepts of quaternion and RB algebra are reviewed, and the author
introduce the two dimensional Hermite-Gaussian functions (2D-HGF) as the
eigenfunction of DQFT/DRBQFT, and the eigenvalues of 2D-HGF for three
types of DQFT and two types of DRBQFT. After that, the relation between
2D-HGF and Gauss-Laguerre circular harmonic function (GLCHF) is given.
From the aforementioned relation and some derivations, the GLCHF can be
proved as the eigenfunction of DQFT/DRBQFT and its eigenvalues are
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summarized. These GLCHFs can be used as the basis to perform color image
expansion. The expansion coefficients can be used to reconstruct the original
color image and as a rotation invariant feature. The GLCHFs can also be
applied to color matching applications.

Chapter 6 - The unit quaternion system was invented in 1843 by William
Rowan Hamilton as an extension to the complex number to find an answer to
the question (how to multiply triplets?). Yet, quaternions are extensively used
to represent the attitude of a rigid body such as quadrotors, which is able to
alleviate the singularity problem caused by the Euler angles representation.
The singularity is in general a point at which a given mathematical object is
not defined and it outcome of the so called gimbal lock. The singularity is

occur when the pitch angles rotation is @ =290°. In Chapter 6, a leader-
follower formation control problem of quadrotors is investigated. The
quadrotor dynamic model is represented by unit quaternion with the
consideration of external disturbance. Three different control techniques are

proposed for both the leader and the follower robots. First, a nonlinear H_

design approach is derived by solving a Hamilton-Jacobi inequality following
from a result for general nonlinear affine systems. Second, integral
backstepping (IBS) controllers are also addressed for the leader-follower
formation control problem. Then, an iterative Linear Quadratic Regulator
(iLQR) is derived to solve the problem of leader-follower formation. The
simulation results from all types of controllers are compared and robustness

performance of the H_ controllers, fast convergence and small tracking errors

of iLQR controllers over the IBS controllers are demonstrated.

Chapter 7 - A generalized inverse of a given quaternion matrix (similarly,
as for complex matrices) exists for a larger class of matrices than the invertible
matrices. It has some of the properties of the usual inverse, and agrees with the
inverse when a given matrix happens to be invertible. There exist many
different generalized inverses. The authors consider determinantal
representations of the Drazin and weighted Drazin inverses over the
quaternion skew field. Due to the theory of column-row determinants recently
introduced by the author, the authors derive determinantal representations of
the Drazin inverse for both Hermitian and arbitrary matrices over the
quaternion skew field. Using obtained determinantal representations of the
Drazin inverse we get explicit representation formulas (analogs of Cramer's
rule) for the Drazin inverse solutions of the quaternionic matrix equations
AXB =D and, consequently, AX=D, XB=D in both cases when A and
B are Hermitian and arbitrary, where A, B can be noninvertible matrices of
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appropriate sizes. The author obtain determinantal representations of solutions
of the differential quaternionic matrix equations, X' +AX=B and

X'+ XA =B, where A is noninvertible as well. Also, the authors obtains

new determinantal representations of the W-weighted Drazin inverse over the
quaternion skew field. The author give determinantal representations of the W-
weighted Drazin inverse by using previously obtained determinantal
representations of the Drazin inverse, the Moore-Penrose inverse, and the limit
representations of the W-weighted Drazin inverse in some special case. Using
these determinantal representations of the W-weighted Drazin inverse, the
authors derive explicit formulas for determinantal representations of the W-
weighted Drazin inverse solutions of the quaternionic matrix equations

WAWX =D, XWAW =D, and WAW,XW,BW, =D.
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Chapter 1

DIRECTED PARTIAL ORDERS
ON QUATERNIONS - A BRIEF SUMMARY

Jingjing Ma*
Department of Mathematics and Statistics,
University of Houston Clear Lake, Houston, TX, US

Abstract

This paper collects some old problems on lattice orders and directed
partial orders on complex numbers and quaternions, and summarizes re-
cent development in answering those questions.

Keywords: directed partial order, directed algebra, lattice ordea)gebra,
complex number, quaternion

2010 AMS Subiject Classification:06F25

1. Introduction

We will introduce some definitions and terminologies in this section. The reader
is referred to [2, 3, 5] for more information on partially ordered rings and lattice-
ordered rings (#ings).

Let R be a partially ordered ring. The positive cone Bfis defined as
Rt = {r € R|r > 0}. The positive cone?™ is closed under the addition

*E-mailaddress: ma@uhcl.edu.
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2 Jingjing Ma

and multiplication ofR and satisfiesR™ N —R™ = {0}. Let P be a subset of

a ring S that is closed under the addition and multiplicationSo&nd satisfies

P n—P = {0}. Define the partial ordex by for anya,b € S, a < b if
b—a € P. ThenS is a partially ordered ring with respect to the partial order
We often use the positive cone to denote a partial order on a partially orderec
ring. A partial order is calledlirectedif each element is a difference of two
positive elements. A partially ordered ring is calletattice-ordered ring(¢-
ring) if the partial order is a lattice order. Clearly a lattice order is directed,
but the converse is not true. L&tbe a commutative totally ordered ring with
the identity andA be an algebra over. If A is a partially ordered ring and
T+At C AT, thenA is called a partially ordered algebra ov&r If the partial
order onA is directed, ther is called adirected algebra, and if the partial order
on A is a lattice order, thed is called dattice-ordered algebrd/-algebra).

Let D be a totally ordered integral domain, that i3,is a commutative
totally ordered ring with the identity and without nonzero zero divisors. For
z,y € D, x < y denotes thahx < y for all positive integers:. LetT be
a commutative totally ordered ring with the identity element 1. The complex
numbers ovef is defined as

Cr={a+bilabeT,i’>=—-1},
and the quaternions ovéris defined as
Hrp = {ag + a1i + azj + ask | ag,a1,a2,a3 € T,i* = j> = k? = —1}.
The multiplication ofH is given as follows,

(ap + a1i + agj + ask)(bo + bii + baj + bsk) =
(agbo — a1by — agby — asbs) + (apb1 + a1by + azbs — azbz)i +
(apba + agbo + asby — aibs)j + (agbs + asby + a1bs — agby)k.

The following questions have been left unanswered for some time now, how-
ever they have greatly motivated research activities in the area.

e Problem 1. (G. Birkhoff and R. Pierce, 1956)Can the field of complex
numbers be made into a lattice-ordered ring?

e Problem 2. (L. Fuchs, 1963Describe the directed orders of the fields of
complex numbers and quaternions.
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Directed Partial Orders on Quaternions - A Brief Summary 3

e Problem 3. (G. Birkhoff, 1967) In how many ways can the quaternions
be made into ai-ring? an/-algebra? a directed algebra?

We will summarize below recent developments in finding lattice orders and
directed partial orders on quaternion algebras. Since this activity is closely re-
lated to and motivated by the same research for complex numbers, results fc
complex numbers are also included.

2. Directed Partial Orders on Cp

In this section, we present directed partial order§'gnwheref' is a totally or-
dered field. We start with lattice orders first. Lattice-ordered ridggigs) were

first systematically studied by G. Birkhoff and R. Pierce in the paper “Lattice-
ordered Rings” published in 1956 [2]. Problem 1 was asked in the paper. De-
spite many efforts made over years, this problem remains unsolved.

In the same paper, the authors proved that the complex@etdnnot be
made into a lattice-ordered algebraalgebra) over the real fiel®. About 40
years later, motivated by the work on lattice orders of matrix algebras over to-
tally ordered fields, the present author further proved that for any totally orderec
subfield F' of R with the usual total ordet)/,,(Cr) cannot be made into af
algebra ovelf’ for anyn > 1 [6], whereM,,(Cr) is then x n matrix algebra
with entries fromC/.

More generally, we have following result.

Theorem 1. [8, Theorem 6] Let D be a totally ordered integral domain. Sup-
pose thatCp is an/-algebra overD. If a + bi > 0 in Cp, thena > 0 and
|b| < ain D.

A direct consequence of Theorem 1 is thaDifis an archimedean totally
ordered integral domain, theti, cannot be ari-algebra oveD.
A natural question to ask is what happens in the non-archimedean case.

Theorem 2. [8, Theorem 4] Let F' be a totally ordered field, archimedean or
non-archimedeanC'r» cannot be made into aftalgebra overF'.

Now, let's consider directed partial orders on the set of complex numbers to
make it into a directed algebra. Since it has been unsuccessful of finding lattice
orders on complex numbers, researchers have tried to find directed partial orde
on it. The first result states that there is no directed partial ordéfowhen F
is an archimedean totally ordered field.
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4 Jingjing Ma

Theorem 3. [10, Corollary 2.2] Cr cannot be made into a directed algebra
over an archimedean totally ordered fietd

In [14], Y. Yang showed that for some totally ordered fi€)d Co admits
directed partial orders to make it into a directed algebra with 0, and hence
i is an element with negative square, thatits= —1 < 0. Then in [13], N.
Schwartz and Y. Yang proved th@tcan be made into a directed algebra dRer
and in [12], W. Rump and Y. Yang constructed directed partial ordet& @,
where K could be any non-archimedean totally ordered field é&nd= —1.
Their method has usedultiplicative segmerihat is a convex additive subgroup
of F' containing identity element 1.

Motivated by the above work, in [9], L. Wu, Y. Zhang and the present author
have introduced a more general method to produce directed partial orders o
Cr. Take an additive semigroup C F* with 0,1 € S, and taker,y € F'*
with 0 < z,y < 1. Define the positive cong, ,(S) as follows.

Pyy(S)={a+bieCy|acFt —za<sb<yainFforallse S}

Then(Cp, P, ) is a partially ordered algebra overand it is a directed algebra
if there exists: € F'* such thats < z for all s € S [9, Theorem 2.2].

For a non-archimedean totally ordered fiéldtakeS = Z* andz = y = 1,
thenP, ;(Z") is a directed partial order ofip that makes”r into a directed
algebra overF’. We also observe tha?, ;(Z*) is the largest directed partial
order onC'r over a non-archimedean totally ordered field. Therefere(Z™)
is division closedn the sense that for any, b € Cp, if a,ab € P1 1(Z*), then
be PLl(ZJr).

We notice that the partial orders defined above have positive identity ele-
ment, that is,l € P, ,(S). This begs the question whether we can construct
directed partial orders ofi» such that 1 is not positive?

Let S be an additive semigroup df* containing 0, 1. Suppose that there
existsw € F1 such thats < w for all s € S. Define

P(S)s = {a+bila>0,b>0inF,sb<a,Vse StU{0},
P(S)« = {a—bila>0,b>0inF,sb<a,Vse StU{0}.

ThusP(S)< is the conjugate oP(5)-.
Theorem 4. P(S)~ and P(S). are directed partial order orC'r with 1 0.
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Directed Partial Orders on Quaternions - A Brief Summary 5

Proof. Let’s just consideP(S)~. We leave it to the reader to check tHatS) -
is a partial order oiC'x. Takew € F* such thats < w for all s € S. For any
a-+bieCp,

l=14w+i)— (w+i)and(1l+w+1), (w+1i) € P(S)s,

so 1is not positive. We also have= (w+2i) — (w+1), and(w+2i), (w+1i) €
P(S)>. ThusP(95)- is a directed partial order.
The relation betweetr; ; (S) andP(S)~ is given as follows.

P(S)s = {a+bi € Py|b>0}uU{0},

and
P(S)>+F+:{a+bi€P171‘bZO}.

The research in this direction continues. As a mater of fact, all directed
partial orders with. > 0 on Cr over a non-archidemean totally ordered fiéld
have been described in [10] by using the similar positive coné g&S).

3. Directed Partial Orders on Hr

In this section, we present results on directed partial order8 pn First we
consider lattice orders. In 1962, McHaffy showed that the division algebra of
real quaternions cannot be é&ralgebra oveiR [11]; and much later in 2004,

it was shown thai\/,,(Hr) cannot be arf-algebra over a archimedean totally
ordered fieldF', for anyn x n matrix algebra with entries frof{ [4]. In fact,

the following more general result is true.

Theorem 5. [8, T'heorem 6] Suppose thab is a totally ordered integral do-
main andH p, is a partially ordered algebra oveDb. If a + bi +c¢j + dk > 0
in Hp, thena > 0 and |b| < a,|c| < a,|d| < ain D. In particular, If D is
archimedean, thei{ , cannot be arf-algebra overD.

How about Hr over a non-archimedean totally ordered fidl@ It was
proved that for any totally ordered field, Hr cannot be made into &hralgebra
over Fwith 1 > 0 [8, Theorem 7]. Actually, now we can prove thdj- cannot
be an¢-algebra over any totally ordered field
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6 Jingjing Ma

Theorem 6. For a totally ordered fieldF’, Hr cannot be arf-algebra overF'.

Proof. Suppose thal - is an/-algebra overr' and we derive a contradiction.
Then we know that # 0. By [5, Corollary 1.3],Hr is the finite direct sum of
convex totally ordered subspace B over F'. Since Hy cannot be a totally
ordered algebra ovdr, there are at least two direct summands.

Let's assume first thatfp = T1 ® T», whereTy, T, are totally ordered
subspaces ovdr. Supposd = ¢; + g2, Whereg; € T;. Sincel £ 0, one of
q1, g2 must be positive. We may assume that> 0, and hence; < 0. Let
q1 = ag + a1i + azj + ask. Then

q% = 2a9q1 — (a%+a%+a%+a§) >0

= 2a9q1 — (a% + a% + a% + ag)(q1 +q2) >0

= (2a0 — af — ai — a3 — a3)q1 — (af +ai + a3 + a3)gz > 0

= (200 — a2 —a? — a3 —a3)q1 > (a2 + a3 + a3 +a3)ge > 0.
However, since-q; A g2 = 0, we must have3 + a2 + a3 + a3 = 0[5, Theorem
1.13], soag = a1 = as = az = 0. Thusq; = 0, a contradiction.

Next, we assumélp = 17 & Ts & T3, whereTy, T, T3 are convex totally

ordered subspaces ov@r Thenl = ¢; + ¢2 + q3, Whereg; € T;. Similarly one
of g1, g2, g3 must be positive. Lajs > 0 andg; = ag + a1i + asj + ask. Then

¢ = 2a0q1 — (a2 + a2 + a3 +d3) >0

2a0q1 — (ag + af + a3+ a3)(q1 + @2 + g3) > 0

(2a0 — a§ — ai — a3 — a3)q1 — (af + ai + a3 + a3)a

—(a +a? + a3+ a3)g3 > 0

= (200 —af —ai — a3 — a3)q — (af + af + a3 + a3)g
> (ag + af + a5 + a3)gs > 0.

4o

Then sincdqi| A g3 = |g2| A g3 = 0, we must have? + a2 + a3 + a3 = 0, so
ap = a1 = a2 = ag = 0 andq; = 0, a contradiction again.

Similar argument may be made to the case fliatis a direct sum of four
convex totally ordered subspaces o¥erThis completes the proof.

Theorem 6 answers the second question in Problem 3.

Now we consider directed partial orders éfr, whereF' is a totally or-
dered field. By Theorem 5/ cannot be a directed algebra ovérif F' is an
archimedean totally ordered field.
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Directed Partial Orders on Quaternions - A Brief Summary 7

Motivated from the results obtained by W. Rump, N. Schwartz, and Y. Yang
for complex numbers, we were able to make the real quaterfiidngo a di-
rected algebra ovék with a non-archemedean total order [6]. In fact, define the
positive coneP onH as follows.

P ={ap+ ari +azj+ask € H|ag > 0,|a1| <K ag, |az] < aop, |ag| < ap}

ThenP is a directed partial order dfi that makes it into a directed algebra over

R with RN P = R* [6, Theorem 1].
In [9], the authors proved a more general method to produce directed partia
orders onH g over a non-archimedean totally ordered fiéldTake an additive

semigroupS C F* with 0,1 € S, and taker € F with 0 < = < 1. Define the
positive coneP,(.S) as follows.

P.(S) ={ao + a1i + azj + ask € Hr | ap > 0, |a1| <5 zao, |az| Ks zao, |asz] s zao},

where|a;| <g xap means—zag < sa; < zag for all s € S. Similarly for
las| < s zag and|as| <g xag. ThenP, is a partial order o  to make it into
a partially ordered algebra ovét, and if there exists an elementc F* such
thats < z forall s € S, thenP, is a directed partial order anfdy is a directed
algebra [9, Theorem 3.2].

For instance, for a non-archimedean totally ordered fiéldakeS = Z*
andz = 1, thenP, is the positive coné introduced in the previous paragraph,
and P (Z™") is the largest directed partial order éh:.

Directed partial orders o in which1 ¥ 0 may be constructed similarly
to the positive cond’(S)~ and P(S). on Cr. However, the last question in
Problem 3 remains unsolved.

The directed partial orders constructed for complex numbers and quater
nions over non-archimedean totally ordered fields have been generalized t
complex numbers and quaternions over non-archimedean partially ordere
fields that contain a totally ordered subfield [7, Theorems 1 and 2].
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Chapter 2

SPIN 1 PARTICLE WITH ANOMALOUS
MAGNETIC MOMENT IN THE EXTERNAL
UNIFORM ELECTRIC FIELD

E. M. Ovsiyuk'*, Ya. A. Voynova®', V. V. Kisel®*,
V. Balan*tand V. M. Red’kov>1
"Mozyr State Pedagogical University, Belarus
2Secondalry School, Yelsk Region, Belarus
3SBGUIR, Minsk, Belarus
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Abstract

Within the matrix 10-dimensional Duffin-Kemmer-Petiau formalism
applied to the Shamaly-Capri field, we study the behavior of a vector
particle with anomalous magnetic moment in the presence of an external
uniform electric field. The separation of variables in the wave equation
is performed by using projective operator techniques and the theory of
DKP-algebras. The whole wave function is decomposed into the sum of
three components Wy, U, W . It is enough to solve the equation for the

*E-mail address: e.ovsiyuk @mail.ru.
YE-mail address: voinyuschka@mail.ru.
+E-mail address: vasiliy-bspu @mail.ru.
$E-mail address: vladimir.balan@upb.ro.
YE-mail address: redkov@dragon.bas-net.by.
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12 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

main component ®(, the two remaining ones being uniquely determined
by it. Consequently, the problem reduces to three independent differential
equations for three functions, which are of the type of one-dimensional
Klein—Fock—Gordon equation in the presence of a uniform electric field
modified by the non-vanishing anomalous magnetic moment of the parti-
cle. The solutions are constructed in terms of confluent hypergeometric
functions. For assigning physical sense for these solutions, one must im-
pose special restrictions on a certain parameter related to the anomalous
moment of the particle. The neutral spin 1 particle is considered as well.
In this case, the main manifestation of the anomalous magnetic moment
consists in the modification of the ordinary plane wave solution along the
electric field direction. Again, one must impose special restrictions on a
parameter related to the anomalous moment of the particle.

Keywords : Duffin—-Kemmer—Petiau algebra, projective operators, spin 1
particle, anomalous magnetic moment, electric field, exact solutions

1. Intoduction

Commonly, we shall use only the simplest wave equations for fundamental par-
ticles of spin 0,1/2,1. Meanwhile, it is known that other more complicated
equations can be assigned to particles with such spins, which are based on
the application of extended sets of Lorentz group representations (see [1]-[16]).
Such generalized wave equations allow to describe more complicated objects,
which have — besides mass, spin, and electric charge — other electromagnetic
characteristics, like polarizability or anomalous magnetic moment. These addi-
tional characteristics manifest themselves explicitly in the presence of external
electromagnetic fields.

In particular, within this approach, Petras [3] proposed a 20-component the-
ory for spin 1/2 particle, which — after excluding 16 subsidiary components —
turns to be equivalent to the Dirac particle theory modified by the presence of
Pauli interaction term. In other words, this theory describes a spin 1/2 particle
with anomalous magnetic moment.

A similar equation was proposed by Shamaly—Capri [6, 7] for spin 1 par-
ticles (also see [16, 17]). In the following, we investigate and solve this wave
equation in the presence of the external uniform electric field.

The wave equation for spin 1 particle with anomalous magnetic moment

Complimentary Contributor Copy
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[6, 7] may be formulated as
ie
<BMDM + M)\F[IW]PJ[IW] + M) v =0, (D)

where the 10-dimensional wave function and the DKP-matrices are used':

U= (Jff:y] ) s i) = BBy — BB

In tensor form, (1) rewrites as2:

DU, — DV, + MV, =0,
Dy () + 28 NF, Uy + MY, = 0.

By using DKP-matrices, we apply the method [20] of generalized Kronecker’s
symbols 3
B, = et 4 elvily - p— e

A,B _ A,B_C,D A.D
(e™?)ep = 6acoBp, e7e T opce™,

1
O], [po] = 5(5/“35'/0 — Oodup)

and the main relationships in the DKP algebra:
Buﬁuﬁp + Bpﬁuﬁu = 5ul/ﬁp + 5p1/6u ) [6)\7 Jpo’]]* = 5)\,060 - 5)\oﬁp .

We use the following representation for DKP-matrices

0000 00O OOO 000 O O0O0O10O0TO
0000 00-1 000 000 O O0OO000OTO
0000 010 O0O0O0 000 0O —-1000 0O
0000 00O -100 000 O O0O0OO0O0-10
61— 0000 00O OOO , 52: 00-1 0 0000 OO ,
0010 00O OOO 000 O O0O000OO
0—-10 0 000 O0O0O 100 0 0000 OO
000-1000 O0O0O 000 O O0O000OTO
0000 00O OOO 000 -1 0000 0O
0000 0O0OO OOO 000 O O0O000OTO
0000 0-1000 O 0000 000100
0000 1 0O00O0DO 0000 000010
0000 OOOO0OO0O 0000 000001
0000 OOO00O0-1 0000 0000O0O
53: 0100 O0O0O00O0DO , 54: 0000 0000O0O
—-1000 00 O000O 0000 0000O0O
0000 OO0OOO0OO0DO 0000 000000
0000 OO0OOO0O0DO 1000 000000
0000 OO0OOO0O0DO 0100 000000
000—-1000000O0 0010 000000

"Here P stands for a projective operator separating from ¥ its vector component ¥,,; D, =
O, —ieA,, abd A3 denotes an arbitrary real-valued number.

’In a Minkowski space, we use the metric with imaginary unit, since x4 = ict.

3The indexes A(B, C, D, ...) take the values 1, 2, 3, 4, [23], [31], [12], [14], [24], [34].
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14 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

The uniform electric field is provided by the relations
(AM) = (07 07 07 —iE.Tg), b= const,

Flw) = 0uAy — Oy Ay, Figg = —Fluz) = —iE.

The non-minimal interaction through the anomalous magnetic moment is given
by the term

e 2eE
iM)\g)\;F[MV]PJ[NV] - iw}\g)\; PJ[34] .
Correspondingly, the main equation (1) is written as

0 0 0 0
51@ +52@+53$ + s (@—QE.TS) +To PJpg+ M| ¥ =0, (2)

where I'g = %)\.

2. Algebraic Transformation of the Wave Equation

Let us introduce the matrix Y = iJj34) = (83084 — $433) , which satisfies the
minimal polynomial equation Y3 =Y < Y (Y — 1)(Y + 1) = 0, and allows
us to define the tree projective operators:

1 1
Py=1-Y?, Pp=gY(Y+1), P.=3Y(Y-1),

and solve the wave function in terms of the three components:

Vg=FRVvY, Vv, =PV, V_=PV U=UYy4+V_+4+T,.
Acting on (2) by the operator Fy, and taking into account the algebraic identities
Yip=012Y, Pobia= B2, PyPJpy=—iP(1— Y)Y =0,

we get
(101 + B202 + M) Vo + PyfB3 D3Y + (04 — eEx3) PoyfsV = 0. 3)

Let us consider the operator P33 (we shall further use the computation
rules within the DKP-algebra):

PoBs = (1 =Y?)B3 = (14283838401 — B33 — Bafs) B3 =
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= 83 + 20303843433 — B3 — BaBafB3 =
= 203303(83 — B36484) — (B3 — B3544) = B3 — B36454 .

Considering the identities
Bs(1 — Py) = B3Y? = B33[3503 + Bafs — 2035B331B4) =
= B3 + 306484 — 2838404 = B3 — B34Pu,

the previous can be written in the form

Pofs = B3(1 — Bo) = B3(Py + P-).
Similarly, one can obtain the identity

Pofa = Pa(1 — By) = fa(Py + P-).
Taking into account the relations (4)—(5), (3) reduces to the form

(5181 + G205 + M) WUy +

+ [53 O3 + 54(84 — eExg)] v, + [53 O3 + 54(84 — eExg)] v_=0.

Let us consider the operator

BsPs = P (V +¥?) =

= B li(0s0 — BaB) — 20505484 + Bfs + ).

For Bg’ = (3 and (38403 = 0, it follows

1
B3Py = 5(53 + 133384 — B35454) -

As well, for Bi’ = B4 and (40384 = 0, we infer

1
BaPy = 545[2'(5354 — Baf33) — 233830484 + 303 + Bafa] =

= %[—i@x@xﬁ?, — 28403038404 + Baf3P3 + Ba] -

Complimentary Contributor Copy
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16 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

Further, by using the identities

BaBaB3 = B3 — B3B4Bs, Baf3P3 = Bs — PB33304,

we get

BuPy = L[=i(Bs — sfalhs) — 2(0a — BfBs0u)Baba + (Ba — Bss0s) + ] =

— _%[53 — (30844 + 1330304] .

Hence, we obtain the algebraic relation
B3Py =ifsPy = (B3 —ifs)Py =0. (7N
By combining the relations
, 1 : 1 ,
BaPy = 505 — B3Bafa +iB3036a],  BsPr = 5 (05 + 030554 — B30454) ,

we easily derive

1
B3Py = 5(53 +i04) Py . (8)

As well, by combining (7)—(8), we get

BuPy = — 2 (B +iBa) Py
In the same manner, we get the following three identities
(Bs+iB)P- =0, G- = S(Ba—if)P-, PuP- = Z(Ba—if)P-.  (9)
We further turn back to (6), which can be written as
(6101 + 202 + M) Wo+

+(53 O3 + 54(34 — eExg)]P+\I’+ + (53 O3 + 54(34 — eExg)]P,\I’, =0.
With the help of above identities, (9) can be rewritten in the form*

(8101 + B202 + M) Yo+

“We take into account that Pi =P
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+%(53 +i84) [03 — (04 — eEx3)] ¥4 + %(53 —i84)[03 + (04 —eEx3)|¥_ =0

or
(8101 + Bads + M) Wo + L(B3 + iB4) (03 + iExs) — i04) U+
+3(Bs — i84) [(33 — eEx3) + i0,) U_ = 0.

Now, let us consider the relation (2)
0 0 0 0
— — — — —eEx3) —iyPY + M | ¥ =
[51(%1 +52ax2+ﬁ3ax3+54(ax4 eEx3) —iloPY + 0,
and act on it by the operator 1 — Py = P, + P_ ; this yields
d g .
51@ + 62@ - ZF()PY + M (\I’+ + \I’,) +

0 0
+(1 —P0)53$+(1—P0)54(@ —eEx3)¥ =0. (10)
By using the easy-to-check identity

1—Py=Y?= 3383 + 181 — 203538404,

we get

(1= Py)B3 = P35+ (B3 — B30434) — 20383(83 — #38484) = +B38404 -

Similarly, we derive

BsPo = P5(1 = Y?) = P3(1 — B30 — Bafa + 203036451) = +P36454 -

By combining the two last relations, we obtain the commutation rule
(1—-FRy)Bs =B

In the same manner, we derive the following three similar relations

Ba— B3B3Ps = (1 — Po)Bay  Ba— B3P38s = Bal, (1—Po)Bs= Balo,

which lead to the rewriting of (10) as

[Bisr + Bagls — iDoPY + M| (¥4 + T_) +
+538%3‘I’0+54(% —eBa3)Wo =0, (11
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18 E. M. Ovsiyuk, Ya. A. Voynova, V. V. Kisel et al.

By acting on (11) by the operator 5 L (1 +Y) and with the help of the easy to
check identities

1 1 1 1
SUFY)Pe=S(I+Y)Y(A+Y)=Y(1+Y) =P,
1 _ 1
we derive
0 .
51 +52 5 —iloPY + M | U, +
1 0 1 0
+§(1+Y)53$‘1’0+5(1+Y)54(w —eEx3)Vo =0, (12)

We need three auxiliary relations. From the known formula

BrJipo] = Jpa) Ox = 0po Bx = Or0Bp
it follows
B3Y =YPs =+ifs = YP3=p03Y —if,
BaY =Y Py =—ifs = Y[Pa=PsY +ifs.
Therefore, (12) can be written as
(5152 + Bagls — iLoPY + M| Wi+
+1(Bs + BsY —iB) 52 Vo + 2(Ba+ BaY +iB4) (52 — eEx3) ¥y =0,
From this, taking into account Y Py = 0, we obtain the more simple form
(8152 + Bogls — iDoPY + M| U+
+3(83 — iB4) 325 Vo + 5(Bs +iB3) (521 — eEa3) ¥y =0,

or
0
51 +52 1F0PY+M] Ui+ (53 i31) [ Vo + 1 (6904 —6E9€3>}‘If 0=0.
Now, let us take into account an identity

1 1
YP =Y Y(14Y) = 5(Y?+Y3 =P, = YU, =0, .
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Then the previous equation reads
. 1 8 0
ﬂ1 + ﬂz —ioP+ M \I’+ + §(ﬂ 1ﬂ4) —ieFrs + 16 Uo=0.

As well, by acting on (11) by the operator %(1 —Y), after similar calculations
we get the equation

(51 + 52 —iloP + M) (53 + if4) ( 9 +ieEx3 — %;) Ty =0.

3. The Separation of Variables
We start with the three equations
(6101 + (202 + M)W+
+750+1(05 + ieBxs) — iy Uy + J5B-[(05 — ieBas) +id4] V- =0,
(8101 + B202 — iLoP + M)V, + fﬁ (03 —ieEx3) +1i04] Vg =0,
(8101 + B202 + iLgP + M)V_ + Eﬁ+[(83 +ieEx3) —i04]¥o =0,

where

- %(63 vif), B =

‘We look for solutions of the form:

B+ (53 — i) .

%\

Uy = eP4T4 pIP1T1 pIP2T2 fO(«TB) ,
U, = 61'1041‘461'1011‘161'1021‘2f+ (xg) ,
N eip4£04eip1£f?1eip2£02f7 (xg) .
So, we have the system of three equations in the variable z3:
(ip1B1 + ipafa + M) Vo+
+%5+[(% +ieEx3) + pa) Uy + %ﬁ,[(% —ieFx3) —pg|¥_ =0,
(Z'plﬁl + ip9 By — Lo P + M)\I’+ + %ﬁ,[(% - z'eExg) —p4]\I’0 =0,

(ip1 By + ip2fo + Lo P + M)W_ + S50, [(75 +ieBas) + pa]¥o = 0.
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With the shortening notation

~

a= % <+%+ieEx3+p4> , b= % (—% +ieEx3+p4> ;
ilo=T,  p1f1+p2f2 = p;

the equations are written as

(ip+ M)Wy + Bra¥y — B_bU_ =0, (13)
(ip — TP+ M)V, —B_bly =0, (14)
(ip+TP+M)VU_+3,aVy=0. (15)

By acting (14) by the operator

M —-TP
M-T"
we infer
M-TP M-TP M-TP, ;
Y5 M-TP) |V, — —(3_b¥y=0.
(i S ar-re) ) we - S5 b,
With the help of the identities
M —-TP 1
M-TP M? — MTP — MTP) = M,
=T ¢ )= =T )=
it reads _
M —-TP M re .
( Zp+ ) B,b\I’():O
By using the notations
M-TP M-TP
7'/\:14 77:/
T P=4 o P-=0

the previous equation shortens to
(A+ MU, — 3 b0y =0.
Analogously, by acting on (15) by the operator

M +TP
M+T’
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we get

M +TP
M+T

M+TP M+TP
( REL + Bravy=0.

M+TP))0_
M Pt o M )) +

Taking into account the identities

%(M+FP) = Mi_r(M2+MFP+MFP) =M,;
we derive
(%iﬁ#— M) U_ + %6+&\I’0 =0.
With the notations
M+TP . M+TP ,
THZP =L, mﬁ+ =05,

the last equation reads
(C+ M)V_ + (3, 0% =0.

Let us consider the powers of A

1

A= ar—y!

iMp — iDL Pp)(iMp — il Pp) =

1

m[—]\ﬁp? + MTpPp + MTPp* —T2PpPp).

Because
B}L:Pﬁu+ﬁuP:PBM+BMP7B}LP:P6}MP6}L:B}LP7
PﬁuP = Pﬁup = Ovﬁuﬁup = Pﬁuﬁuvﬁuﬁup = Pﬁuﬁm

P+P=1,PP=PP=0,

we get
1

(M —T)?

Mp?

A? = :
M-T

(—M?p? + MTp?) = —
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We calculate A3:

M

Mp? (M —TP)
-

(M—-T) M-T

A’ = M —TP)(ip)p* = — (ip) ,
so0, the minimal polynomial of A (or the Cayley-Hamilton identity for A) has
the form

Mp?
M-T

Similar results are valid for the operator C":

A3+ A=0.

Mp?
3+ L _C=0.
+M+r

The Cayley-Hamilton identity for ¢p) has the form
ip[(ip)* + p*] = 0.
Thus, the complete set of equations in the variable x5 is of the form
(ip+ M) fo+ Brafs — B-bf- =0,
(A+ M) fy =5 bfy =0,
(C+M)f-+pLafo=0.
To proceed with these equations, we introduce the matrices® with the properties

(ip+ M) (ip+ M) = p* + M?,
(A+ M)(A+ M) =p* + M?,
(C+ M)(C+ M) =p*+ M?. (16)

In fact these formulas determine the inverse matrices up to numerical factors
(p?+ M?)~1. Then the system of radial equations can be rewritten alternatively

(ip+ M) (0 + M) fo + Bya(p* + M?) f — B-b(p* + M?)f- =0,
(P’ +M*)fy —(A+ M) bfo=0,
(P + M?)f- + (C+ M)B}afo =0. (17)

SWe take in the account that p? = p? + p2
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The first equation in (17), with the help of the other two ones, transforms
into an equation in the component f(r):

(ip + M) (p* + M?)? fo + Boa({A+ M)B bfo + f-b(C + M)Bamfo =0, (18)
while the two remaining ones do not change

(P* + M?) fr — (A+ M)BLbfo =0,
(P> + M?) -+ (C+ M)B,afo=0. (19)

In fact, the equations (19) mean that it suffices to solve (18) with respect to fy; the two
other components f; and f_ can be calculated by means of the equation