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Chapter 9

RELATION OF ROW-COLUMN DETERMINANTS

WITH QUASIDETERMINANTS OF MATRICES

OVER A QUATERNION ALGEBRA

Aleks Kleyn1,∗ and Ivan I. Kyrchei2,†

1American Mathematical Society
2Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics, Lviv, Ukraine

Abstract

Since product of quaternions is noncommutative, there is a problem how to determine a

determinant of a matrix with noncommutative elements (it’s called a noncommutative

determinant). We consider two approaches to define a noncommutative determinant.

Primarily, there are row – column determinants that are an extension of the classical

definition of the determinant; however we assume predetermined order of elements

in each of the terms of the determinant. In the chapter we extend the concept of an

immanant (permanent, determinant) to a split quaternion algebra using methods of the

theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on

these properties, analogs of the classical adjont matrix over a quaternion skew field

have been obtained. As a result we have a solution of a system of linear equations

over a quaternion division algebra according to Cramer’s rule by using row–column

determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix in-

version. By using quasideterminants, solving of a system of linear equations over a

quaternion division algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quaside-

terminants is that we have not one determinant of a quadratic matrix of order n with

noncommutative entries, but certain set (there are n2 quasideterminants, n row deter-

minants, and n column determinants). We have obtained a relation of row-column

determinants with quasideterminants of a matrix over a quaternion division algebra.
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1. Introduction

Linear algebra is a powerful tool that we use in different areas of mathematics, including

the calculus, the analytic and differential geometry, the theory of differential equations, and

the optimal control theory. Linear algebra has accumulated a rich set of different methods.

Since some methods have a common final result, this gives us the opportunity to choose the

most effective method, depending on the nature of calculations.

At transition from linear algebra over a field to linear algebra over a division ring,

we want to save as much as possible tools that we regularly use. Already in the early

XX century, shortly after Hamilton created a quaternion algebra, mathematicians began

to search the answer how looks like the algebra with noncommutative multiplication. In

particular, there is a problem how to determine a determinant of a matrix with elements

belonging to a noncommutative ring. Such determinant is also called a noncommutative

determinant.

There were a lot of approaches to the definition of the noncommutative determinant.

However none of the introduced noncommutative determinants maintained all those prop-

erties that determinant possessed for matrices over a field. Moreover, in paper [1], J. Fan

proved that there is no unique definition of determinant which would expands the definition

of determinant of real matrices for matrices over the division ring of quaternions. There-

fore, search for a solution of the problem to define a noncommutative determinant is still

going on.

In this chapter, we consider two approaches to define noncommutative determinant.

Namely, we explore row-column determinants and quasideterminant.

Row-column determinants are an extension of the classical definition of the determi-

nant, however we assume predetermined order of elements in each of the terms of the

determinant. Using row-column determinants, we obtain a solution of a system of linear

equations over a quaternion division algebra according to Cramer’s rule.

Quasideterminant appeared from the analysis of the procedure of a matrix inversion.

Using quasideterminant, solving of a system of linear equations over a quaternion division

algebra is similar to the Gauss elimination method.

There is common in definition of row and column determinants and quasideterminant.

In both cases, we have not one determinant in correspondence to quadratic matrix of or-

der n with noncommutative entries, but certain set (there are n2 quasideterminant, n row

determinants, and n column determinants).

Today there is wide application of quasideterminants in linear algebra ([2, 3]), and in

physics ([4, 5, 6]). Row and column determinants ([7, 8]) introduced relatively recently

are less well known. Purpose of the chapter is establishment of a relation of row-column

determinants with quasideterminants of a matrix over a quaternion algebra. The authors are

hopeful that the establishment of this relation can provide mutual development of both the

theory of quasideterminants and the theory of row-column determinants.
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1.1. Convention about Notations

There are different forms to write elements of a matrix. In this paper, we denote aij an

element of the matrix A. The index i labels rows, and the index j labels columns.

We use the following notation for different minors of the matrix A.

ai . the i-th row

AS . the minor obtained from A by selecting rows with index from the set S

Ai . the minor obtained from A by deleting row ai .

AS . the minor obtained from A by deleting rows with index from the set S

a. j the j-th column

A. T the minor obtained from A by selecting columns with index from the set T

A. j the minor obtained from A by deleting column a. j

A. T the minor obtained from A by deleting columns with index from the set T

A.j (b) the matrix obtained from A by replacing its j-th column by the column b

Ai. (b) the matrix obtained from A by replacing its i-th row by the row b

Considered notations can be combined. For instance, the record

Aii
k.(b)

means replacing of the k-th row by the vector b followed by removal of both the i-th row

and the i-th column.

As was noted in section 2.2 of the paper [9], we can define two types of matrix products:

either product of rows of first matrix over columns of second one, or product of columns of

first matrix over rows of second one. However, according to the theorem 2.2.5 in the paper

[9], this product is symmetric relative operation of transposition. Hence in the chapter, we

will restrict ourselves by traditional product of rows of first matrix over columns of second

one; and we do not indicate clearly the operation like it was done in [9].

1.2. Preliminaries. A Brief Overview of the Theory of Noncommutative

Determinants

Theory of determinants of matrices with noncommutative elements can be divided into

three groups regarding their methods of definition. Denote M(n, K) the ring of matrices

with elements from the ring K. One of the ways to determine determinant of a matrix of

M (n, K) is following ([11, 12, 13]).

Definition 1.1. Let the functional

d : M (n, K) → K

satisfy the following axioms.
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Axiom 1. d (A) = 0 iff A is singular (irreversible).

Axiom 2. ∀A, B ∈ M (n, K), d (A ·B) = d (A) · d (B).

Axiom 3. If we obtain a matrix A′ from matrix A either by adding of an arbitrary

row multiplied on the left with its another row or by adding of an arbitrary column

multiplied on the right with its another column, then

d
(

A′
)

= d (A)

Then the value of the functional d is called determinant of A ∈ M (n, K).

The known determinants of Dieudonné and Study are examples of such functionals.

Aslaksen [11] proved that determinants which satisfy Axioms 1, 2 and 3 take their value

in some commutative subset of the ring. It makes no sense for them such property of con-

ventional determinants as the expansion along an arbitrary row or column. Therefore a

determinantal representation of an inverse matrix using only these determinants is impossi-

ble. This is the reason that causes to introduce determinant functionals that do not satisfy

all Axioms. Dyson [13] considers Axiom 1 as necessary to determine a determinant.

In another approach, a determinant of a square matrix over a noncommutative ring is

considered as a rational function of entries of a matrix. The greatest success is achieved

by Gelfand and Retakh [14, 15, 16, 17] in the theory of quasideterminants. We present

introduction to the theory of quasideterminants in the section 5.

In third approach, a determinant of a square matrix over a noncommutative ring is con-

sidered as an alternating sum of n! products of entries of a matrix. However, it assumed

certain fixed order of factors in each term. E. H. Moore was first who achieved implementa-

tion of the key Axiom 1 using such definition of a noncommutative determinant. Moore had

done this not for all square matrices, but only for Hermitian. He defined the determinant of

a Hermitian matrix1 A = (aij)n×n over a division ring with involution by induction over n

following way (see [13])

MdetA =







a11, n = 1
n
∑

j=1
εijaijMdet (A(i → j)) , n > 1 (1.1)

Here εkj =

{

1, i = j

−1, i 6= j
, and A(i → j) denotes the matrix obtained from A by replac-

ing its j-th column with the i-th column and then by deleting both the i-th row and column.

Another definition of this determinant is presented in [11] by using permutations,

Mdet A =
∑

σ∈Sn

|σ|an11n12
· . . . · an1l1

n11
·an21n22

· . . . · anrl1
nr1

.

Here Sn is symmetric group of n elements. A cycle decomposition of a permutation σ has

form,

σ = (n11 . . . n1l1) (n21 . . .n2l2) . . . (nr1 . . . nrlr) .

1Hermitian matrix is such matrix A = (aij) that aij = aji.
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However, there was no any generalization of the definition of Moore’s determinant to

arbitrary square matrices. Freeman J. Dyson [13] pointed out the importance of this prob-

lem.

L. Chen [18, 19] offered the following definition of determinant of a square matrix over

the quaternion skew field H, by putting for A = (aij) ∈ M (n, H),

det A =
∑

σ∈Sn

ε (σ) an1i2 · ai2i3 . . . · aisn1
· . . . · anrk2

· . . . · aklnr ,

σ = (n1i2 . . . is) . . . (nrk2 . . . kr) ,
n1 > i2, i3, . . . , is; . . . , nr > k2, k3, . . . , kl,

n = n1 > n2 > . . . > nr ≥ 1.

Despite the fact that this determinant does not satisfy Axiom 1, L. Chen got a determinantal

representation of an inverse matrix. However it can not been expanded along arbitrary rows

and columns (except for n-th row). Therefore, L. Chen did not obtain a classical adjoint

matrix as well. For A = (α1, . . . , αm) over the quaternion skew field H, if ‖A‖ :=
det(A∗A) 6= 0, then ∃A−1 = (bjk), where

bjk =
1

‖A‖
ωkj ,

(

j, k = 1, n
)

,

ωkj = det (α1 . . .αj−1αnαj+1 . . . αn−1δk)
∗ (α1 . . . αj−1αnαj+1 . . .αn−1αj) .

Here αi is the i-th column of A, δk is the n-dimensional column with 1 in the k-th entry

and 0 in other ones. L. Chen defined ‖A‖ := det(A∗A) as the double determinant. If

‖A‖ 6= 0, then the solution of a right system of linear equations

∑n

j=1
αjxj = β

over H is represented by the following formula, which the author calls Cramer’s rule

xj = ‖A‖−1
Dj,

for all j = 1, n, where

Dj = det





























α∗
1

...

α∗
j−1

α∗
n

α∗
j+1

...

α∗
n−1

β∗





























(

α1 . . . αj−1 αn αj+1 . . . αn−1 αj

)

.

Here α∗
i is the i-th row of A∗ and β∗ is the n-dimensional vector-row conjugated with β.

In this chapter we explore the theory of row and column determinants which develops

the classical approach to the definition of determinant of a square matrix, as an alternating

sum of products of entries of a matrix but with a predetermined order of factors in each of

the terms of the determinant.
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2. Quaternion Algebra

A quaternion algebra H(a, b) (we also use notation

(

a, b

F

)

) is a four-dimensional

vector space over a field F with basis {1, i, j, k} and the following multiplication rules:

i2 = a,

j2 = b,
ij = k,

ji = −k.

The field F is the center of the quaternion algebra H(a, b).

In the algebra H(a, b) there are following mappings.

• A quadratic form

n : x ∈ H → n(x) ∈ F

such that

n(x · y) = n(x)n(y) x, y ∈ H

is called the norm on a quaternion algebra H.

• The linear mapping

t : x = x0 + x1i + x2j + x3k ∈ H → t(x) = 2x0 ∈ F

is called the trace of a quaternion. The trace satisfies permutability property of the

trace,

t (q · p) = t (p · q) .

From the theorem 10.3.3 in the paper [9], it follows

t(x) =
1

2
(x− ixi− jxj − kxk). (2.1)

• A linear mapping

x → x = t(x)− x (2.2)

is an involution. The involution has following properties

x = x,

x + y = x + y,

x · y = y · x.

A quaternion x is called the conjugate of x ∈ H. The norm and the involution satisfy

the following condition:

n (q) = n(q).

The trace and the involution satisfy the following condition,

t (x) = t(x).
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From equations (2.1), (2.2), it follows that

x = −
1

2
(x + ixi + jxj + kxk).

Depending on the choice of the field F, a and b, on the set of quaternion algebras there

are only two possibilities [20]:

1.

(

a, b

F

)

is a division algebra.

2.

(

a, b

F

)

is isomorphic to the algebra of all 2 × 2 matrices with entries from the field

F. In this case, quaternion algebra is splittable.

The most famous example of a non-split quaternion algebra is Hamilton’s quaternions

H = (−1,−1
R

), where R is real field. The set of quaternions can be represented as

H = {q = q0 + q1i + q2j + q3k; q0, q1, q2, q3 ∈ R},

where i2 = j2 = k2 = −1 and ijk = −1. Consider some non-isomorphic quaternion

algebra with division.

1.

(

a, b

R

)

is isomorphic to the Hamilton quaternion skew field H whenever a < 0 and

b < 0. Otherwise

(

a, b

R

)

is splittable.

2. If F is the rational field Q, then there exist infinitely many nonisomorphic division

quaternion algebras

(

a, b

Q

)

depending on choice of a < 0 and b < 0.

3. Let Qp be the p-adic field where p is a prime number. For each prime number p there

is a unique division quaternion algebra.

The famous example of a split quaternion algebra is split quaternions of James Cockle

HS(−1,1
R

), which can be represented as

HS = {q = q0 + q1i + q2j + q3k; q0, q1, q2, q3 ∈ R},

where i2 = −1, j2 = k2 = 1 and ijk = 1. Unlike quaternion division algebra, the

set of split quaternions is a noncommutative ring with zero divisors, nilpotent elements

and nontrivial idempotents. Recently there was conducted a number of studies in split

quaternion matrices (see, for ex. [21, 22, 23, 24]).

3. Introduction to the Theory of the Row and Column

Determinants over a Quaternion Algebra

The theory of the row and column determinants was introduced [7, 8] for matrices over

a quaternion division algebra. Now this theory is in development for matrices over a split

quaternion algebra. In the following two subsections we extend the concept of immanant

(permanent, determinant) to a split quaternion algebra using methods of the theory of the

row and column determinants.
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3.1. Definitions and Properties of the Column and Row Immanants

The immanant of a matrix is a generalization of the concepts of determinant and per-

manent. The immanant of a complex matrix was defined by Dudley E. Littlewood and

Archibald Read Richardson [25] as follows.

Definition 3.1. Let σ ∈ Sn denote the symmetric group on n elements. Let χ : Sn → C be

a complex character. For any n × n matrix A = (aij) ∈ Cn×n define the immanent of A

as

Immχ(A) =
∑

σ∈Sn

χ(σ)

n
∏

i=1

ai σ(i)

Special cases of immanants are determinants and permanents. In the case where χ is the

constant character (χ(x) = 1 for all x ∈ Sn), Immχ(A) is the permanent of A. In the case

where χ is the sign of the permutation (which is the character of the permutation group as-

sociated to the (non-trivial) one-dimensional representation), Immχ(A) is the determinant

of A.

Denote by Hn×m a set of n × m matrices with entries in an arbitrary (split) quaternion

algebra H and M (n, H) a ring of matrices with entries in H. For A = (aij) ∈ M (n, H) we

define n row immanants as follows.

Definition 3.2. The i-th row immanant of A = (aij) ∈ M (n, H) is defined by putting

rImmiA =
∑

σ∈Sn

χ(σ)ai ik1
aik1

ik1+1
. . .aik1+l1

i . . .aikr ikr+1
. . . aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ is written as follows

σ = (i ik1
ik1+1 . . . ik1+l1) (ik2

ik2+1 . . . ik2+l2) . . . (ikr ikr+1 . . . ikr+lr) . (3.1)

Here the index i starts the first cycle from the left and other cycles satisfy the following

conditions

ik2
< ik3

< . . . < ikr , ikt < ikt+s. (3.2)

for all t = 2, r and s = 1, lt.

Consequently we have the following definitions.

Definition 3.3. The i-th row permanent of A = (aij) ∈ M (n, H) is defined as

rperiA =
∑

σ∈Sn

ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . .aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ satisfies the conditions (3.1) and

(3.2).

Definition 3.4. The i-th row determinant of A = (aij) ∈ M (n, H) is defined as

rdetiA =
∑

σ∈Sn

(−1)n−r ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . .aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ satisfies the conditions (3.1) and

(3.2), (since sign(σ) = (−1)n−r
).
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For A = (aij) ∈ M (n, H) we define n column immanants as well.

Definition 3.5. The j-th column immanant of A = (aij) ∈ M (n, H) is defined as

cImmjA =
∑

τ∈Sn

χ(τ)ajkr jkr+lr
. . . ajkr+1jkr

. . .aj jk1+l1
. . .ajk1+1jk1

ajk1
j ,

where right-ordered cycle notation of the permutation τ ∈ Sn is written as follows

τ = (jkr+lr . . . jkr+1jkr ) . . . (jk2+l2 . . . jk2+1jk2
) (jk1+l1 . . . jk1+1jk1

j) . (3.3)

Here the first cycle from the right begins with the index j and other cycles satisfy the fol-

lowing conditions

jk2
< jk3

< . . . < jkr , jkt < jkt+s, (3.4)

for all t = 2, r and s = 1, lt.

Consequently we have the following definitions as well.

Definition 3.6. The j-th column permanent of A = (aij) ∈ M (n, H) is defined as

rperjA =
∑

τ∈Sn

ajkr jkr+lr
. . .ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j,

where right-ordered cycle notation of the permutation σ satisfies the conditions (3.3) and

(3.4).

Definition 3.7. The j-th column determinant of A = (aij) ∈ M (n, H) is defined as

rdetjA =
∑

τ∈Sn

(−1)n−r ajkr jkr+lr
. . .ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j,

where right-ordered cycle notation of the permutation σ satisfies the conditions (3.3) and

(3.4).

Consider the basic properties of the column and row immanants over H.

Proposition 3.8. (The first theorem about zero of an immanant) If one of the rows (columns)

of A ∈ M (n, H) consists of zeros only, then rImmi A = 0 and cImmi A = 0 for all

i = 1, n.

Proof. The proof immediately follows from the definitions.

Denote by Ha and aH left and right principal ideals of H, respectively.

Proposition 3.9. (The second theorem about zero of an row immanant) Let A = (aij) ∈
M (n, H) and aki ∈ Hai and aij ∈ aiH, where n(ai) = 0 for k, j = 1, n and for all i 6= k.

Let a11 ∈ Ha1 and a22 ∈ a1H if k = 1, and akk ∈ Hak and a11 ∈ akH if k = i > 1,

where n(ak) = 0. Then rImmkA = 0.
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Proof. Let i 6= k. Consider an arbitrary monomial of rImmkA, if i 6= k,

d = χ(σ)akiaij . . . alm

where {l, m} ⊂ {1, ..., n}. Since there exists ai ∈ H such that n(ai) = 0, and aki ∈ Hai,

aij ∈ aiH, than akiaij = 0 and d = 0.

Let i = k = 1. Then an arbitrary monomial of rImm1A,

d = χ(σ)a11a22 . . . alm.

Since there exists a1 ∈ H such that n(a1) = 0, and a11 ∈ Ha1, a22 ∈ a1H, then a11a22 = 0

and d = 0.

If k = i > 1, then an arbitrary monomial of rImmkA,

d = χ(σ)akka11 . . .alm.

Since there exists ak ∈ H such that n(ak) = 0, and akk ∈ Hak , a11 ∈ akH, then akka11 =

0 and d = 0.

Proposition 3.10. (The second theorem about zero of an column immanant) Let A =
(aij) ∈ M (n, H) and aik ∈ aiH and aji ∈ Hai, where n(ai) = 0 for k, j = 1, n and

for all i 6= k. Let a11 ∈ a1H and a22 ∈ Ha1 if k = 1, and akk ∈ akH and a11 ∈ Hak if

k = i > 1, where n(ak) = 0. Then cImmkA = 0.

Proof. The proof is similar to the proof of the Proposition 3.9.

The proofs of the next theorems immediately follow from the definitions.

Proposition 3.11. If the i-th row of A = (aij) ∈ M (n, H) is left-multiplied by b ∈ H, then

rImmi Ai . (b · ai .) = b · rImmi A for all i = 1, n.

Proposition 3.12. If the j-th column of A = (aij) ∈ M (n, H) is right-multiplied by b ∈ H,

then cImmj A. j (a. j · b) = cImmj A · b for all j = 1, n.

Proposition 3.13. If for A = (aij) ∈ M (n, H) there exists t ∈ {1, ..., n} such that atj =
bj + cj for all j = 1, n, then for all i = 1, n

rImmi A = rImmi At . (b) + rImmi At . (c) ,
cImmi A = cImmi At . (b) + cImmi At . (c) ,

where b = (b1, . . . , bn), c = (c1, . . . , cn).

Proposition 3.14. If for A = (aij) ∈ M (n, H) there exists t ∈ {1, ..., n} such that ai t =

bi + ci for all i = 1, n, then for all j = 1, n

rImmj A = rImmj A. t (b) + rImmj A. t (c) ,

cImmj A = cImmj A. t (b) + cImmjA. t (c) ,

where b = (b1, . . . , bn)T , c = (c1, . . . , cn)T .
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Proposition 3.15. If A∗ is the Hermitian adjoint matrix (conjugate and transpose) of A ∈
M (n, H), then rImmi A

∗ = cImmi A for all i = 1, n.

Particular cases of these properties for the row-column determinants and permanents

are evident.

Remark 3.16. The peculiarity of the column immanant (permanent, determinant) is that,

at the direct calculation, factors of each of the monomials are written from right to left.

In Lemmas 3.17 and 3.18, we consider the recursive definition of the column and row

determinants. This definition is an analogue of the expansion of a determinant along a row

and a column in commutative case.

Lemma 3.17. Let Ri j be the right ij-th cofactor of A = (aij) ∈ M (n, H), namely

rdeti A =
n
∑

j=1
ai j · Ri j

for all i = 1, n. Then

Ri j =

{

−rdetj (Aii
.j(a. i)), i 6= j

rdetk Aii, i = j

k =

{

2, i = 1
1, i > 1

where the matrix (Aii
.j(a. i)) is obtained from A by replacing its j-th column with the i-th

column and then by deleting both the i-th row and column.

Lemma 3.18. Let Li j be the left ijth cofactor of entry ai j of matrix A = (aij) ∈
M (n, H), namely

cdetj A =
n
∑

i=1
Li j · ai j

for all j = 1, n. Then

Li j =

{

−cdeti (Ajj
i. (aj .)), i 6= j

cdetk Ajj, i = j

k =

{

2, j = 1
1, j > 1

where the matrix (Ajj
i. (aj .)) is obtained from A by replacing its ith row with the jth and

then by deleting both the jth row and column.

Remark 3.19. Clearly, an arbitrary monomial of each row or column determinant cor-

responds to a certain monomial of another row or column determinant such that both of

them have the same sign, consist of the same factors and differ only in their ordering. If

the entries of A are commutative, then rdet1 A = . . . = rdetnA = cdet1 A = . . . =
cdetnA.
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4. An Immanant of a Hermitian Matrix

If A∗ = A then A ∈ Hn×n is called a Hermitian matrix. In this section we consider

the key theorem about row-column immanants of a Hermitian matrix.

The following lemma is needed for the sequel.

Lemma 4.1. Let Tn be the sum of all possible products of n factors, each of their are either

hi ∈ H or hi for all i = 1, n, by specifying the ordering in the terms, Tn = h1 · h2 · . . . ·
hn + h1 · h2 · . . . · hn + . . . + h1 · h2 · . . . · hn. Then Tn consists of the 2n terms and

Tn = t (h1) t (h2) . . . t (hn) .

Theorem 4.2. If A ∈ M (n, H) is a Hermitian matrix, then

rImm1A = . . . = rImmnA = cImm1A = . . . = cImmnA ∈ F.

Proof. At first we note that if A = (aij) ∈ Hn×n is Hermitian, then we have aii ∈ F and

aij = aji for all i, j = 1, n.

We divide the set of monomials of rImmiA for some i ∈ {1, ..., n} into two subsets.

If indices of coefficients of monomials form permutations as products of disjoint cycles

of length 1 and 2, then we include these monomials to the first subset. Other monomials

belong to the second subset. If indices of coefficients form a disjoint cycle of length 1, then

these coefficients are ajj for j ∈ {1, ..., n} and ajj ∈ F.

If indices of coefficients form a disjoint cycle of length 2, then these entries are conju-

gated, aikik+1
= aik+1ik , and

aikik+1
· aik+1ik = aik+1ik · aik+1ik = n(aik+1ik) ∈ F.

So, all monomials of the first subset take on values in F.

Now we consider some monomial d of the second subset. Assume that its index permu-

tation σ forms a direct product of r disjoint cycles. Denote ik1
:= i, then

d = χ(σ)aik1
ik1+1

. . . aik1+l1
ik1

aik2
ik2+1

. . . aik2+l2
ik2

. . .aikm ikm+1
. . .×

×aikm+lm ikm
. . . aikr ikr+1

. . .aikr+lr ikr
= χ(σ)h1h2 . . . hm . . .hr ,

(4.1)

where hs = aiks iks+1
· . . . · aiks+ls iks

for all s = 1, r, and m ∈ {1, . . . , r}. If ls = 1, then

hs = aiks iks+1
aiks+1 iks

= n(aiks iks+1
) ∈ F. If ls = 0, then hs = aiks iks

∈ F. If ls = 0

or ls = 1 for all s = 1, r in (4.1), then d belongs to the first subset. Let there exists s ∈ In

such that ls ≥ 2. Then

hs = aiks iks+1
. . . aiks+ls iks

= aiks+ls iks
. . . aiks iks+1

= aiks iks+ls
. . .aiks+1iks

.

Denote by σs (iks) : = (iksiks+1 . . . iks+ls) a disjoint cycle of indices of d for some s ∈

{1, ..., r}, then σ = σ1 (ik1
) σ2 (ik2

) ...σr (ikr ). The disjoint cycle σs (iks) corresponds

to the factor hs. Then σ−1
s (iks) = (iksiks+lsiks+1 . . . iks+1) is the inverse disjoint cycle

and σ−1
s (iks) corresponds to the factor hs. By the Lemma 4.1, there exist another 2p − 1

monomials for d, (where p = r−ρ and ρ is the number of disjoint cycles of length 1 and 2),

such that their index permutations form the direct products of r disjoint cycles either σs (iks)
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or σ−1
s (iks) by specifying their ordering by s from 1 to r. Their cycle notations are left-

ordered according the to the Definition 3.2. These permutations are unique decomposition

of the permutation σ including their ordering by s from 1 to r. Suppose C1 is the sum of

these 2p − 1 monomials and d, then, by the Lemma 4.1, we obtain

C1 = χ(σ)α t(hν1
) . . . t(hνp) ∈ F.

Here α ∈ F is the product of coefficients whose indices form disjoint cycles of length 1 and

2, νk ∈ {1, . . . , r} for all k = 1, p.

Thus for an arbitrary monomial of the second subset of rImmi A, we can find the 2p

monomials such that their sum takes on a value in F. Therefore, rImmi A ∈ F.

Now we prove the equality of all row immanants of A. Consider an arbitrary rImmj A

such that j 6= i for all j = 1, n. We divide the set of monomials of rImmj A into two

subsets using the same rule as for rImmi A. Monomials of the first subset are products of

entries of the principal diagonal or norms of entries of A. Therefore they take on a value in

F and each monomial of the first subset of rImmi A is equal to a corresponding monomial

of the first subset of rImmj A.

Now consider the monomial d1 of the second subset of monomials of rImmj A con-

sisting of coefficients that are equal to the coefficients of d but they are in another order.

Consider all possibilities of the arrangement of coefficients in d1.

(i) Suppose that the index permutation σ′ of its coefficients form a direct product of r
disjoint cycles and these cycles coincide with the r disjoint cycles of d but differ by their

ordering. Then σ′ = σ and we have

d1 = χ(σ)αhµ . . .hλ,

where {µ, . . . , λ} = {ν1, . . . , νp}. By the Lemma 4.1, there exist 2p − 1 monomials of the

second subset of rImmj A such that each of them is equal to a product of p factors either

hs or hs for all s ∈ {µ, . . . , λ}. Hence by the Lemma 4.1, we obtain

C2 = χ(σ)α t(hµ) . . . t(hλ) = χ(σ) α t(hν1
) . . . t(hνp) = C1.

(ii) Now suppose that in addition to the case (i) the index j is placed inside some disjoint

cycle of the index permutation σ of d, e.g., j ∈ {ikm+1, ..., ikm+lm}. Denote j = ikm+q .

Considering the above said and σkm+1(ikm+1) = σkm+q(ikm+q), we have σ′ = σ. Then d1

is represented as follows:

d1 = χ(σ)aikm+q ikm+q+1
. . . aikm+lm ikm

aikm ikm+1
. . .×

×aikm+q−1ikm+q
aikµ ikµ+1

. . . aikµ+lµ ikµ
. . . aikλ

ikλ+1
. . .aikλ+lλ

ikλ
=

= χ(σ)αh̃mhµ . . .hλ,

(4.2)

where {m, µ, . . . , λ} = {ν1, . . . , νp}. Except for h̃m, each factor of d1 in (4.2) corresponds

to the equal factor of d in (4.1). By the rearrangement property of the trace, we have

t(h̃m) = t(hm). Hence by the Lemma 4.1 and by analogy to the previous case, we obtain,

C2 = χ(σ)α t(h̃m) t(hµ) . . . t(hλ) =
= χ(σ) α t(hν1

) . . . t(hm) . . . t(hνp) = C1.
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(iii) If in addition to the case (i) the index i is placed inside some disjoint cycles of the index

permutation of d1, then we apply the rearrangement property of the trace to this cycle. As

in the previous cases we find 2p monomials of the second subset of rImmj A such that by

Lemma 4.1 their sum is equal to the sum of the corresponding 2p monomials of rImmiA.

Clearly, we obtain the same conclusion at association of all previous cases, then we apply

twice the rearrangement property of the trace.

Thus, in any case each sum of 2p corresponding monomials of the second subset of

rImmj A is equal to the sum of 2p monomials of rImmi A. Here p is the number of

disjoint cycles of length more than 2. Therefore, for all i, j = 1, n we have

rImmi A = rImmj A ∈ F.

The equality cImmi A = rImmi A for all i = 1, n is proved similarly.

Remark 4.3. If A ∈ Hn×n is skew-hermitian (A = −A∗), then the Theorem 4.2 is not

meaningful. It follows from the next example.

Example 4.4. Consider the following skew-hermitian matrix over the split quaternions of

James Cockle HS(−1,1
R

),

A =

(

j 2 + i

−2 + i −k

)

.

Since
rImm1 A = −jk − (2 + i)(−2 + i) = 5 + i,
rImm2 A = −(−2 + i)(2 + i) − kj = 5 − i,

then rImm1 A 6= rImm2 A.

Since the Theorem 4.2, we have the following definition.

Definition 4.5. Since all column and row immanants of a Hermitian matrix over H are

equal, we can define the immanant (permanent, determinant) of a Hermitian matrix A ∈

Hn×n . By definition, we put for all i = 1, n

Imm A := rImmi A = cImmi A,

per A := rperi A = cperi A,
det A := rdeti A = cdeti A.

4.1. Cramer’s Rule for System of Linear Equations over a Quaternion

Division Algebra

In this subsection we shall be consider H as a quaternion division algebra especially

since quasideterminants are defined over the skew field as well.

Properties of the determinant of a Hermitian matrix is completely explored in [7, 8] by

its row and column determinants. Among all, consider the following.

Theorem 4.6. If the i-th row of the Hermitian matrix A ∈ M (n, H) is replaced with a left

linear combination of its other rows

ai . = c1ai1 . + . . . + ckaik .
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where cl ∈ H for all l = 1, k and {i, il} ⊂ {1, . . . , n}, then for all i = 1, n

cdetiAi . (c1 · ai1 . + . . . + ck · aik . ) = rdetiAi . (c1 · ai1 . + . . . + ck · aik . ) = 0.

Theorem 4.7. If the j-th column of a Hermitian matrix A ∈ M (n, H) is replaced with a

right linear combination of its other columns

a. j = a. j1c1 + . . . + a. jk
ck

where cl ∈ H for all l = 1, k and {j, jl} ⊂ {1, . . . , n} , then for all j = 1, n

cdetjA. j (a. j1 · c1 + . . . + a. jk
· ck) = rdetjA. j (a. j1 · c1 + . . . + a. jk

· ck) = 0.

The following theorem on the determinantal representation of an inverse matrix of Her-

mitian follows immediately from these properties.

Theorem 4.8. There exist a unique right inverse matrix (RA)−1 and a unique left inverse

matrix (LA)−1 of a nonsingular Hermitian matrix A ∈ M (n, H), (det A 6= 0), where

(RA)−1 = (LA)−1 =: A−1. Right inverse and left inverse matrices has following deter-

minantal representation

(RA)−1 =
1

detA









R11 R21 · · · Rn1

R12 R22 · · · Rn2

· · · · · · · · · · · ·
R1n R2n · · · Rnn









,

(LA)−1 =
1

detA









L11 L21 · · · Ln1

L12 L22 · · · Ln2

· · · · · · · · · · · ·
L1n L2n · · · Lnn









,

where Rij , Lij are right and left ij-th cofactors of A, respectively, for all i, j = 1, n.

To obtain the determinantal representation for an arbitrary inverse matrix over a quater-

nion division algebra H, we consider the right AA∗ and left A∗A corresponding Hermitian

matrices.

Theorem 4.9 ([7]). If an arbitrary column of A ∈ Hm×n is a right linear combination of

its other columns, or an arbitrary row of A∗ is a left linear combination of its other rows,

then detA∗A = 0.

Since principal submatrices of a Hermitian matrix are also Hermitian, then the basis

principal minor may be defined in this noncommutative case as a principal nonzero minor

of a maximal order. We also can introduce the notion of the rank of a Hermitian matrix by

principal minors, as a maximal order of a principal nonzero minor. The following theorem

establishes the correspondence between the rank by principal minors of a Hermitian matrix

and the rank of the corresponding matrix that are defined as a maximum number of right-

linearly independent columns or left-linearly independent rows, which form a basis.

Theorem 4.10 ([7]). A rank by principal minors of a Hermitian matrix A∗A is equal to its

rank and a rank of A ∈ Hm×n .
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Theorem 4.11 ([7]). If A ∈ Hm×n , then an arbitrary column of A is a right linear com-

bination of its basic columns or arbitrary row of A is a left linear combination of its basic

rows.

It implies a criterion for the singularity of a corresponding Hermitian matrix.

Theorem 4.12 ([7]). The right linearly independence of columns of A ∈ Hm×n or the left

linearly independence of rows of A∗ is the necessary and sufficient condition for

detA∗A 6= 0

Theorem 4.13 ([7]). If A ∈ M (n, H), then detAA∗ = detA∗A.

In the following example, we shall prove the Theorem 4.13 for the case n = 2.

Example 4.14. Consider the matrix A =

(

a11 a12

a21 a22

)

, then A∗ =

(

a11 a21

a12 a22

)

. Respec-

tively, we have

AA∗ =

(

a11a11 + a12a12 a11a21 + a12a22

a21a11 + a22a12 a21a21 + a22a22

)

,

A∗A =

(

a11a11 + a21a21 a11a12 + a21a22

a12a11 + a22a21 a12a12 + a22a22

)

.

According to thw Theorem 4.2 and the Definition 4.5, we have

det AA∗ = rdet1AA∗,

det A∗A = rdet1A
∗A

According to the Lemma 3.17

detAA∗ = (AA∗)11(AA∗)22 − (AA∗)12(AA∗)21

= (a11a11 + a12a12)(a21a21 + a22a22)

−(a11a21 + a12a22)(a21a11 + a22a12)
= a11a11a21a21 + a12a12a21a21

+a11a11a22a22 + a12a12a22a22

−a11a21a21a11 − a12a22a21a11

−a11a21a22a12 − a12a22a22a12

= a12a12a21a21 + a11a11a22a22

−a12a22a21a11 − a11a21a22a12

, (4.3)

detA∗A = (A∗A)11(A
∗A)22 − (A∗A)12(A

∗A)21

= (a11a11 + a21a21)(a12a12 + a22a22)
−(a11a12 + a21a22)(a12a11 + a22a21)

= a11a11a12a12 + a21a21a12a12

+a11a11a22a22 + a21a21a22a22

−a11a12a12a11 − a21a22a12a11

−a11a12a22a21 − a21a22a22a21

= a21a21a12a12 + a11a11a22a22

−a21a22a12a11 − a11a12a22a21

. (4.4)Nova
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Positive terms in equations (4.3), (4.4) are real numbers and they obviously coincide. To

prove equation

a12a22a21a11 + a11a21a22a12 = a21a22a12a11 + a11a12a22a21 (4.5)

we use the rearrangement property of the trace of elements of the quaternion algebra,

t(pq) = t(qp). Indeed,

a12a22a21a11 + a11a21a22a12 = a12a22a21a11 + a12a22a21a11 = t(a12a22a21a11),

a21a22a12a11 + a11a12a22a21 = a11a12a22a21 + a11a12a22a21 = t(a11a12a22a21)

Then by the rearrangement property of the trace, we obtain (4.5).

According to the Theorem 4.13, we introduce the concept of double determinant. For

the first time this concept was introduced by L. Chen ([18]).

Definition 4.15. The determinant of corresponding Hermitian matrices is called the double

determinant of A ∈ M (n, H), i.e., ddetA := det (A∗A) = det (AA∗) .

If H is the Hamilton’s quaternion skew field H, then the following theorem establishes

the validity of Axiom 1 for the double determinant.

Theorem 4.16. If {A, B} ⊂ M (n, H), then ddet (A ·B) = ddetA · ddetB.

Unfortunately, if a non-Hermitian matrix is not full rank, then nothing can be said about

singularity of its row and column determinant. We show it in the following example.

Example 4.17. Consider the matrix

A =

(

i j

j −i

)

.

Its second row is obtained from the first row by left-multiplying by k. Then, by the Theorem

4.12, ddetA = 0. Indeed,

A∗A =

(

−i −j
−j i

)

·

(

i j
j −i

)

=

(

2 −2k
2k 2

)

.

Then ddetA = 4 + 4k2 = 0. However

cdet1A = cdet2A = rdet1A = rdet2A = −i2 − j2 = 2.

At the same time rankA = 1, that corresponds to the Theorem 4.10.

The correspondence between the double determinant and the noncommutative determi-

nants of Moore, Stady and Dieudonné are as follows,

ddetA = Mdet (A∗A) = SdetA = Ddet2A.

Definition 4.18. Let ddetA = cdetj (A∗A) =
∑

i

Lij · aij for j = 1, n. Then Lij is

called the left double ij-th cofactor of A ∈ M (n, H).
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Definition 4.19. Let ddetA = rdeti (AA∗) =
∑

j

aij ·Rij for i = 1, n. Then Rij is called

the right double ij-th cofactor of A ∈ M (n, H).

Theorem 4.20. The necessary and sufficient condition of invertibility of a matrix A =
(aij) ∈ M(n, H) is ddetA 6= 0. Then ∃A−1 = (LA)−1 = (RA)−1

, where

(LA)−1 = (A∗A)−1
A∗ =

1

ddetA









L11 L21 . . . Ln1

L12 L22 . . . Ln2

. . . . . . . . . . . .
L1n L2n . . . Lnn









(4.6)

(RA)−1 = A∗ (AA∗)−1 =
1

ddetA∗









R 11 R 21 . . . R n1

R 12 R 22 . . . R n2

. . . . . . . . . . . .
R 1n R 2n . . . R nn









(4.7)

and Lij = cdetj(A
∗A). j (a∗. i), R ij = rdeti(AA∗)i.

(

a∗j .

)

for all i, j = 1, n.

Remark 4.21. In the Theorem 4.20, the inverse matrix A−1 of an arbitrary matrix A ∈
M(n, H) under the assumption of ddetA 6= 0 is represented by the analog of the classical

adjoint matrix. If we denote this analog of the adjoint matrix over H by Adj[[A]], then the

next formula is valid over H:

A−1 =
Adj[[A]]

ddetA
.

An obvious consequence of a determinantal representation of the inverse matrix by the

classical adjoint matrix is Cramer’s rule.

Theorem 4.22. Let

A · x = y (4.8)

be a right system of linear equations with a matrix of coefficients A ∈ M(n, H), a column

of constants y = (y1, . . . , yn)T ∈ Hn×1, and a column of unknowns x = (x1, . . . , xn)T . If

ddetA 6= 0, then (4.8) has a unique solution that has represented as follows,

xj =
cdetj(A

∗A).j (f)

ddetA
, ∀j = 1, n (4.9)

where f = A∗y.

Theorem 4.23. Let

x · A = y (4.10)

be a left system of linear equations with a matrix of coefficients A ∈ M(n, H), a column

of constants y = (y1, . . . , yn) ∈ H1×n and a column of unknowns x = (x1, . . . , xn). If

ddetA 6= 0, then (4.10) has a unique solution that has represented as follows,

xi =
rdeti (AA∗)i. (z)

ddetA
, ∀i = 1, n (4.11)

where z = yA∗.
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Equations (4.9) and (4.11) are the obvious and natural generalizations of Cramer’s rule

for systems of linear equations over a quaternion division algebra. As follows from the

Theorem 4.8, the closer analog to Cramer’s rule can be obtained in the following specific

cases.

Theorem 4.24. Let A ∈ M(n, H) be Hermitian in (4.8). Then the solution of (4.8) has

represented by the equation,

xj =
cdetjA.j (y)

det A
, ∀j = 1, n.

Theorem 4.25. Let A ∈ M(n, H) be Hermitian in (4.10). Then the solution of (4.10) has

represented as follows,

xi =
rdetiAi. (y)

det A
, ∀i = 1, n.

An application of the column-row determinants in the theory of generalized inverse

matrices over the quaternion skew field recently has been received in [26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38].

5. Quasideterminants over a Quaternion Division Algebra

Theorem 5.1. Suppose a matrix

A =





a11 ... a1n

... ... ...
an1 ... ann





with entries from a quaternion division algebra has an inverse A−1.2 Then a minor of the

inverse matrix satisfies the following equation, provided that the inverse matrices exist

((A−1)IJ )−1 = AJI −A.I
J.(A

JI)−1AJ.
.I (5.1)

Proof. Definition of an inverse matrix leads to the system of linear equations

AJI(A−1)I.
.J + AJ.

.I(A
−1)IJ = 0 (5.2)

A.I
J.(A

−1)I.
.J + AJI(A

−1)IJ = I (5.3)

where I is a unit matrix. We multiply (5.2) by
(

AJI
)−1

(A−1)I.
.J + (AJI)−1AJ.

.I(A
−1)IJ = 0 (5.4)

Now we can substitute (5.4) into (5.3)

AJI(A
−1)IJ −A.I

J.(A
JI)−1AJ.

.I(A
−1)IJ = I (5.5)

(5.1) follows from (5.5).

2This statement and its proof are based on statement 1.2.1 from [17] (page 8) for matrix over free division

ring.
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Corollary 5.2. Suppose a matrix A has the inverse matrix. Then elements of the inverse

matrix satisfy to the equation

((A−1)ij)
−1 = aji − A.i

j.(A
ji)−1A

j.
.i (5.6)

Example 5.3. Consider a matrix

A =

(

a11 a12

a21 a22

)

According to (5.6)

(A−1)11 = (a11 − a12(a22)
−1 a21)

−1 (5.7)

(A−1)21 = (a21 − a22(a12)
−1 a11)

−1 (5.8)

(A−1)12 = (a12 − a11(a21)
−1 a22)

−1 (5.9)

(A−1)22 = (a22 − a21(a11)
−1 a12)

−1 (5.10)

We call a matrix

HA = ((HA)ij) = ((aji)
−1) (5.11)

a Hadamard inverse of3 A.

Definition 5.4. The (ji)-quasideterminant of A is formal expression

|A|ji = (HA−1)ji = ((A−1)ij)
−1 (5.12)

We consider the (ji)-quasideterminant as an element of the matrix |A| , which is called a

quasideterminant.

Theorem 5.5. Expression for the (ji)-quasideterminant has form

|A|ji = aji −A.i
j.(A

ji)−1A
j.
.i (5.13)

|A|ji = aji −A.i
j. H|Aji|Aj.

.i (5.14)

Proof. The statement follows from (5.6) and (5.12).

Example 5.6. Let

A =

(

1 0
0 1

)

(5.15)

It is clear from (5.7) and (5.10) that (A−1)11 = 1 and (A−1)22 = 1. However

expression for (A−1)21 and (A−1)12 cannot be defined from (5.8) and (5.9) since (a21−

a22(a12)
−1 a11)

−1 = (a12−a11(a21)
−1 a22)

−1 = 0. We can transform these expressions.

For instance

(A−1)21 = (a21 − a22(a12)
−1 a11)

−1

= (a11((a11)
−1 a12 − (a21)

−1 a22))
−1

= ((a21)
−1 a11(a21(a11)

−1 a12 − a22))
−1

= (a11(a21(a11)
−1 a12 − a22))

−1 a21

3See also page 4 in paper [16].
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It follows immediately that (A−1)21 = 0. In the same manner we can find that (A−1)12 =
0. Therefore,

A−1 =

(

1 0

0 1

)

(5.16)

From the Example 5.6 we see that we cannot always use Equation (5.6) to find elements

of the inverse matrix and we need more transformations to solve this problem. From the

theorem 4.6.3 in the paper [9], it follows that if

rank





a11 ... a1n

... ... ...

an1 ... ann



 ≤ n − 2

then |A|ij for all i, j = 1, n is not defined. From this, it follows that although a quasideter-

minant is a powerful tool, use of a determinant is a major advantage.

Theorem 5.7. Let a matrix A have an inverse. Then for any matrices B and C equation

B = C (5.17)

follows from the equation

BA = CA (5.18)

Proof. Equation (5.17) follows from (5.18) if we multiply both parts of (5.18) over A−1.

Theorem 5.8. The solution of a nonsingular system of linear equations

Ax = b (5.19)

is determined uniquely and can be presented in either form4

x = A−1b (5.20)

x = H|A| b (5.21)

Proof. Multiplying both sides of (5.19) from left by A−1 we get (5.20). Using the Defini-

tion 5.4, we get (5.21). Since the Theorem 5.7, the solution is unique.

6. Relation of Row-Column Determinants

with Quasideterminants

Theorem 6.1. If A ∈ M(n, H) is an invertible matrix, then, for arbitrary p, q = 1, n, we

have the following representation of the pq-quasideterminant

| A |pq=
ddetA · cdetq(A∗A). q

(

a∗. p
)

n(cdetq(A∗A). q

(

a∗. p
)

)
, (6.1)

4See similar statement in the theorem 1.6.1 in the paper [17] on pagen 19.
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| A |pq=
ddetA · rdetp(AA∗)p .

(

a∗q .

)

n(rdetp(AA∗)p .

(

a∗q .

)

)
. (6.2)

Proof. Let A−1 = (bij) to A ∈ M(n, H). Equation (5.12) reveals the relationship between

a quasideterminant | A |p,q of A ∈ M(n, H) and elements of the inverse matrix A−1 =
(bij), namely

| A |pq= b−1
qp

for all p, q = 1, n. At the same time, the theory of row and column determinants (the

theorem 4.20) gives us representation of the inverse matrix through its left (4.6) and right

(4.7) double cofactors. Thus, accordingly, we obtain

| A |pq= b−1
qp =

(

Lpq

ddetA

)−1

=

(

cdetq(A
∗A). q

(

A∗
. p

)

ddetA

)−1

, (6.3)

| A |pq= b−1
qp =

(

Rpq

ddetA

)−1

=

(

rdetp(AA∗)p .

(

A∗
q .

)

ddetA

)−1

. (6.4)

Since ddetA 6= 0 ∈ F, then ∃(ddetA)−1 ∈ F. It follows that

cdetq(A
∗A). q

(

A∗
. p

)−1
=

cdetq(A∗A). q

(

A∗
. p

)

n(cdetq(A∗A). q

(

A∗
. p

)

)
, (6.5)

rdetp(AA∗)p .

(

A∗
q .

)−1
=

rdetp(AA∗)p .

(

A∗
q .

)

n(rdetp(AA∗)p .

(

A∗
q .

)

)
. (6.6)

Substituting (6.5) into (6.3), and (6.6) into (6.4), we accordingly obtain (6.1) and (6.2).

We proved the theorem.

Equation (6.1) gives an explicit representation of a quasideterminant | A |p,q of A ∈
M(n, H) for all p, q = 1, n by the column determinant of its corresponding left Hermitian

matrix A∗A, and (6.2) does by the row determinant of its corresponding right Hermitian

matrix AA∗.

Example 6.2. Consider a matrix

A =

(

a11 a12

a21 a22

)

According to (5.13)

|A| =

(

a11 − a12(a22)
−1 a21 a12 − a11(a21)

−1 a22

a21 − a22(a12)
−1 a11 a22 − a21(a11)

−1 a12

)

(6.7)

Our goal is to find this quasideterminant using the Theorem 6.1. It is evident that

A∗ =

(

a11 a21

a12 a22

)

A∗A =

(

n(a11) + n(a21) a11a12 + a21a22

a12a11 + a22a21 n(a12) + n(a22)

)

.
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Calculate the necessary determinants

ddetA = rdet1(A
∗A)

= (n(a11) + n(a21)) · (n(a12) + n(a22))

−(a11a12 + a21a22) · (a12a11 + a22a21)
= n(a11)n(a12) + n(a11)n(a22) + n(a21)n(a12) + n(a21)n(a22)

−a11a12a12a11 − a11a12a22a21 − a21a22a12a11 − a21a22a22a21

= n(a11)n(a22) + n(a21)n(a12) − (a11a12a22a21 + a11a12a22a21)

= n(a11)n(a22) + n(a21)n(a12) − t(a11a12a22a21)

cdet1(A
∗A).1(a

∗
.2) = cdet1

(

a21 a11a12 + a21a22

a22 n(a12) + n(a22)

)

= n(a12)a21 + n(a22)a21 − a11a12a22 − a21a22a22

= n(a12)a21 − a11a12a22.

Then

cdet1(A∗A).1(a∗.2) = n(a12)a21 − a22a12a11,

n(cdet1(A
∗A).1(a

∗
.2)) = cdet1(A∗A).1(a∗.2) · cdet1(A

∗A).1(a
∗
.2)

= (n(a12)a21 − a22a12a11) · (n(a12)a21 − a11a12a22)
= n2(a12)n(a21) − n(a12)a21a11a12a22

−n(a12)a22a12a11a21 + a22a12a11a11a12a22

= n(a12)(n(a12)n(a21) − t(a11a12a22a21) + n(a21)n(a12))

= n(a12)ddetA.

Following (6.1), we obtain

|A|21 =
ddetA

n(cdet1(A∗A).1(a
∗
.2))

cdet1(A∗A).1(a∗.2)

=
ddetA

n(a12)ddetA
cdet1(A∗A).1(a

∗
.2)

=
1

n(a12)
· cdet1(A∗A).1(a∗.2)

=
1

n(a12)
· (n(a12)a21 − a22a12a11)

= a21 − a22(a12)
−1a11.

(6.8)

The last expression in (6.8) coincides with the expression |A|21 in (6.7).

7. Conclusion

In the chapter we consider two approaches to define a noncommutative determinant,

row-column determinants and quasideterminants. These approaches of studying of a matrix

with entryes from non commutative division ring have their own field of applications.

The theory of the row and column determinants as an extension of the classical defi-

nition of determinant has been elaborated for matrices over a quaternion division algebra.

It has applications in the theories of matrix equations and of generalized inverse matrices
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over the quaternion skew field. Now it is in development for matrices over a split quaternion

algebra. In the chapter we have extended the concepts of an immanant, a permanent and a

determinant to a split quaternion algebra and have established their basic properties.

Quasideterminants of Gelfand-Retax are rational matrix functions that requires the in-

vertibility of certain submatrices. Now they are widely used. Though we can use quaside-

terminant in any division ring,5 row-column determinant is more attractive to find solution

of system of linear equations when division ring has conjugation.

In the chapter we have derived relations of row-column determinants with quasideter-

minants of a matrix over a quaternion division algebra. The use of equations (6.1) and (6.2)

allows us direct calculation of quasideterminants. It already gives significance in establish-

ing these relations.
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