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PREFACE

”Advances in Mathematics Research” presents original studies on the leading edge of
mathematics. Each article has been carefully selected in an attempt to present substantial re-
search results across a broad spectrum. Topics discussed herein include recent advances in
the periodicity in dynamical systems; nonlinear differential equations and Fucik Spectrum;
matrix theory; column and row determinants in quaternion linear algebra; elliptic perturba-
tions of parabolic and hyperbolic problems and a discrete time (s,S) inventory system with
service facility. (Imprint: Nova)

Periodic solutions and related notions of recurrence, invariance, limit sets and associ-
ated decompositions have been and remain among the most important topics in the theory
and applications of differential equations and dynamical systems. Chapter 1 comprises a
survey of some fundamental and recent advances along with several important open prob-
lems in these areas.

The topics discussed are the following: First, uniqueness of limit cycles for planar dy-
namical systems (differential equations) of Linard type, which is subsumed by Hilbert’s
16th problem on the number of limit cycles for planar systems (a fundamental problem of
long standing that is still largely unresolved). The discussion revolves around a very general
recent result of Zhou, Wang and Blackmore that subsumes virtually all extant theorems on
uniqueness for Linard systems. Next, the focus is on the use of variational, geometric and
topological methods for estimating the number of periodic solutions of Hamiltonian sys-
tems. Several recent results of Blackmore and Wang are described within the context of the
considerable body of known results, and some related problems and research-in-progress
are identif ed. Then, some advances in f xed point counts and persistence of invariant tori in
Hamiltonian systems are surveyed via recent generalizations of Poincar-Birkhoff f xed point
and KAM theorems, and several rather new and interesting applications of these results to
problems in vortex dynamics are described. Finally, a brief characterization of ?-limit sets
and its connections with recurrence is presented, where the approach emphasizes Conley
theory and Morse decompositions. A new result is described and its relations to existing
theorems, possible future research and open problems are treated in some detail.

Chapter 2 presents the development and evaluation of an approach to predict radon
gas concentrations for unmeasured zip codes, using the Geographic Information System
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(GIS) based interpolation techniques: kriging and cokriging. The radon gas concentration
data collected by the county health departments, commercial testing services, university re-
searchers, and the public between 1989 and 2008, for the state of Ohio, have been used to
predict radon gas concentrations during the study. Note that monitoring radon gas concen-
tration in houses across an entire state is very time consuming and involves huge investment.

Statistical performance measures, such as mean bias (MB), normalized mean square
error (NMSE), coeff cient of correlation (Corr.), factor of two (Fa2), fractional standard
deviation (FS), and fractional bias (FB) have been used to assess the performance of in-
terpolation schemes. Conf dence limits for the measures of association (NMSE, Corr., and
FB) have been obtained using the "Bootstrap” method. The radon concentrations are over
predicted (negative bias) by both of the interpolation techniques. On comparing the per-
formance measures and the associated conf dence limits on performance measures, it was
observed that the cokriging interpolation technique had a slight edge over the kriging inter-
polation technique.

The zip code based results for radon gas concentrations exceeding 4 pCi/l have been
tabulated using the cokriging interpolation technique for radon planners in Ohio. These
results indicate that more work is needed to reduce radon gas concentrations in Ohio. The
developed approach could be applied to any affected area of the globe.

Chapter 3 reports the results of a numerical experiment on the traveling salesman prob-
lem. The results indicate that, a large majority of instances of the problem is solvable within
a practical time limit.

The goal of Chapter 4 is to put together some recent results concerning applications of
monotone second order differential equations to singularly perturbed problems of elliptic -
parabolic and elliptic - hyperbolic type. More exactly, the solution v of the heat equation
or of the telegraph system is compared with the solution v. of an elliptic regularization.
This elliptic regularization is a perturbed problem written with the aid of a small parameter
e > 0. It is a particular case of some second order differential equations governed by a
maximal monotone operator in the Hilbert space L? (2) . Under some specif ¢ hypotheses,
we construct a zero order asymptotic approximation for v. making use of the boundary
layer function method of Vishik and Lyusternik. The higher order regularity of the solutions
to both perturbed and unperturbed problems is investigated. The order of accuracy of the
difference v. —v is also established in some appropriate function spaces. Thus, the solution
v of the heat equation (or telegraph system) is approximated by the solution v, of'its elliptic
regularization, which is a more regular function. This is a motivation for the study of the
above mentioned second order evolution equations associated with monotone operators.
This study can involve different unperturbed problems: semilinear heat equation, linear
heat equation with nonlinear boundary conditions, semilinear telegraph system, nonlinear
telegraph system with nonlinear boundary conditions, etc.

As discussed in Chapter 5, the diversity of problems involved in investigation of the
interaction of hydrogen and its isotopes with solids is extensively covered in specialized
literature [1]-[6]. In the context of hydrogen energy problems the interest in hydrides arises
mainly from the following. First of all, hydrides allow to retain large quantities of hydrogen
due to the high eff ciency of chemical bonds. Secondly, it is a relatively safe way of storage
and transportation as compared with high-pressure gas cylinders and cryogenic systems.
For instance, car hydrogen battery is a tank flled with powder-like hydride. The hydride
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decomposes under heating and gaseous energy carrier is released. The problem is that no
material that would accumulate large quantities of hydrogen and satisfy competitive oper-
ational requirements has yet been found. However, if environmental requirements become
crucial under certain conditions, the prospects of hydrogen engines are obvious.

The problem of flling also calls for an effective solution: hydriding under high pres-
sure causes intensive heat release, which triggers a reverse reaction of decomposition. Mo-
delling of hydrides formation is an independent problem. Let us dwell upon mathematical
models of dehydriding in the context of the experimental method of thermodesorption spec-
troscopy (TDS). Computational experiments allow to “scan” a wide range of parameters and
operating conditions of a material, and identify the limiting factors. The problems of the
control of dehydriding kinetics parameters and the heating law are quite topical. We are
interested in the problem for a tank with a huge number of powder particles of different
sizes rather than in the “basic” problem for an individual hydride particle.

In Chapter 6, a discrete time inventory system with demands occurring according to
a Bernoulli process and geometrically distributed lead time is considered, wherein a de-
manded item is delivered to the customers only after performing some random service. The
service facility is assumed to have an inf nite waiting hall. An (s, S) type ordering policy
is adopted. The joint probability distribution of the number of customers in the system and
the inventory level is obtained in steady state case. Some system performance measures are
derived and the results are illustrated numerically.

The adaptive linearization of dynamic nonlinear systems remains, in general, as an
open problem due the complexities associated to the method required to derive the linear
or quasilinear model. The problem is even more diff cult if the system is uncertain, that
is, when the formal description of the plant is almost unknown considering that number
of states is available. Chapter 7 discuses an adaptive linearization method for perturbed
nonlinear uncertain systems based on the application of special artif cial neural networks.
The proposal is based on no-parametric identif er and its convergence is analyzed using the
second method of Lyapunov. The suggested structure preserves some inherited structural
properties like controllability. The scheme was tested using three different set of activation
functions: sigmoid, wavelets and Chevyshev polynomials. The proposed method shows a
good transient performance and the identif cation goals are fulflled. A distillation column
was used to show how the identif er works.

In four sections, Chapter 8 is organized as follows. In section 1 we investigate the basic
problem with jumping nonlinearity

u(2) + Aput(z) = Au (x) =0, x€(0,7),

We defne Fucik spectrum 3 and describe the solutions corresponding to the point
(A, A=) € X. We introduce regions of type (I), (II), respectively defned by the curves
of Fucik spectrum.

In section 2 we introduce some necessary notions and basic assertions. We formulate
linking theorem which we use to prove the existence of the solution to our problem.

In section 3 we apply variational approach to obtain the existence results to the follow-
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ing nonlinear problem

u’(z) + aut (2) — Bu” (z) + g(z,u(x)) = f(z), =€ (0,m),
u(0) =u(m) =0

where the point («, 3) falls in regions of type (I), (IT), respectively. For («, 3) in region of
type (II) we def ne the right hand side f such that the equation is not solvable and f nd a set
of f for which we get solutions.

The last section 4 deals with the damping differential equation

(@) + ' (2) + au () — Bu(2) + 9o, (@) = F(2), =€ (0m),
u(0) =u(m) =0

where ¢ #£ 0.

The Quantum Information Theory is a reach source of fascinating problems in Linear
and Multilinear Algebra. In Chapter 9 we shall discuss one of such problems, namely the
Distillation Problem.

Let pkW, k = 1,2,...,m, be the critical Werner state in a bipartite di x dj quantum
system, i.e., the one that separates the 1-distillable Werner states from those that are 1-
indistillable. We propose a new conjecture (GDC) asserting that the tensor product of pZV
is l-indistillable. This is much stronger than the familiar conjecture saying that a single
critical Werner state is indistillable. We prove that GDC is true for arbitrary m provided
that di, > 2 for at most one index k. We reformulate GDC as an intriguing inequality for
four arbitrary complex hypermatrices of type d; X - - - X d,,. This hypermatrix inequality is
just the special case n = 2 of a more general conjecture (CBS conjecture) for 2n arbitrary
complex hypermatrices of the same type. Surprisingly, the case n = 1 turns out to be quite
interesting as it provides hypermatrix generalization of the classical Lagrange identity. We
also formulate the integral version of the CBS conjecture and derive the integral version of
the hypermatrix Lagrange identity.

In applications, it turns out that the matrices one encounters typically have certain prop-
erties. For example, such matrices are almost always invertible. This phenomenon may be
explained by the fact that the set of singular matrices, being of lower dimension, forms a
set of measure zero. This is the coarsest way to obtain statement about properties of typical
matrices.

In some case it is possible to ref ne such statements. In particular, if the matrices are
defned over a compact feld or ring then the ring Mat,, of all matrices carries a unique
normalized Haar measure, or in other words, a natural probability measure. Hence, it is
possible to defne and study random matrices. Important matrix subrings like SL,,, G L,
Oy, U,m and Sp,, ,, carry similar probability measures.

For matrices over Z, no such Haar measure exists. However, it is possible to compute
the probabilities in every localisation. It is tempting to defne global probabilities as the
product over all local probabilities. Unfortunately, this method will in general not yield a
probability measure.

In Chapter 10, we will study in which situations the local reductions induce a probability
measure for integral matrices, thereby answering the question what properties of integral
matrices are susceptible to studies by means of probability theory.
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New def nitions of determinant functionals (the column and row determinants) over the
quaternion division algebra are given in Chapter 11. We study their properties and relations
with other well-known noncommutative determinants (Study, Moore, Diedonne, Chen) and
the quasideterminants of Gelfand-Retakh. We introduce a def nition of a determinant of
a Hermitian matrix and a double determinant and their properties are investigated. We
build the theory of invertibility of a square matrix over the quaternion division algebra
relying on the introduced determinants by analogy with the classical theory in the complex
case. Within the framework of the theory of the column and row determinants we obtain a
determinantal representation of the inverse matrix over the quaternion algebra by analogs of
the classical adjoint matrix and Cramer’s rule for right and left systems of linear equations.
We consider some left, right and two-sided matrix equations over the quaternion algebra
and solve them by the Cramer rule as well. We investigate the problem of eigenvalues of
a quaternion matrix and it’s singular value decomposition. Determinantal representation of
the Moore-Penrose inverse is extended to a matrix over the quaternion skew feld within
the framework of a theory of the column and row determinants. Using the obtained analogs
of the adjoint matrix, we get Cramer’s rules for the least squares solutions of left and right
systems of quaternionic linear equations. As a consequence we obtain the recent results for
the Moore-Penrose inverse and the least squares solution in the complex case.

Brood sorting, observed in Ieptothorax unifasciatus ant colonies, is a major example of
social insects ability to solve problems at the collective level. Two processes characterize
this phenomenon: a process of aggregation of all brood items in a single cluster, coupled
with a process of segregation of items in concentric annuli, each containing items of dif-
ferent type, and ordered such a way that the smallest items are at the center and the largest
at the periphery. This phenomenon has been a part of what triggered a lot of studies about
swarm intelligence. Nevertheless, there is still a lot to understand about that phenomenon.
We propose a detailed mathematic analysis of this entire process and that leads to under-
stand how and why swarm intelligence may occur. Chapter 12 includes “tutorial” about the
mathematic tools we used in order to show how possible and useful the theoretical analysis
of some swarm models may be.
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Chapter 11

THE THEORY OF THE COLUMN AND ROW
DETERMINANTS IN A QUATERNION LINEAR
ALGEBRA

Ivan |. Kyrchei*
Pidstrygach Institute for Applied Problems of Mechanics
and Mathematics of NAS of Ukraine,
str. Naukova 3b, Lviv, 79053, Ukraine

Abstract

New definition of determinant functionals (the column and row determinants)
over the quaternion division algebra are given in this chapter. We study their proper-
ties and relations with other well-known noncommutative determinants (Study, Moore,
Diedonne, Chen) and the quasideterminants of Gelfand-Retakh. We introduce a defi
nition of a determinant of a Hermitian matrix and a double determinant and their prop-
erties are investigated. We build the theory of invertibility of a square matrix over the
quaternion division algebra relying on the introduced determinants by analogy with the
classical theory in the complex case. Within the framework of the theory of the column
and row determinants we obtain a determinantal representation of the inverse matrix
over the quaternion algebra by analogs of the classical adjoint matrix and Cramer’s
rule for right and left systems of linear equations. We consider some left, right and
two-sided matrix equations over the quaternion algebra and solve them by the Cramer
rule as well. We investigate the problem of eigenvalues of a quaternion matrix and it’s
singular value decomposition. Determinantal representation of the Moore-Penrose in-
verse is extended to a matrix over the quaternion skew fiel within the framework of a
theory of the column and row determinants. Using the obtained analogs of the adjoint
matrix, we get Cramer’s rules for the least squares solutions of left and right systems
of quaternionic linear equations. As a consequence we obtain the recent results for the
Moore-Penrose inverse and the least squares solution in the complex case.

Keywords: quaternion skew field noncommutative determinant, inverse matrix, quater-
nionic system of linear equation, Cramer’s rule.

MSC: 15A33, 15A15, 15A24.

*E-mail address: kyrchei@lms.lviv.ua
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1. Introduction

Linear algebra has accumulated a rich collection of different methods. At the transition
from linear algebra over a feld to linear algebra over a noncommutative ring, we want to
save as many tools as we regularly use in linear algebra over a feld. At the beginning of
XX century, soon after the creation of Hamilton quaternion algebra, mathematics sought
answer how looks algebra with noncommutative multiplication. In particular, since that
time there is a problem of a determinant of matrices with noncommutative entries (which
are also def ned as noncommutative determinants). There are several versions of the def ni-
tion noncommutative determinants. But any of the previous noncommutative determinants
has not fully retained those properties which it owned for matrices over a feld. In partic-
ulary, determinants of matrices over a f eld are multiplicative. But in [10] it is proved that
there no exists an extension of the def nition of determinants of real matrices to quaternion
matrices, such that the multiplication theorem holds. Therefore, fnding a solution to the
problem of noncommutative determinants is yet continued. The theory of noncommutative
determinants can be divided into three approaches.

Let M (n, R) be the ring of n x n matrices with entries in a ring R.. The frst approach
[1, 6, 9] to def ning the determinant of a matrix in M (n, R) is as follows.

Def nition 1.1. Let a functionald : M (n, R) — R satisfy the following axioms.
Axiom 1 d (A) = 0 if and only if the matrixA is singular.
Axiom2d (A -B)=d(A) -d(B)forVB € M (n,R).

Axiom 3 If the matrix A’ is obtained fromA by adding a left-multiple of a row to
another row or a right-multiple of a column to another column, tdéA)’ = d (A).

Then a value of the functionalis called the determinant of the matix € M (n, R).

If a determinant functional satisfes Axioms 1, 2, 3, then it takes on a value in a com-
mutative subset of the ring. It is proved in [1]. Examples of such determinant are the
determinants of Study and Diedonné.

The most famous and widely used noncommutative determinant is the Diedonné deter-
minant. It was defned for matrices over a division ring R by Diedonné¢ in 1943 [7]. His
idea was to consider determinants with values in R* \ [R*, R*] where R* is the monoid
of invertible elements in R. The properties of Diedonné determinants are close to those
of commutative ones, but, evidently, Diedonné determinants cannot be used for solving
systems of linear equations. A determinantal representation of an inverse matrix by such
determinants is impossible as well. These are just some reasons which forces to def ne de-
terminant functionals unsatisfying all above-stated axioms. However Axiom 1 is considered
[9] indispensable for the utility of the notion of a determinant.

In another way of looking a noncommutative determinant is def ned as a rational func-
tion from entries. Herein I. M. Gelfand and V. S. Retah have reached the greatest success by
the theory of quasideterminants [14, 15, 16]. An arbitrary n X n matrix over a skew feld is
associated with an n x n matrix whose entries are quasideterminants. The quasideterminant
is not an analog of the commutative determinant but rather of a ratio of the determinant of
an n X n-matrix to the determinant of an (n — 1) x (n — 1)-submatrix.
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The Theory of the Column and Row Determinants... 303

Def nition 1.2. Let], J betwo finite sets of the same cardinality Let A = (a;;), i € I,
J € J be amatrix over ringR. Fori € I, j € J the(i, j)th quasideterminant A |; ; of
A € M(n,R) is defined by the formula

| A = b (1)
whereB = A~ = (b;;).
There is an equivalent def nition which is obtained by the following recurrence relations.

Def nition 1.3. If n = 1 sothat/ =1, J = j, then| A |;;= a;.
Letn > 2 and letA%” be the(n — 1) x (n — 1)-matrix obtained fromA by deleting theth
row and thejth column. Then

| A fij=aij = > wip(| AV |g) "y
Here the sum is taken overe I\ i,q € J \ j.

Since quasideterminants can not be expanded by cofactors along an arbitrary row or
column, an inverse matrix is not represented by the adjoint classical matrix. Despite this,
quasideterminants are now widely used and naturally that means one can solve systems of
linear equations using quasideterminants.

For left system of linear equations

A -x=¢

where A € M (n,R) is a matrix coeff cients, { = (&1, ... ,gn)T is the known column, we
have

n

vi=> |Alg,

j=1

and the analog of Cramer’s rule

|A‘z’j zj = |A,; (§)|z]7
where A; (§) is obtained from A by replacing the /th column by &.

At last, at the third approach a noncommutative determinant is def ned as the alternating
sum of n! products of entries of a matrix but by specifying a certain ordering of coeff cients
in each term. E. H. Moore was the frst who achieved the fulf llment of the main Axiom
1 by such defnition of a noncommutative determinant. This is done not for all square
matrices over a ring but rather only Hermitian matrices. Moore’s theory of noncommutative
determinants was introduced in [23]. Later, Dyson gave some natural generalizations and
described the theory in more modern terms [9].

Moore’s determinant of a Hermitian matrix A = (ai;)nxn (i.€. a;; = a@j;) over a ring
R with an involution is introduced by induction on n in the following way ([9]).
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Def nition 1.4. Denoteby A (i — j) the matrix obtained from Hermitiad € M (n,R)
by replacing itsjth column with theth column, and then by deleting both thk row and
column. Moore’s determinant is defined by the formula

aii, n=1
_ n
MdetA =9 s~ . g Mdet (A(i — ), n > 1 2
j=1
whereey; = { 1_’12 ;Zj :

Another def nition of this determinant is represented in [1] in terms of permutations:

Mdet A = § |lolanyingg < Qnyp nit Gnoingg © " Gnggyngg -
0€Sh

The disjoint cycle representation of the permutation o € .S,, is written in the normal form,
o= (ni...nu) (Ma1...no,) . (Np1 < npy,)
where, for eachi = 1, ..., r, we have n;; < ny, forall m > 1, and
Ny > Ngp > ... > Nyl

However there was no extension of the def nition of the Moore determinant to arbitrary
square matrices. F. J. Dyson has emphasized this point in [9]. Longxuan Chen has offered
the following decision of this problem in [4, 5]. He has defned the determinant of an
arbitrary square matrix A = (a;;) € M (n, H) over the quaternion skew f eld H as follows.

det A = Z 5(U)an1i2 “Qigig oo " Qigny oo " Aupkg "+ oo " Qfgmys
gES,
g = (nlig...’L'S)‘..(nrkg...k?l),
NY > 19,18, ,0g)...;N > ko, ks, ..., ki,

n=ny >ne>...>n, > 1.

L. Chen has obtained a determinantal representation of an inverse matrix over the quaternion
skew f eld even though the determinant does not satisfy Axiom 1. However this determinant
also can not be expanded by cofactors along an arbitrary row or column with the exception
of the nth row. Therefore he has not obtained the classical adjoint matrix or its analog as
well.

He defned ||A|| := det(A*A) as the double determinant and obtained the following
determinantal representation of an inverse matrix.

Theorem 1.1. If [|A|| := det(A*A) # 0 for A = (aq,...,a,) overH, then exists its
inverseA~! = (b;1,), where

1
b-k:—wk, (j,k‘=1,2,...,n),
AT

wk- — d.et a1...0;_ 10,0 +1--- (677 6k- A1 ...0;_ 10, +1--- Op—10 .

Here o; is theith column ofA, 4, is then-dimension column with 1 in thieh row and 0
in others.
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The Theory of the Column and Row Determinants... 305

If [|A]| # 0, then a solution of a right system of linear equations y 7, ajz; = (3 over
H is represented by the next formula, def ned as Cramer’s formula,

zj = ||A| 7Dy,

for all j = 1, n, where

Dj:det (Oq cee QGo1 Qo Qg ... Qg O[]‘).

Here o is the ith column of A, o is the ith row of A*, and 3* is the n-dimension row
vector conjugated with 3.

In this chapter we consider the theory of the row and column determinants over the
quaternion algebra. The chapter is organized as follows. In Section 2 we consider the main
provisions of the quaternion algebra.

In Section 3 def nitions of the row and column determinants are given and their prop-
erties of an arbitrary quadratic matrix over the quaternion algebra (including the lemmas
enable expend their by cofactors) are described.

In Section 4 we introduce the determinant of a Hermitian matrix, which coincide with
the Moore determinant.

In Section 5 we establish the properties of the row and column determinants of a Her-
mitian matrix and its diagonalization by unimodular matrices in Section 6.

In Section 7 we gives the determinantal representation of an inverse of a Hermitian
matrix.

In Section 8 we obtain the properties of the left and right corresponding Hermitian
matrices.

In Section 9 we set the criterion of the corresponding Hermitian matrices and introduce
the rank of a Hermitian matrix by principal minors.

In Section 10 we def ne the double determinant in within the framework of the theory of
the row and column determinants over the quaternion algebra and its properties are given.

In Section 11 we obtain the determinantal representations of an inverse matrix by the
analogs of the classical adjoint matrix.

In Section 12 we establish relations between noncommutative determinants (including
the quasideterminants) and the row and column determinants.

We get Cramer’s rule for left and right system of linear equations in Section 13 and
some matrix equations over the quaternion algebra in Section 14. In Section 15 we gives an
example of solving of some matrix equation by Cramer’s rule.

In Section 15 we investigate the problem of eigenvalues of a quaternion matrix and
it’s singular value decomposition, and introduce the Moore-Penrose inverse of a quaternion
matrix.
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These results obtained in Section 15 lead us to the determinantal representation of the
Moore-Penrose inverse (Section 16) and to Cramer’s rule for a least squares solution of
quaternion system linear equations (Section 17). In Section 18 we gives an example of
fnding a least squares solution of some quaternion system linear equations by Cramer’s
rule.

Facts set forth in Sections 2-13 are published in [17], in Sections 14-15 are published
in [18] and in Sections 16-18 are published in [19, 20].

2. Quaternion Algebra

The row and column determinants are defned for quadratic matrices over a quaternion
algebra H. A quaternion algebra H(a, b) over a feld IF is a central simple algebra over F
that is a four-dimensional vector space over the F. A quaternion algebra H(a, b) over a feld
[F with basis {1, 4, 7, k} and the following multiplication rules:

i’ =a,
j*=b,
ij =k,
ji=—k

A quaternion algebra H(a, b) over a feld IF is denoted (QTB) as well. To every quaternion
algebra Hl(a, b), one can associate a quadratic form n (called the norm form) on H such
that n(xy) = n(x)n(y) for all z and y in H. A linear mapping x — T = t(x) — z is
also defned on H. It is an involution, i.e. T =z, x +y =T +yandT-y = - T An
element 7 is called the conjugate of = € H. t(x) and n(z) are called the trace and the norm
of x respectively, at that {n(z), t(x)} C F for all z in H. They also satisfy the following
conditions: n () = n(z), t (Z) = t(z) and t (¢ - p) = t(p- q). The last property is the
rearrangement property of the trace.

Depending on the choice of F, a and b we have only two possibilities [22]:

1.(%’) is a division algebra,

2. (“I@b) is isomorphic to the algebra of all 2 x 2 matrices with entries from F.

(If an F-algebra is isomorphic to a full matrix algebra over F we say that the algebra is
split, so (2) is the split case.)

Consider some non-isomorphic quaternion algebra with division.

1. If F is the feld of the real numbers R, then (%gb) is isomorphic to the Hamilton
quaternion skew feld H whenever a < 0 and 5 < 0. Otherwise (%’) is split.

2. If F is the f eld of the real numbers Q, then there exist inf nitely many non-isomorphic

division quaternion algebras (“@b).

3. Let Qy, is padic feld, where p is a prime. For each prime p there is a unique quater-
nion division algebra over Q,,.
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3. Def nitions and Basic Properties
of the Column and Row Determinants

To introduce the row and column determinants, we need the following def nitions in the
theory of permutations.

Def nition 3.1. Supposes,, is the symmetric group on the sit= {1,...,n}. If two-line
notation of a permutatioa € S,, corresponds to its some cycle notation, then we say that
the permutatiorr € .S,, forms the direct product of disjoint cycles, i.e.

(M1 N1z ... N1y ... Npe1r N2 o0 Ny, (3)
ni2 M1z ... N1 ... Np2 Np3 ... Nyl

Def nition 3.2. If cycle notation ot € S, is written as the upper row of its corresponding
two-line notation, then it is called the left-ordered cycle notation of the permutatiers,, .
This means that if two-line notation ef € S,, by the direct product of disjoint cycles has
the form (3), then the left-ordered cycle notation is represented by

g = (n11n12 .. -nlll) (nngLgQ .. .n212) v (nﬂn,«g . nTlT) .

We use the term left-ordered”, because each cycle is started from some x of I, on
the left. Then we obtain the sequence (z o(x) o(o(z))...) of successive images under o
(ordered from left to right), until the image would be x.

Def nition 3.3. If cycle notation otr € S, is written as the lower row of its corresponding
two-line notation, then it is called the right-ordered cycle notation of the permutatien
Sy». This means that if two-line notation efe S,, by the direct product of disjoint cycles
has the form (3), then the right-ordered cycle notation is represented by

g = (Tllg Ce nulnn) (ngg . n212n21) Ce (nrg ce nrlrnrl) .

We use the term right-ordered”, because each cycle is started from some = of I, on
the right. Then we obtain the sequence (...0~!(c~!(z)) o~ 1(x) x) of successive images
under 0! (ordered from right to left), until the image would be .

Def nition 3.4. Theith row determinant oA = (a;;) € M (n, H) is defined as the alter-
native sum ofi! monomials compounded from entriesfofuch that the index permutation

of each monomials forms the direct product of disjoint cycles. If the permutation is even,
then the monomial has a sign "+". If the permutation is odd, then the monomial has a sign
"—" Thatis

rdet; A = g (-1) iy, Wiy gy 41 - - Qi 10 Vg iy 11 - - - iy 1, 1.
O'ESTL

whereS,, is the symmetric group on the skt Left-ordered cycle notation of the permuta-
tion o is written as follows

0 = (0iky k41 - - - i) (ko fhat1 - - - Thotln) - - - (Bl Tyt - - Thptt, ) -
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Here the index startsthe first cycle from the left and other cycles satisfy the following
conditions
Ty <l < oon <hpy Ty < Uhgypts

forallt =2, rands = 1,1,.

Let a; be the jth column and a;, be the ith row of a matrix A € M (n, H). Denote by
A ; (b) a matrix obtained from A by replacing its jth column with the column b , and by
A; (b) a matrix obtained from A by replacing its ith row with the row b. Denote by A/
a submatrix of A obtained by deleting both the ith row and the jth column.

The next lemma enables us to expand rdet; A by cofactors along the i-th row for all
i = 1,n. The calculation of the row determinant of a n x n matrix is reduced to the calcu-
lation of the row determinant of a lower dimension matrix.

Lemma 3.1. Let R;; be the rightijth cofactor of A € M (n,H), that isrdet; A =
n
Qij - Rij forall 7 = 1,771 Then
j=1

R — —rdet; Az; (ai), i# 7,
S rdet), A%, i=7,

WhereA?]"- (a ;) is obtained fromA by replacing thejth column with theth column, and
then by deleting both thih row and columnf = min {7,, \ {i}}.

Proof. At frst we prove that R;; = rdety A%, where k = min {I,, \ {i}}.
If: =1, thenrdeti A = ay1 - R11 + a12 - Ri12 + ... + a1y, - R1p. Consider the mono-
mials of rdet; A such that begin with a1 from the left:

n—r
alq - RH = E (—1) anagikz .. .az‘k2_‘_12 2. aikr Tl *° a’ikr+lr k)
GESy
where 6 = (1) (21ky - - - tkytiy) - - - (%k, Ukpt1 - - - Tk, 41, ). By factoring the common left-side

factor a1, we obtain

_ 2: n—l—-(r=1) . o : ‘
CL11R11 = a1 (—1) a21k2 .. .alk2+122 e alkrlkr+1 e alerrlr“vr’
01E€Sh_1

where 61 = (21ig, - - - ikytiy) - - - (U lhptl - - - Uppi, ). Here Sp_1 is the symmetric group on
I,,\ {1}. The numbers of the disjoint cycles and the coeff cients of every monomial of R1;
decrease by one. Each monomial of R;; begins on the left with some entry of the second
row of A. There are no entries of the frst row and column of A among its coeff cients.
Thus, we have

Rll = Z (71)n717(r71) aQikz .. .aik2+l22 e aikr+lrikr == I‘detgAH. (4)

G1€Sn—1
If now i # 1, then

rdet; A = a;1 - Rjg + a2 - Rig + ... 4+ ain - Rip &)
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Consider monomials of rdet; A such that begin with a;; from the left:

Qi R“‘ = E (—1) a“ath .. .a,k2+121 N asz%H e azerrlkr’

Te S,

where 0 = (i) (Ligy - .- gytiy) - - - (%k, 0kpt1 - - - Tk, 41, ) - By factoring the common left-side
factor a;;, we get

— § : n—l—(r-1) . . 4 .
Qg * R“' = Ajj * (—1) al% ...alk2+121 "'azerrlrlkr’

T1€8Sn-1

where 01 = (1igy . kytiy) - - - (k. 0k +1 - - - Tk, +1,.). Here S,_1 is the symmetric group
on I, \ {i}. The numbers of disjoint cycles and the coeff cients of every monomial of R;;
again decrease by one. Each monomial of R;; begins on the left with an entry of the frst
row. There are no entries of the ¢th row and column of A among its coeff cients. Thus, we
obtain

n—1—(r—1 )
R“' = Z (—1) ( ) alikQ . .aik2+l21 ‘e aik7'+lrik7‘ = rdetlA”. (6)
3163\”71

Combining (4) and (6), we get R;; = rdet;, A", k = min {I,, \ {i}}.
Now suppose that ¢ # j. Consider monomials of rdet; A in (5) such that begin with
a; j from the left:

aij-Rig= > (1" aijaji, iy i Qg e iy, =

Q\

€Sn
— n—r— 1 .. . . . . . .
= —a;j - ZS (—1) Ajig, - Qi gy -+ - Qi gy 11 - - Vi, 1, ik

where ¢ = (i7 ik, .. tky41y) - - - (U Uyt - - - Uppl, ). Denote Qi 41,5 = Big, oy for all
ky+1, € In. Then

Qjj - Rij = —Q4y E ( 1) aﬂh .. 'azkl“'ll] v alk,«+lrlkw
g1€ Snfl

where 61 = (jig, - iky+1y) - - - (U, 0ky+1 - - - Uk, +1, ). The permutation o1 does not contain
the index ¢ in each monomial of R; ;. This permutation satisf es the conditions of Def nition
3.4 for rdet;A’’ (a ;). The matrix A’ (a ;) is obtained from A by replacing the jth
column with the column ¢, and then by deleting both the ¢th row and column. That is,

—r—1 - ..
Z (*1)” " ajikl .. 'aik1+l1j . aierr iy — rdetj AZJZ (az)
g1€ /§n—1
Therefore, if i # j, then R;; = —rdetjA?'; (a ).l

Def nition 3.5. Thejth column determinant cA € M (n, H) is defined as the alternative
sum ofn! monomials compounded from entriesAfsuch that the index permutation of
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each monomials forms the direct product of disjoint cycles. If the permutatieven, then

a monomial has a sign "+”. If the permutation is odd, then a monomial has a sign "—".
That is

cdetj A = E (D" gy - -+ W1y, - - - Jeytty Wk 410k By 50
TGSn

whereS,, is the symmetric group on the sét = {1,...,n}. Right-ordered cycle notation
of the permutation € S, is written as follows:

T = (Jkptir -+ Thpt1Tkr) - Glatlo -+ - Thot17k2) (Gkatty - - Jhy 410817 -

Here the first cycle from the right begins with the ingeand other cycles satisfy the fol-
lowing conditions

Thy < Jks < v <Jkps Tk < Jkptss
forallt =2, rands =1,1,.

Remark 3.1. A feature of the column determinantis that it is always constructed from right
to left.

Lemma 3.2. Let L;; be the leftijth cofactor of of a matrixA € M (n,H), that is
n —_—

cdetj A= Z Lij - Qg5 forall j = 1,n. Then
i=1

I —CdetiAg? (aj.), @# 4,
e cdet), AJ7, i1=7,

WhereAg? (aj.) is obtained fromA by replacing theth row with thejth row, and then by
deleting both theth row and columnk = min {.J,, \ {j}}.

The proof is similar to the proof of Lemma 3.1.

Remark 3.2. Clearly, any monomial of each row or column determinant of a square matrix
corresponds to a certain monomial of another row or column determinant such that both of
them consists of the same coefficients and differ only in their ordering. If the entries of an
arbitrary matrix A are commutative, thenlet; A = ... = rdet,A = cdet; A = ... =

cdet, A.

Consider the basic properties of the column and row determinants of a square matrix
over H. Their proofs immediately follow from the def nitions.

Theorem 3.1. If one of the rows (columns) & € M (n, H) consists of zeros only, then
rdet; A = 0 andcdet; A = 0forall i =1, n.

Theorem 3.2. If the ith row of A € M (n,H) is left-multiplied byb € H, then
rdet; A, (b . ai.) =b-rdet; Aforall i = 1,7’0

Theorem 3.3. If the jth column ofA € M (n,H) is right-multiplied byb € H, then
cdet; A j(aj-b) =cdet; A-bforall j =1,n.
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Theorem 3.4. If for A € M (n, H) there exists such indexc I,, thata;; = b; + c; for all
j=1,n,thenforalli=1n

rdet; A = rdet; A;. (b) 4 rdet; A¢ (c),
cdet; A = cdet; Ay (b) 4 cdet; Ay (c),

whereb = (by,...,b,),c = (c1,...,¢Cn).

Theorem 3.5. If for A € M (n, H) there exists such indexe J,, such thata;;, = b; + ¢;
i=1,n,thenforallj =1,n

rdet; A = rdet; A ;(b) 4+ rdet; A 4 (c),
cdet; A = cdetj A 4 (b) + cdet;A 4 (c),

whereb = (by,...,b,) , c = (c1,...,cn)T.

Theorem 3.6. If A* is the Hermitian adjoint matrix oA € M (n, H), thenrdet; A* =
cdet; A forall i =1, n.

Remark 3.3. Since the column and row determinants of an arbitrary square matrixdver
do not satisfy Axiom 1 but these determinants are defined by analogy to the determinant of
a complex square matrix, then we can consider theirs as pre-determinants.

4. A Determinant of a Hermitian Matrix

The following lemma is needed for the sequel.

Lemma 4.1. LetT), be the sum of all possible products of théactors, each of which are
eitherh; € H or h; for all i = 1, n, by specifying the ordering in the terms, i.e.:

Tyo="hi-ho oo.hy+hi-hoooo. hy+...4h1-hg-... hp.
ThenT,, consistof the2™ terms andl’, =t (h1) t(h2) ... t(h,).

Proof. The number 2" of terms of the sum 7, is equal to the number of ordered combi-
nations of n unknown elements with two values.

The proof goes by induction on n.
(i) Ifn=1,thenT; = h71+ hi =t (hl)
(ii) Suppose the lemma is true for n — 1:

Tn,1=h1'hQ-...-hn,1+h71-h2'...-hn,1+...—|—h71-h72-...-hn,1:
Zt(hl) t(hg) t(hn_l).

(iii)) Now we prove that it is valid for n.
Tpn=hi-ho ... hy+hi-hy-...-hp+...4hy-ho-... hy.
By factoring the right-side common factors either h,, or h,, respectively, we obtain

Tn: nfl'hn“‘Tnfl'hin: nfl'(hn"‘hin):Tnfl't(hn):
:t(hl)'t(hQ)' ""t(hn—l)'t(hn)'-
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Theorem 4.1. If A € M (n, H) is a Hermitian matrix, then
rdet;A = ... =rdet, A = cdet;A = ... = cdet, A € F.

Proof. At frst we note that if a matrix A = (a;;) € M (n, H) is Hermitian, then we
have a;; € R and a;; = aj; foralli,j = 1,n.

We divide the set of monomials of rdet; A for some ¢ = 1, n into two subsets. If indices
of coeff cients of monomials form permutations as products of disjoint cycles of length 1
and 2, then we include these monomials in the frst subset. Other monomials belong to
the second subset. If indices of coeff cients form a disjoint cycle of length 1, then these
coeff cients are entries of the principal diagonal of the Hermitian matrix A. Hence, they
belong to F. If indices of coeff cients form a disjoint cycle of length 2, then these entries
are conjugated, a;,;;, , = @;,_, i, and their product takes on a value in I as well,

Qiipyr * Qigpripy = Qigyqyip ~ Qi — n(aik+1ik) SN

So, all monomials of the frst subset take on values in F.
Now we consider some monomial d of the second subset. Assume that its index permu-
tation forms a direct product of r disjoint cycles. Denote ¢y, := s.

— (1", . . . . . . . .
d=(-1) Qi iy 11 -+ - Qi 1y iy Bingying 41 -+ By s 1y - - - Bigg i1 - - - X )
. . . . . _ (_1\n—T
Xy oy i e g i g1 - Qi g i, = (— 1) hiha oo By By
where hs = a;y iy o+ Gy iy, TOralls = 1,7, andm € {1,...,7}. If s = 1, then

hs = @iy, i, 11 Qig, v in, = M@y ip, 1) € F. 1flg = 0, then hs = a;,_;, € F. Ifls =0 or
ls = 1 forall s = 1,r in (7), then we obtain a monomial of the frst subset. Let there exists
s € I, such that [; > 2. Then

h

8 = Qipgingr - ingprging = Bingpiging - Qingings1r = Diggingprg - Dipgprin, -

Denote by o (ix,): = (ik,ik,+1---k.+1,) @ disjoint cycle of indices of d for some
s = 1,r. The disjoint cycle o (i1,) corresponds to the factor hs. Then o' (ig,) =
(ikyiky 11,0k, 41 - - - Tk, 1) iS the inverse disjoint cycle and o, ! (iy,) corresponds to the fac-
tor hs. By Lemma 4.1 there exist another 2P — 1 monomials for d, (where p = r — p and
p is the number of disjoint cycles of length 1 and 2), such that their index permutations
form the direct products of r disjoint cycles either o (iy,) or o5 ! (ix,) by specifying their
ordering by s from 1 to r. Their cycle notations are left-ordered according to Def nition 3.4.
Suppose C'; is the sum of these 2P — 1 monomials and d, then by Lemma 4.1 we obtain

Cy=(—1)""at(hy,) ... t(hy,) €F.

Here a € F is the product of coeff cients whose indices form disjoint cycles of length 1 and
2, v €{1,...,r}forallk =1,p.

Thus for an arbitrary monomial of the second subset of rdet; A, we can fnd the 2P
monomials such that their sum takes on a value in F. Therefore, rdet; A € F.

Now we prove the equality of all row determinants of A. Consider an arbitrary rdet; A
such that j # i forall j = 1,n. We divide the set of monomials of rdet; A into two subsets
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using the same rule as for rdet; A. Monomials of the frst subset are products of entries of
the principal diagonal of A or norms of entries. Therefore they take on a value in F and
each monomial of the frst subset of rdet; A is equal to a corresponding monomial of the
frst subset of rdet; A.

Now consider the monomial d; of the second subset of monomials of rdet; A consisting
of coeff cients that are equal to the coeff cients of d but are placed in another arrangement.
Consider all possibilities of the arrangement of coeff cients in d;.

(1) Suppose that the index permutation of its coeff cients form a direct product of r
disjoint cycles and these cycles coincide with the r disjoint cycles of d but differ by their
ordering Then we have

dy = (_1)n—rahu ... hy,

where {1, ..., A} = {v1,...,vp}. By Lemma 4.1 there exist 27 — 1 monomials of the
second subset of rdet; A such that each of them is equal to a product of p factors either /,
or hs forall s € {, ..., A}, multiplied by (—1)" "«. Hence by Lemma 4.1, we obtain

Cy= (=) "at(hy) ... tlhy) = (—1)"" at(hy,)... t(h,) = Ci.

(i1) Now suppose that in addition to the case (i) the index j is placed inside some disjoint
cycle of the index permutation of d, e.g. j € {ix,, 1, Ikp+1,, }- DeNOtE j = ig, 4. Then
d; is represented as follows:

di = (—1)71_7“ X

Xaikm+q71ikm+qaikuiku+1 e aikqubLilm e aikAik/\Jrl . a/[:kAJrl)\ik)\ = (8)

= (—=1)" T ahpmhy, . .. hy,

aikm+qikm+q+1 e aikm+lmikm aikmikm+1 e

where {m, p1,...,A\} = {v1,...,vp}. Except for R, each factor of d; in (8) corresponds
to the equal factor of d in (7). By the rearrangement property of the trace, we have t(ﬁm) =
t(hy,). Hence by Lemma 4.1 and by analogy to the previous case, we obtain the following
equality.
Co = (=1)"Tat(hm) tthy) ... t(hy) =
= ()" atlhy) ... tlhm) ... t(hy,) = C1.

(iii) If in addition to the case (i) the index ¢ is placed inside some disjoint cycles of the
index permutation of d;, then we apply the rearrangement property of the trace to this cycle.
As in the previous cases we fnd 2P monomials of the second subset of rdet; A such that
by Lemma 4.1 their sum is equal to the sum of the corresponding 2P monomials of rdet; A.
Clearly, we obtain the same conclusion at association of all previous cases, then we apply
twice the rearrangement property of the trace.

Thus, in any case each sum of 2P corresponding monomials of the second subset of
rdet; A is equal to the sum of 2” monomials of rdet; A. Here p is the number of disjoint
cycles of length more than 2. Therefore, for all i, j = 1, n we have

rdet; A = rdet; A € F.

Now we prove the equality cdet; A = rdet; A for all i = 1, n. Again we divide the set
of monomials of cdet; A into two subsets by following the same rule as for rdet; A. Each
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monomial of the frst subset of cdet; A is equal to the corresponding monomial of rdet; A,
since their factors are real numbers (either entries of the principal diagonal of A or norms
of entries of A). Consider the monomial ds of the second subset of monomials of cdet; A
consisting of coeff cients that are equal to the coeff cients of d. The coeff cients of do are
placed in the same ordering as for d but from left to right. If p is the number of disjoint
cycles of length 1 and 2, and p = r — p, then

do = (_l)n—r

Xaikl

aikTierrlr . aikr+1ikT e aikzik2+12 ce aik2+1ik2 X

= (-1)""a hy, ... hsy

gty Qg p1iny

Here « is a product of coeff cients whose indices form disjoint cycles of length 1 and 2. We
have forall s = 1,p

hee = Qiging o, =+ oo Qiggring, = Ciginger o gy g, i -

By Lemma 4.1 among monomials of the second subset of cdet; A, there exist 2P — 1 mono-
mials for dy such that each of them is equal to a product of p factors either h,, or h,, for
some s = 1,p by specifying their right-ordering, and is multiplied by (—1)" "a. Con-
sider the sum C'53 of these monomials and d. Due to commutativity of real numbers and by
Lemma 4.1, we get

Cy = (=1 Tat(hs) ... tlhe) = (1" Tat(hy,) ... t(h,) =
= (=" "a t(hy,)... t(hy,) = Cy

Therefore, each sum of the 2P corresponding monomials of the second subset of cdet; A
is equal to a sum of the 2P monomials of rdet; A and vice versa.
Thus, cdet; A = rdet; A € Rforalli =1,n.1

Remark 4.1. Since all column and row determinants of a Hermitian matrix dileare
equal, we can define the determinant of a Hermitian marix M (n, H). By definition,
we put foralli = 1,n

det A := rdet; A = cdet; A.

Remark 4.2. By Lemma 4.1 we have

det A = — Z a;; - rdet; AZJZ (a;) + aj; - rdety A"k =min {I,, \ {i}}.  (9)

oel,

By comparing expressions (2) and (9) for HermitiAne M (n, H), we conclude that the
row determinant of a Hermitian matrix coincides with the Moore determinant. Hence the
row and column determinants extend the Moore determinant to an arbitrary square matrix.

5. Properties of the Column and Row
Determinants of a Hermitian Matrix

Theorem 5.1. If the matrixA ; (a;.) is obtained from a Hermitian matriA € M (n, H)
by replacing itsjth row with theith row, then for alli, j = 1, n sud thati £ j we have

rdetjAj, (al) = 0.
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Proof. We assume n > 3 for A € M (n, H). The case n < 3 is easily proved by a sim-
ple check. Consider some monomial d of rdet; A; (a;.). Suppose the index permutation
of its coeff cients forms a direct product of r disjoint cycles, and denote ¢ = i5. Consider
all possibilities of disposition of an entry of the isth row in the monomial d.

(1) Suppose an entry of the isth row is placed in d such that the index i5; opens some
disjoint cycle, i.e.:

n—r
d=(=1)"""aj4 .- Qipj U1 - Up Wiy y -+ Ciyypiy V1 ---Up (10)

Here we denote by u, and v; products of coeff cients whose indices form some disjoint
cycles forall 7 = 1, pand t = 1, p such that p + p = r — 2 or there are no such products.
For d there are the following three monomials of rdet; A (a;.).

— (_1\n—Tr+1,.. ) s s o

dy = (1) Ajigyy e Qi igiy - - - Qigj UL+ - Up VL - - . Vp,
— n—r+l, . s o

dy = (—1) Qg - - Qi risGigiy - - Bigj UL - - - Up VT - . . Up,
_ n—r, . - o

dz = (=1)"""aji, - Qigj UL - Up Qi -+ - Qg iy V1 - - - Up

Suppose aji, ... a;; = rand a; . ... Qi ,0, = Y, theny = a; .. ... ai ., i,. Taking
into account a;;; = @iy, Gji,_; = Qigi,_, and aj;, ., = a4, ,, we consider the sum of
these monomials.
d+di+do+ds=(—1)""(zur...upy —yzus ... Up — Y- TUL ... Up+
+aur . upY)vr . vp = (1) (wu . upt(y) — Hy)aug . .oup)vr v, = 0.
Thus among the monomials of rdet; A; (a;.) we fnd three monomials for d such that the

sum of these monomials and d is equal to zero.
Ifin (10) m = 0 or m = 1, we obtain such monomials accordingly:

d= (—1)"_’"ajil et Qi UL e Up Qi VT - - Up,

= — n—r

d=(=1)""Ta; .. .G U1 ... UpGigi, ., Qig, iy V1 - - Up.
There are the following monomials for them:

1
dl—( )n T+ ajisaisil...aikjul...upvl...vp,
n—r+l_ .. ) e .
dy = (-1) Qjigiy Gigyyiy Qigiy - - - Qigj UL - - - Up V] - .. Vp.

Taking into account a;;, = a; iy, aji, = 4,4, € F, aj;,., = @ i, 4, and a; 4 ., a;, i, €
F,wegetd+dy =0, d+ dy = 0. Hence, the sums of corresponding two monomials of
rdet; A; (a;.) are equal to zero in this case.

i1) Now suppose that the index i, is placed in another disjoint cycle than the index j and
does not open this cycle,

g n—r
d= (—1) ajl-l .. .aikj uy .. .up aiqqurl N .aisflisaisisﬂ . .aiqfliqvl ... Up.

Here we denote by u, and v; products of coeff cients whose indices form some disjoint
cycles forall 7 = 1, p and t = 1, p such that p + p = r — 2 or there are no such products.
Now for d there are the following three monomials of rdet; A ; (a):

n—r+l_ . g AT o
( ) Ajjgiq - a2q71zq alqzq+1 e Qi 3 Qigig - - Qg j UL .- UpUT - - . Up,
n—r+l_ . g L g s o

d =(-1) Ajig_y -+ Qigyyig Qigigi -+ BigyrisQigiy - - - Bigj UL - - - UpUL - . . Vp,
d3 = (=1)""Tajiy o Qigg UL+ Up iy - iy iy - -+ * Gig 17V - - Up-
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Assume that Qigigry oo Gig_1ig = P> Qigigyy - Qig_yiy = o, Ajgy - o Qipj =
xr, aiqqu v aisflisaisisﬂ ce aiqfliq =Y, aisis+1 v aiqfliqaiqiqﬂ v aisflis =Y. Then
we obtain Yy = @9, y1 = PP, Y = Qigiy g - QigyyiiGigig_y - - - Gigyqig> 0d Y1 =

Qjggg_q + -+ aiq+1iqaiqiq71 e ais+1is. Accountmg for aj i1 — Qigigs aji571 = Qjgig_1> ajis+1 =
@iy, 1> WE have

E + 31 + 32 + 33 =
= (=1)""(2uy ... upy — Y12UL .. Up — YL TUL - . . Up + TUL . .. UpY) X
Xvp ... vp = (=1)"(@ur .. upt(y) — ty)zur ... up)vr .. vp =
= (=D (t(¢- @) —tle-@))zus. .. upvy ... Vp.

Since by the rearrangement property of the trace (¢ - ¢) = t(¢ - ¢), then we obtain d+

di+dy+dsz=0.

(iii) If the indices s and j are placed in the same cycle, then we have the following
monomials: d, Jl, 81 or El. As shown above, for each of them there are another one or
three monomials of rdet; A; (a;.) such that the sums of these two or four corresponding
monomials are equal to zero.

We have considered all possible kinds of disposition of an entry of the isth row as a
factor of some monomial d of rdet; A; (a;.). In each case there exist one or three corre-
sponding monomials for d such that the sum of the two or four monomials is equal to zero
respectively. Hence, rdet; A; (a;) = 0. W

Corollary 5.1. If a Hermitian matrixA € M (n,H) consists two same rows (columns),
thendet A = 0.

Proof. Suppose the ith row of A coincides with the jth row, i.e. a;, = ajj for all
k € I, and {i,j} € I, such thati # j. Then @;; = ajj for all k € I,,. Since the matrix
A is Hermitian, we get for all k& € I, that ay; = ay;, where {4, j} € I, and i # j. This
means that if a Hermitian matrix has two same rows, then it has two same corresponding
columns as well. The matrix A may be represented as A (a;.), where the matrix A; (a;)
is obtained from A by replacing the jth row with the ith row. Then by Theorem 5.1, we
have

det A = rdet; A = rdet;A; (a;) = 0.1

The next theorem is proved in a similar way to Theorem 5.1.
Theorem 5.2. If the matrixA ; (a ;) is obtained from a Hermitian matriA € M (n, H) by

replacing of itsith column with thejth column, theredet; A ;(aj) = 0forall 7,5 =1,n
sud thati # j.

Theorem 5.3. If the matrixA; (b- a;.)is obtained from a Hermitian matriA € M (n, H)
by replacing of itsith row with the jth row multiplied byb € H on the left, then
rdet; A; (b-a; ) =0foralli,j = 1,n sud thati # j.

The proof follows immediately from Theorems 3.2 and 5.1.

Theorem 5.4. If the matrixA ; (a ; - b) is obtained from a Hermitian matriA € M (n, H)
by replacing of itsjth column with theith column right-multiplied byp € H, then
cdet; A j(a;-b) =0forall i,j = 1,n sud thati # j.
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The proof follows immediately from Theorems 3.3 and 5.2.

Theorem 5.5. If the matrixA ; (a ; - b) is obtained from a Hermitian matriA € M (n, H)
by replacing of itsjth column with theith column right-multiplied byp € H, then
rdet; A j (a;-b) = 0forall ¢, j = 1,n sud that: # ;.

Proof. We assume n > 3 for A € M (n,H). The case n < 3 is easily proved by a
simple check. Consider some monomial d of rdet; A ; (a; - b) forall ¢, j = 1, n such that
i J.

Suppose the index permutation of its coeff cients forms a direct product of  disjoint
cycles, and denote ¢ = ¢5. Consider all possibilities of disposition of an entry of the i th
row in the monomial d.

(i) Suppose an entry of the isth row is placed in d such that the index i; opens some
disjoint cycle, i.e.:

n—r
d:(—l) ajil...a,-kjbul...upaisisﬂ...aiHmisvl...vp, (11)

Here we denote by u, and v; products of coeff cients whose indices form some disjoint
cycles forall 7 = 1, p and t = 1, p such that p + p = r — 2 or there are no such products.
For d there are the following three monomials of rdet; A ; (a ; - b),

— n—r
dl—(—l) ajil-...-aikj-b-u1-...-up-aiSiHm-...-aisﬂis-Ul-...-vp,
- n—r+l, .. iy . . .
dy = (1) Qjiy *ev Qigiy * Qigigyy o Qi j O UL o Up =V - oo Upy
— n—r+l, . iy . o
ds = (—1) Qjiy * e Wiy Qi gy e Qi "D UL o Uy -V - U
Denote aj;, -...-a;; = :xand a; ;. , ...a;,_ i, =Y, theny = a;; . . ...a;_ ;. Taking

mto account a;,j = Qiyig> Vigppmi = Cigpmiss Vigy1j = Qigpriss WE have

d+dy +do+ds =

=(-D""(x-bur-...cupy+ax-bourcocuy y—a-y-boup - up—
—z-y-bour-.ocuy) v =(=0)"" (@b ur o uy s (YY)
—z-(y+7y)-b-ur-..ocup) v = (D" (@ b ur -y, - H(y)—
—x-t(y)-b-ur-...-up)-vr-...ovp = 0.

Thus among the monomials of rdet; A ; (a ; - b) we fnd three monomials for d such that
the sum of these monomials and d is equal to zero.
Ifin (11) m = 0 or m = 1, we obtain such monomials accordingly:

7 n—r
d:(*l) ajil-...-aikj-b~u1-...-up-aisis-vl-...~vp,

5 n—r
d—(—l) ajz-l-...-aikj-b-ul-...-up-aisiS“-aisHiS-vl-...-vp.

There are the following monomials for them:

_ n—r+1
dl—(—l) ajil-...-aikisaisj-b~u1-...-up-vl~...~vp,
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T n—r+1
dl—(—l) ajil-...-aikis-aisiHl-aisﬂj-b-ul-...-up-vl-...-vp,

Takmg into account, that Qi = Qigigs Qigj = Qigigs Qi 15 = Gig qi, and iy € I,
Qigigy Qigypris = T (aisisﬂ) € F, we obtain

J+le(—1)n_r(aji1‘---‘aikj‘b‘ul"--'“p'aisis_
—ajil~...-aikis-aisj-b-ul~...~up)-vl-...~vp:0,
d—i—dlz(—l)"_r(ajil-...-aikj-b-ul-...-up-n(aisis+1)—
_ajil'---'aikis'n(a‘isis+l)'b'ul"".up)‘vl""'vpzo'

Hence, the sums of corresponding two monomials of rdet; A ; (a,; - b) are equal to zero in
this case.

i1) Now suppose that the index i, is placed in another disjoint cycle than the index 7 and
does not open this cycle,

_— p— n—r .. . . . . . . . . . .
d=(=1)""aji ... aijbur .. . UpQigiyy - Qiy_yi Qigig g - - Qig_1igV1 - - - Vp,

Here we denote by u, and v; products of coeff cients whose indices form some disjoint
cycles forall 7 = 1,pand ¢t = 1, p such that p + p = r — 2 or there are no such products.
Now for d there are the following three monomials of rdet; A ; (a; - b),

di = (=1)"""aji; - Qi gbus UGy e iy Qi - Qi iV - Up

> — n—r_. . .. .. . . . .. . .

do = (=1)"""aji; - Cipi Qigiy_y - QigyyigQigiq_y -+~ Qigyyj UL .. UHVL .. Vp

3 _ n—r

d3 = (—1) ajil v Qi Qg q - - - aiq+liqaiqiq_l e aisﬂj b’LLl . .’LLp’Ul ... Up .
Denote Qjgy = - ev " Qjpj = T, az‘qi(ﬁl e Qg iy = O, Qigig g * o Gig_qig = P, then
we have a; i, ) ... Qigpyip = ¢ Qigig_y *--- - Qiyi, = @. Taking into account that
Qipj = Qipigyr Qig_1j = Qig_qigs Qig 1j = Qigyqig> WE obtain

d+di +dy+ d3 =
= (=1)"""(xbuy ... upp o + xbuy ... UP P—
—zp buy ... up, — rpPbuy .. SUPIVL LUy =
= (=1)"""(xbuy ... up(d o+ dp) — x(p & + P)but ... upv1 ... vy =
= (=1)" " (xbur ... upt(p @) —xt(pd)buy ... up)vr ... vp.

by the rearrangement property of the trace t(¢ - ) = t(p - ¢) € F, we obtain d + di +
82 + Eg = 0.

(iii) If the indices ¢s and j are placed in the same cycle, then we have the following
monomials: El or El, do, Jg, and d3, dg as well. As shown above, for each of them there
are another one or three monomials of rdet; A; (a;.) such that the sums of these two or
four corresponding monomials are equal to zero.

We have considered all possible kinds of disposition of an entry of the is;th row as a
factor of some monomial d of rdet; A; (a;.). In each case there exist one or three corre-
sponding monomials for d such that the sum of the two or four monomials is equal to zero
respectively. Hence, rdet; A j (a;-b) =0.
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Corollary 5.2. If the matrixA ; (a ;) is obtained from a Hermitian matriA € M (n, H)
by replacing of itsjth column with theth column, thendet; A ; (a ;) = 0 forall i,j =
1,n sud thati # j.

The proof follows immediately from Theorem 5.5, by putting b = 1.

Theorem 5.6. If the matrix A; (b-a; ) is obtained from a Hermitian matribA ¢
M (n,H) by replacing of itsith row with the jth row left-multiplied byb € H, then
cdet; A; (b-aj ) =0forall i, = 1,n sud thati # j.

The proof is similar to the proof of Theorem 5.5.

Corollary 5.3. If the matrixA; (a; ) is obtained from a Hermitian matriA € M (n, H)
by replacing of itsth row with thejth row, thencdet; A; (a; ) = 0forall ¢,j = 1,n sud
thati # ;.

The proof follows immediately from Theorem 5.6, by putting b = 1.

Lemma 5.1. If the matrixA ; (a_; - b) is obtained from a Hermitian matriA € M (n, H)
by right-multiplying of itsith column by € H, then for alli = 1,n wehave

rdet; A ;(b-a ;) =rdet; A ;(a;-b) =detA-b

Proof. Consider some monomial d of A ;(a;-b) for i = 1,n, where the matrix
A ;(a;-b) is obtained from a Hermitian matrix A € M (n,H) by right-multiplying of
its ith column by b € H Denote iy, : = i.

— (1 \— T, . . . .. . .
d=(-1) Qi gy 11 - - - a1k1+zllk1b iy iy 11 -+ - iy 1yiny -+ X
. . . . — n—r
Xalkﬂkr+1 cee Qg gy, (—1) hl -hg .. -hr,
where h; = Qig iy "+ " Qg i, for all (s = l,r). Ifl; = 1, then hy = Qi igysn
Uiy, rin, = @iy i, ) € F,and if Iy = 0, then hy = a;,_;, € F. Suppose there is s

such that [; > 2. The index permutation o of d forms a direct products of disjoint cycles
and its cycle notation is left-ordered. Denote by o (ix,): = (g, ik, +1 - - - ik.+1.) @ cycle
which corresponds to a factor hs. Then ot (iy, ) : = (ig, g, 11,9k, 41 - - - ik, 1) i8 the cycle
which is inverse to o (ix,) and corresponds to the factor hs. There are 2°~! monomials
of A ; (a; - b) such that their indices permutations form the direct products of the disjoint
cycles o (iy,) or o ! (ix,) for all (s =1,7) and keeping their ordering from 1 to r. We
have p = r — p, where p is the number of the cycles of the frst and second orders. Then by
lemma 4.1 for the sum C'; of these monomials and d we obtain,

C=(~1)""b-at(hy,) ... t(hs,),

where o € F' is a product of the factors whose indices form the cycles of the frst and
second orders. Since t(h,,) € F for all v, € {1,...,r} and k = 1,p, then b commutes
with t(h,,) € Fforall vy € {1,...,7} and k = 1, p. Then we obtain rdet;A ; (a ;- b) =
rdet;A -b=1b-det A.

By theorem 3.2 we have rdet; A ; (b-a ;) =b-rdet;A =b-det A as well. B
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Lemma 5.2. If A; (b-a; ) is obtained from a Hermitian matriA € M (n,H) by left-
multiplying of itsith row byb € H, then for alli = 1, n wehave

cdet;A; (b-a; ) =cdet;A; (a; -b) =b-det A

The proof is similar to the proof of Lemma 5.1
From Theorems 5.1, 5.6 and basic properties of the row and column determinants for
arbitrary matrices we have the following theorem.

Theorem 5.7. If the ith row of a Hermitian matrixA. € M (n, H) is replaced with a left
Iineag:ombination of its other rows, i.e; = c1a;,. + ... + cxa;,., wherec, € H for all
=1,k and{i,q;} C I,, then

rdet; A; (clail. +...+ ckaik,) = cdet; A;. (clail, + ...+ ckaik.) =0.

Theorem 5.8. If the jth column of a Hermitian matribA € M (n, H) is replaced with a
right Iinea@mbination of its other columns, i®; = a jc1 +...+a, c,, Wheree, € H
forall i =1,k and{j,j} C J,, then

cdet; A j(ajc1+...+ajcp) =rdet; Aj(ajcr+...+aj.c) =0.

The proof follows immediately from Theorems 5.2, 5.5 and basic properties of the row
and column determinants for arbitrary matrices as well.

From Theorems 5.7, 5.8 and basic properties of the row and column determinants for
arbitrary matrices we obtain the following theorems respectively.

Theorem 5.9. If the ith row of a Hermitian matrixA € M (n,H) is added a left linear
combination of its other rows, then

rdet; A,;. (ai. +cp-ay, + ...+ cg aik,) =
=cdet; Aj. (a;, +¢1-a;, +...+cp-a;, ) =det A,
wherec; € Hforall I = 1,k and{i,i;} C I,..

Theorem 5.10. If the jth column of a Hermitian matriA € M (n, H) is added a right
linear combination of its other columns, then

cdet; Aj(aj+ajc+...+aj c) =
=rdet; A j(a;+ajc+...+aj.c,) =detA,

wherec; € Hforall I = 1,k and{j, 5} C Jn.

6. Diagonalization of Hermitian Matrices

17p:/ivq:jv

Suppose the matrix E;; = (€pq)nxn such that ey, = { 0. p£i g

Complimentary Contributor Copy



The Theory of the Column and Row Determinants... 321

Def nition 6.1. ThematrixP;;(b) := I+b-E;; € M(n, H) fori # j is called an elementary
unimodular matrix, wherd is the identity matrix. Matrice®;;(b) for i # j and for all

b € H generate the unimodular groupL(n, H), its elements is called the unimodular
matrices.

Theorem 6.1. If A € M(n, H) is a Hermitian matrix andP;; (b) is an elementary unimod-
ular matrix, thendet A = det (PZ,- (b)-A-Py (b)) .

Proof. First note that for all U € M(n, H) and a Hermitian matrix A, the matrix U*AU
is Hermitian as well. Really, (U*AU)" = U*A*U = U*AU. Multiplying a matrix A by
P;; (b) on the left adds the jth row left-multiplied by b to the ith row. Whereas multiplying
a matrix A by P (b) on the right adds the jth column right-multiplied by b to the jth
column. Therefore,

Pi; (b) - A - Pj; (b) =

all R ai; + aljb e A1n
a1 + bajl . (bajj + az-j)b + baji +ai; ... Qip + bajn
anl .. Api + ap; b o Ann,

Then by Theorems 3.4 and 3.5, we have
det (Pi; (b) - A - PJ; (b)) = cdet; (Py; (b) - A - P (b)) =

ail ai; Aln
=cdet; | a;1 —;—ubajl Qi —;—ﬂbaji Qjn —;—nbajn +
an1 QAnj QApn
all aljg A1n
+cdet; | a1 —'i—”ba,jl (ba,jj —I— aij)g Qin —;—”bajn =
an1 anj B Ann

= cdet; A + CdetiAi_(b . aj_) + CdetiA_i(a,j) b+

air ... ayj .. aQp
tedet; | baji . bag; .. bagn | b
Gn o Gng e
air .. Qi .. aQp
The matrix b;z‘j‘-l b‘a‘J.'j bé@}n = (A i(a;));.(ba;.) is obtained from A by
Apl . Qpj .. Gpp

replacing its ith column with the jth column, and then by replacing the ith row of the
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obtained matrix with its jth row left-multiplied by b. The ith row of A ;(a ;)); (ba;.) is
ba; and its jth row is a;. Then by Theorem 5.6, we get cdet;(A ;(a;));.(baj. ) = 0.
Furthermore by Theorem 5.2 we have cdet; A ;(a j) = 0, and by Theorem 5.6 we obtain
CdetiAi_(b . aj.) =0.

Finally, we have det (Pij (b)- A - P} (b)) — cdet;A = det A. W

Theorem 6.2. If A € M (n,H) is a Hermitian matrix andJ € SL(n, H), then
det A =det (U-A-U").
Proof. We claim that there exist {Py,...,Px} C SL(n,H) and £k € N for U €
SL (n,H) such that U = Py, - ... - Py. Then U* = P} - ... P}.

We prove the theorem by induction on k.
i) The case k = 1 has been proved Theorem 6.1.

i1) Suppose the theorem is valid for k — 1. Thatis U =Py_; -...- Py and
detA:det(Pk_l~...-P1~A‘P>{-...- Z_l).
Denote A := Py_q1-...-Py-A-P7-...-P;_,. As shown in Theorem 6.1 a matrix A s
Hermitian.

iii) If now U =Py - Py _1... - Py, then
det (U - A - U*) = det (Pk-AP;) —detA =det AN
Lemma 6.1. If U € SL(n, H), then{U~!, U*} € SL(n, H).

Proof. Let U is a unimodular matrix and U = [] Py, where P, = P;; (b;) are
k=1
unimodular matrices, (i.e. 3m € N, Vk = 1,m, dby, € H, Ji € I,,, 3j € I,,, 1 # j). Then
P! =P (bx) = Pyj(—by) € SL(n, H), [[;—,,, P;,' = U™! € SL(n, H),

P; =P} (by) = Pji (b) € SL(n,H), [[}_,,, P; = U* € SL(n, H). W

Theorem 6.3. If A € M (n, H) is a Hermitian matrix, then there exi&f € SL(n, H) and
w; € Fforall i =1,n,suchthafU - A - U* = diag(u1, ..., un), Wherediag (1, . . ., i)
is a diagonal matrix. Thefdet A = g - ... - fin.

Proof. Consider the frst column of a Hermitian matrix A € M (n, H). It is possible the
following cases.
i) If a;; # 0, then pu; = a; € F. By sequentially left-multiplying the matrix A

by elementary unimodular matrices P;; (—%) for all © = 2,n, we obtain zero for all

entries of the frst column save for diagonal. Since —%11 = —%, then P} (—%) =

Py; (—%) By sequentially right-multiplying the matrix A by elementary unimodular
ail
H1
Theorem 6.1 the obtained matrix is Hermitian as well.

matrices P}, (— ), we get zero for all entries of the frst row save for diagonal. Due to
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ii) Suppose a1; = 0 and there exists ¢ € [, such that a;; # 0. Having multiplied
the matrix A by elementary unimodular matrices P1; (a1;) on the left and by P (ai1)
on the right, we get the matrix A with an entry a1 = n(a;1) (2 +a;;) € F. Let now

©1 = a11. Again by sequentially multiplying the matrix A by P;1 (— ‘};f) on the left and

M1
of the frst row and column save for diagonal.

iii) If ¢ € I, for all a;; = 0, then put p; = ay;.

Having carried through the described procedure for all diagonal entries and entries of
corresponding rows and columns by means of a fnite number of multiplications the Her-
mitian matrix A by elementary unimodular matrices P;, = P;; (by) on the left and by
P, =Py (E) on the right, we obtain the diagonal matrix with diagonal entries u; € I for
all i = 1, n. Suppose U = [] Py, then by Theorem 6.2 we f nally obtain

k

by P}, (— &“> for all i = 2, n, on the right, we obtain the matrix with zero for all entries

det(U- A -U") = det (diag (1, ... pin)) =1+ .. - .M

Corollary 6.1. If A, B are Hermitian overl and AB = BA, thendet (AB) = det A -
det B.

Proof. We have A = A* and B = B*. Hence, (AB)" = B*A* = BA = AB.
By theorem 6.3 there exist U,V C SL(n,H) and pu;,7; C F for all i = 1,n, such that
U- A -U* =diag(u1,...,un) and V- A - V* = diag(n, ..., n,). Then we obtain

det (AB) =det (U-A-U*V-B-V*) =
det (diag (1, .- -, pn) diag (1, ..., Mn)) =
=M e b M =L ey o ..y, = det A - det B.

7. The Inverse of a Hermitian Matrix

Def nition 7.1. A Hermitian matrixA € M (n, H) is called nonsingular, iflet A # 0.

Theorem 7.1. There exist a unique right inverse matri®A)~! and a unique left in-
verse matriX LA)~! of a nonsingular Hermitian matriA € M (n, H), where(RA) ™! =
(LA)™' =: A~! and

Rii Rn -+ Rm

(A = g | T e (12)
Ri, Ron -+ Run
Lyi Loy -+ Lpm

7Y B § 3)
Liw Low -+ Lpn

whereR;;, L;; are right and left;j-th cofactor ofA respectively for alk, j = 1, n.
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Proof. Let B = A - (RA)_I. We obtain the entries of B by multiplying matrices for
alli=1,n

det A
det A

bi; = (det A)~" Z aij- Rij = (det A) ' rdet; A =
j=1

=1,
and for all 7 # j

bij - (det A)il Zais . R]’S = (det A)il rdetjAj_ (az) .

s=1

If i # j, then by Theorem 5.1 rdet;A; (a;.) = 0. Consequently b; ; = 0. Thus B = I and
(RA) ™! is the right inverse of the Hermitian matrix A..

Suppose D = (LA)_1 A. We again get the entries of D by multiplying matrices, for
alli =1, n:

det A

d“' = (det A)il ZL” c Qi = (det A)il cdetjA = 7detA =

i=1

L,

and for all i # j

dij = (det A)_l Z Lgi-as; = (det A)_l cdet; A;. (aj.) .
s=1

If i # j, then by Theorem 5.2 cdet;A; (a;.) = 0. Therefore d;; = 0 for all i # j. Thus
D = I and (LA) ! is the left inverse of the Hermitian matrix A.

The equality (RA) ™" = (LA)™! is immediate from the well-known fact that if there
exists an inverse matrix over an arbitrary skew f eld, then it is unique.ll

Theorem 7.2. If A is a nonsingular Hermitian matriA € M (n, H), thendet A~ =
(det A)1.

Proof. Whereas A € M (n,H) is a nonsingular Hermitian matrix, then by theorem
6.3 there exist {A1,...,\,} C F and an unimodular matrix U € SL(n,H) such that
A =U - diag(\1,...,An) - U*anddet A = A1 - ... - \,. The matrix A~! is Hermitian
as well. Then we obtain
A7l = (U-diag(M, ..., \) - U= (UN) o diag (A0, 1) - U

r'n

By lemma 6.1, we have {U_l, (U*)_l} C SL(n, H). Then by theorem 7.1, we obtain

det A=t =
det (diag (A% A1) = A7 A = (A A) T = (det A) T

rn

Complimentary Contributor Copy



The Theory of the Column and Row Determinants... 325

Remark 7.1. If A € M (n, H) is a nonsingular Hermitian matrix, then its classic adjoint
matrix may be represented aslj A = (L;;),..,, ofr AdjA = (R;j) We have for a
nonsingular Hermitian matribA € M (n, H):

nxn'

. Adj[A
det A

SinceA ! is Hermitian, thenA, A—!, andA, Adj [A] are commutative pairs of Hermitian
matrices. Then by Corollary 6.1, we obtain

det A - (A7"A) = Adj[A]- A = diag (det A, ..., det A).

From here we havdet (Adj[A]) = (det A)" .
The following criterion of invertibility of Hermitian matrix completes this subsection.

Theorem 7.3. If A € M (n,H) is a nonsingular Hermitian matrix, then the following
propositions are equivalent

i) A isinvertibility, i.e. A € GL (n,S);

i) det A # 0;

iii) the rows of A are left-linearly independent;

iiii) the columns ofA are right-linearly independent.

Proof. The equivalence of the propositions i) and ii) follows from Theorems 7.1 and 7.2.
The equivalence of the propositions ii) and iii) follows from Theorem 5.7. The equivalence
of the propositions ii) and iiii) follows from Theorem 5.8 as well. Bl

Remark 7.2. The determinant of a Hermitian matrix satisfies Axioms 1 and 3 from Defini-
tion 1.1. It follows from Theorem 7.3, Theorems 3.4 and 3.5 and Corollary 5.1 respectively.

8. Properties of the Corresponding
Hermitian Matrices

Denote by H™*™ a set of m x n matrices with entries in H.

Def nition 8.1. For an arbitrary matrix A € H™*" the matrixA*A € M (n,H) is called
its left corresponding Hermitian and A* € M (m, H) is called its right corresponding
Hermitian matrix.

Theorem 8.1. If the jth column ofA € H"*™ is right-multiplied by € H forall j = 1, n,
thenthe determinant of its left corresponding Hermitian matrix is multipliech ().

Proof. The matrix A j (a_; - b) is obtained from A € H™*" by right-multiplying of its
jth column on b € H for all j = 1, n. Then we have

(Aj(a;-b) =Aj(b-a),
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where A% (b-a;) is obtained from A € S™*" by left-multiplying of its jth row on b.
Then we obtain

Aj (5 -aj)-Aj(a;-b)=
m ' m m
Y Gr1ag > Griag;-b Y Griakn
k=1 k=1 k=1
m m mo_
=| > b-arjarr ... Y b-agjag;-b ... > b-agjap, | j—th
k=1 k=1 k=1
m m ' m
Y Uknagi > Grnakj-b Y UknOkn
k=1 k=1 k=1

The matrix A;fl (5 . aj.) - A j (aj - b) is Hermitian. Then by Theorem 3.2 and Lemma 5.1,
we have

( (b-aj) Aj(a;- )—b rdet; (A*-Aj(a ;- b)) =

=b- rdet( ) b b-det (A*A)-b=n(b)det (A*A).
]

Theorem 8.2. If ith row of A € H™*" is left-multiplied byb € H for all j = 1, n, then the
determinanbf its right corresponding Hermitian matrix is multiplied kayb).

The proof is similar to the proof of Theorem 8.2
Theorem 8.3. If the matrixA € H™*" has two identical columns, thelet(A*A) = 0.

Proof. Let the matrix A € H™*"™ has two identical columns, sth and tth, i.e. a;s = a;¢
for all i € I,, such that s # ¢t and {s,¢} C J,,. Then the Hermitian adjoint matrix A* has
two identical rows, sth and ¢th. Consider the matrix A*A.

A*A =
Tll Tﬂ Tﬂ TM ail a1g a1t a1n
Tls TSS m Qm s as1 Qgs At Agn
X =
TIS Tst @ m atl ats a/tt atn
m @ @ Amn am1 Ams Amt Amn,
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m m m m
Al - Gkl Y Gkl Qks - Gkl - Gkt > Gkl Qkn
k=1 k=1 k=1 k=1
m m m m
Y Gks-Qk1 0 Y. Qks Qs Y. Gks - Gkt > Gks - Qn
k=1 k=1 k=1 k=1
m m m m
YAkt a1 v Y Gkt Gk s > Gkt - Qg > Gkt Qn
m m m m
Y Gkm Gkl Y. Gkm - Qks Y Gkm - Gkt > Ghm - Qkn
k=1 k=1 k=1 k=1
m m
Since for all k € I,,, we have ay s = agy, then Y ap;-aps = > G - apy foralll =1, n.
k=1 k=1

Therefore the Hermitian matrix A*A has two identical rows, sth and ¢th as well. Then by
Corollary 5.1, det A*A =0. 1

Theorem 8.4. If the matrixA € H™*" has two identical rows, thetbet(A*A) = 0.
The proof is similar to the proof of Theorem 8.3

Theorem 8.5. If ith column ofA € H™*" is replaced with itgith column right-multiplied
by an arbitraryb € H andi # j, thendetA*A =0

Proof.Let A ; (a.; - b) is a matrix obtained from A € H"™*" by replaced its ith column
with its jth column right-multiplied by an arbitrary b € H and i # j for all j,i = 1,n.
Then its Hermitian adjoint matrix is a matrix A} (5 . aj.). This matrix is obtained from
A € H™*" by replaced its ith row with its jth row left-multiplied by b. Then by Theorem
8.1, we obtain

det (A.:( (B aj,) . A i (a.j . b)) =N (b) - det (A;k (aj,) . A i (a,j)) .

Therefore the matrix A ; (a. ;) has two identical columns, i.e. aj; = ay; forall k = 1,m,
then by Theorem 8.3 we obtain

det (A7 (a;)- A i(a ;) =0.
|

Theorem 8.6. If ith row of A € H™*" is replaced with itsjth row left-multiplied by an
arbitrary b € H andi # j, thendetAA* = 0.

The proof is similar to the proof of Theorem 8.5 and follows immediately from Theo-
rems 8.2 and 8.4.

Theorem 8.7. If an arbitrary column ofA € H™*" is a right linear combination of its
other columns, thedet A*A = 0.
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Proof. Let the jth column of A is a right linear combination of other columns. That is
there exist by, ..., by, such that b, € H forall/ = 1, k and

air - ay, b+ tay, by -0 am
A= 7
Am1  Gmjy b1+ oAy, b 0 amn
j—th

where j; € {1,...,7— 1,7+ 1,...,n}. Then jth row of A* is the left linear combination
of the rows j1, ..., ji with coeff cients by, ..., bg. That is,

ail T am1

A* = E-lejk..—k@-aljk as2 E~6Lm]’1+...+a-am]’k j—th

A1n e Umn

Then the jth column of the left corresponding Hermitian matrix A* A is

NE

(bi@sj, + -+ + b-Gsjy ) st

s=1

21 (b1 @ojy + o 4 beTsgy ) (asji by + -+ as . y)

m
Zl sn (@sjy b1 + - -+ + asj, br,)
s=

The jth row of A*A is

m
> et - (asj, b1+ ...+ agj, - bg)
s=1

NE

(b1 -Gy + ...+ betsy) (asj by + ... + asj br)

s=1

NE

(by - Tsjy + -+ - + by, ) Asn

s=1

The j-th column of A* A is the right linear combination of the column ji, ..., j; Then by
Corollary 5.1, we obtain

det A*A = 0.

Theorem 8.8. If an arbitrary row of A € H™*" is a left linear combination of its other
rows, thendet AA* = 0.
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9. The Criterion of a Singularity of the Corresponding Hermi-
tian Matrix

Def nition 9.1. Row vectors

ay, = (au, cee 7a1n) )
(14)

am. == (amh A 7amn)7

are said to be left linearly independent, if there dig, ..., b,,} C H (which are not all
zero) such that
by-a;. +...+by, - a, =0. (15)

wherea; ; € Hfor all < € I,,, andj € J,,, and0 is the zero row vector.

Def nition 9.2. The row vectors (14) is called the left linear dependent, if the equality (15)
is possible only when abiy, . .., b,,, are zero.

Def nition 9.3. Column vectors

ai1 aln
a;=|: s, Ap =t ) (16)
Am1 Gmn
are said to be right linearly independent, if there diq, . . . , ¢, } € H (which are not all
zero) such that
aj-c+...+aj, ¢, =0. (17)

whereq; ; € Hfor all i € I,,, andj € J,, andO is the zero column vector.

Def nition 9.4. The column vectors (16) is called the right linear dependent, if the equality
(17) is possible only when ati, . .., ¢,,, are zero.

We have immediately the following linear independence criterions which are similar to
the commutative case.

Theorem 9.1. Row vectors is left linear dependédfit one of them can be written as a left
linear combination of the others.

Theorem 9.2. Column vectors is right linear dependdfiftone of them can be written as a
right linear combination of the others.

Since the principal submatrices of a Hermitian matrix are also Hermitian, then the basis
principal minor may be def ned in this noncommutative case as well.

Def nition 9.5. Let Hermitian matrixA. € M (n, H) has a nonzero principal minor of order

r < n and all principal minors of order more than (if there exist) are equal zeros. Then
the natural number- is called the rank by principal minors k. A principal nonzero
minor of orderr is said to be basic, rows and columns which form this minor are called
basic as well.
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Def nition 9.6. If the rows and the columns with indicas. . ., i, of the Hermitian matrix
A*A are basis, then the rows with indicés. . . , i, of A* are called basis and the columns
with indicesiy, . .., i, of A € H™*"™ are called the basis ones as well.

Theorem 9.3. The basis rows oA*A and A* € H"*™ are left-linearly independent, and
the basis columns cA*A and A € H™*" are right-linearly independent.

Proof. Suppose that basis rows of A*A are left-linearly dependent. Then by Theorem
9.1 one of them can be written as a left linear combination of the others. Subtracting the
linear combination from this row, we obtain a row that consists of zeros only. Then by
Theorem 3.1 the basis principal minor of A*A is equal to zero, but this contradicts its
def nition.

Suppose that basis columns of A*A are right-linearly dependent. Then by Theorem
9.2 one of them can be written as a right linear combination of the others. Subtracting the
linear combination from this column, we obtain a column that consists of zeros only. Then
by Theorem 3.1 the basis principal minor of A*A is equal to zero, but this contradicts its
def nition.

Suppose that basis rows of A* are left-linearly dependent. Then by Theorem 9.1 one of
them can be written as a left linear combination of the others. Hence by Theorem 8.8 the
basis principal minor of A* A is equal to zero, but this contradicts its def nition as well.

Suppose fnally that basis columns of A* are right-linearly dependent. Then by The-
orem 9.2 one of them can be written as a right linear combination of the others. Hence
by Theorem 8.7 the basis principal minor of A* A is equal to zero, but this contradicts its
def nition as well. B

Theorem 9.4. An arbitrary column ofA € H™*"™ is a right linear combination of its basis
columns.

Proof. If columns with indices 41, ..., %, are the basis columns of A, then the basis
principal minor of A*A =: (d;;), ., is placed on the crossing of its columns and rows with
indices i1, . . . , %, as well. Denote by M the matrix of the basis principal minor. Supplement
it by the (r + 1)th row and column consisting of corresponding entries of the j-th row and
column of A*A respectively. Suppose j € {i1,..., ir}. The obtained matrix is denoted
by Dj.

diyiy -+ digi, diyj
D; = dipiy -+ digi, diyj
djiy -+ dji,  djj
Since the Hermitian matrix D contains two coinciding columns, by Corollary 5.1 we ob-
tain that

.
detDj = cdetj Dj = ZL,‘”‘ : dilj + ij : djj = 0,
=1
where L;, ; is the left 7;jth cofactor of D;. Whereas L;; = det M # 0, we get
djj ==Y (det M) ™' Ly;-di; forall j € {i,...,ir}. (18)
=1
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Now suppose that j ¢ {i1,..., 0k, iks1,---, %} and i < j < igs1. Consider the
matrix D; obtained from M by supplementing it by the jth row and column:

di1i1 T dilik dilj dilik+1 T dilir

dikil T dikik dikj dikikJrl dikir

Dj=1 djn - dji,  djz iy, dji,
iy, i dipyvin digyrj Digyring iy yir

d;, iy d;, i), divj iy, d;, i,

The matrix D; is Hermitian in this case as well. Then we have

T
det D; = cdet;D; = ZLilj “djj+ Ljj-djj = 0.
=1

Since L;; = det M # 0, then

r

djj == (detM) ™' Lij; - diyj, & {ir,...,ir} C In. (19)
=1

.
Combining (18) and (19), we obtain d;; = —> (det M)~ ' L ; - d;; for all j = T,n.
=1

r m
If — (det M)_l Lilj =y, then djj = E U dilj- Since djj = Z [ and dilj =
. =1 k=1

Z Qf; i, 0k j» then

k=1

m m r
Zakjakj Zmzakuakg ZZMMMZ%]‘-
k=1 =1 k=1

k=1 1=1

Hence, @y, = Z par 4, and so ay; = Z ar i, (Vk =1, m). Therefore, an arbitrary col-
=1
umn of the matrix A is the right linear comblnatlon of'its basis columns with the coeff cients

Ty -« s fhps 1.€.:

a; M +...+a; -p =aforall i € [, forall | = 1,r.

|
The following theorem is proved in a similar manner.

Theorem 9.5. An arbitrary row of A € H™*" is a left linear combination of its basis rows.

Theorem 9.6. The right linearly dependence of columnsfofc H™*" or the left linearly
dependence of rows &* is the necessary and sufficient conditiondiet A*A = 0.
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Proof. (Necessity) If the columns of A € H™*"™ are right-linearly dependent, then by
Theorem 9.2 one of them can be written as a right linear combination of the others. Hence,
by Theorem 8.7 we have det A*A = 0.

Similarly, if the rows of A* are left-linearly dependent, then by Theorem 9.1 one of
them can be written as a left linear combination of the others. Hence, by Theorem 8.8 we
have det A*A = 0 as well.

(Suff ciency) If det A*A = 0, then by Theorem 7.3 its columns are right-linearly de-
pendent. Hence, an its basis principal minor has the order » < n. Then at least one of the
columns of A € H™*™ is not basic and at least one of the rows of A* is not basic as well.
By Theorem 9.4 this column is a right linear combination of the other column of A and by
Theorem 9.5 this row is a right linear combination of the other rows of A*. So by Theorem
9.2 the columns of A € H"*" are right-linearly dependent. By Theorem 9.1 the rows of
A* are left-linearly dependent as well. B

Def nition 9.7. If r is the maximum number of right-linearly independent columms af
H™>" thenr is called the column rank of the matrix.

Def nition 9.8. If ~ is the maximum number of left-linearly independent colummnA af
H™>" thenr is called the row rank of the matriA? denote byankA.

It is well-known that the column rank of an arbitrary matrix over skew feld is equal
to its row rank. Whereas we can def ne the rank of a matrix over the quaternion algebra
with division, as the maximum number of left-linearly independent rows or right-linearly
independent columns.

Theorem 9.7. A rank by principal minors ofA*A is equal to its rank and a rank of of
A e Hmxm,

Proof. Let a rank by principal minors of A*A is r, then by Theorem 9.3 r basic n-
dimension column of A are right-linearly independent. Let for certainty they area 1, ..., a .
Consider span (a1, ...,a,) C H", where H" is the right vector space. Since by Theorem
9.4 an arbitrary column of A is right-linearly combination of its basic columns, then the
basic columns are a basis of span (a1, ...,a,). Then any r+ 1 vectors of span (a1, ...,a )
are right-linearly dependent. So any r+ 1 columns of A are right-linearly dependent as well
and r is the maximal number of right-linearly independent columns of A, i.e. rank A = r.

Similarly, by Theorem 9.3 r basic n-dimension column of A*A are right-linearly
independent. Denote by a ; a column of A*A for all k¥ = 1,..,n. Consider
span(a.1,...,a ,) C H". Since by Theorem 9.4 an arbitrary column of A is right-linearly
combination of its basic columns, then as shown in Theorem 8.7 an arbitrary column of
A*A is right-linearly combination of its basic columns. So the basic columns are a ba-
sis of span (&, 1,...,a ,) and dim (span(a 1,...,a ,)) = r. Then any r + 1 vectors
of span(a q,...,a ,) are right-linearly dependent. So any r + 1 columns of A*A are
right-linearly dependent as well and r is the maximal number of right-linearly independent
columns A*A,ie. rank (A*A) =r. 1

The following theorem is proved in a similar manner.

Theorem 9.8. A rank by principal minors ofA A* is equal to its rank and a rank of of
A € H™™,
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10. Properties of the Double Determinant
of a Quaternion Square Matrix

Theorem 10.1. If A € M (n, H), thendet AA* = det A*A

Proof. Suppose A € M (n, H). It is easy to see that

-1 A 0 A
det<A* 0>—det<A>k —I)’

. (1 A .
The matrix ( 0 1 ) can be represented as a product of n? elementary unimodular 2n x 2n

matrices, i.e. for all k = 1,n? there exists i = 1,n and j = n + 1,n2 and there exists

P;. = P\ (a;;) such that
I A
(0 I) =[P~
k

(I A) € SL(2n, H).

Thus,

0 I

In a similar manner
I O
(A* I) € SL(2n,H).
From this by Theorem 6.2, we have

. AA* 0
(—=1)"det AA —det< 0 I> =

can((3 8) (£ A) (L ) -2 4)-

() (5 (2N (E )

— det (AA 0 ) =(~1)"det A*A. W

Def nition 10.1. For A € M (n, H) the determinant of its corresponding Hermitian matrix
is called its double determinant, i.e.

ddetA :=det (A*A) = det (AA™).
Theorem 10.2. If V{A,B} C M (n,H), thenddet (A - B) = ddetA - ddetB.

Proof. Due to Theorem 6.3 for the Hermitian matrix A* A, there exists U € SL (n, H)
such that
U A*A-U=(A-U)"- A -U-=diag(a,...,a),

where ; € R. If A - U = (¢ij)nxn, then o5 = Y Griqri = > n(qri) € Ry for all
k k

1 = 1,n, where R is the set of the nonnegative real numbers. Therefore for any a;; € R4
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there exists \/a; € Ry for all i = 1,n. By virtue of (U*)~! = (U~1)* for Hermi-
tian (U™!B)*(U"B) there exist W € SL (n,H) and 3; € Ry for all i = 1,n such
that W*(U~'B)*(U~'B)W = diag(/31,...,,). Hence by Theorems 6.3 and 10.1, we
obtain

ddet(A - B) det(B*(A*A)B) = det(B*(U*)~1U*(A*A)UU"!B)

= det ((U™ )*diag(al,...,an)U_lB)

= det ((diag (y/art, ..., an) UT'B)*(diag (y/aq, . . ., /an) UT'B))
= det ((diag (y/art, ..., /an) U™'B)(diag (var, ..., yan) U'B)*)
= det (diag (y/ar1, - . ., /an) (U*IB)(Ule)*diag (Vod,....v/om))
:det( iag (\/071,...,\/@) (W1 diag(ﬁl,...,ﬂn) w-!

diag (v/art, ..., /an)) = det ((W-HT)* dlag(\/T,...,M) X
xdiag (B1, ..., B,) - diag (y/aq, . .., /an) (W HT)

= det (diag (y/or, . .., /an) - diag (B4, ..., By) diag (y/or, - .., /o))
=ai-...-0p-PB1-... - Bp=detA-detB=detB-det A.H

Remark 10.1. The proofs of Theorems 10.1 and 10.2 are similarly to the proofs in [5,
p.533], and they differ by using different determinant functionals.

Remark 10.2. Unfortunately, if non-Hermitian matrix is not full rank, then nothing can
be said about singularity of its row and column determinant. We show it in the following
example

J

Example 10..1. Consider the matribA = . Its second row is obtained from the

first row by left-multiplying by:. Then by Theorem 8ddetA = 0. Indeed,

on (=i =3\ (i F\_ (2 -2
AA_(—j z> <j —i>_<2k 2)’
thenddetA = 4 + 4k = 0. But

cdet; A = cdetoA = rdet; A = rdeto A = —i% — j2 = 2.

At the same timeank A = 1, that corresponds to Theorem 9.7.

11. Determinantal Representation of the Inverse Matrix
Def nition 11.1. Suppose thaAA € M(n, H) and

ddetA = cdet; (A*A) ZLU aij,

forall j = 1,n. ThenL;; is called the left doubléj-th cofactor ofA.
Def nition 11.2. Suppose thaA € M(n,H) and

ddetA = rdet; (AA¥) Zaw i

forall ¢ = I, n. ThenR,; is called the right doublé;-th cofactor ofA.
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Theorem 11.1. Thenecessary and sufficient condition of invertibilityAfe M(n, H) is
ddetA # 0. Then there existd ' = (LA) ™' = (RA)!, where

Lyp Loy ... L
_ _ 1 L L ... L
(LA) ( ) ddetA ce e e (20)
]Lln ILd2n s Lnn
Rz Ror ... Ry
_ _ 1 R R ... R
(RA) (AAD = Gdetar | o o D
IRln ]RZn s Rnn

and
Lij = Cdetj (A*A)] (a*l) , R ij = I‘deti(AA*)i. (a}k) ,
forall i,j = 1,n.

Proof. Necessity. Suppose that there exists the inverse matrix A~ of A € M(n, H). By
virtue of rank A > rank(A~!A) = rank I = n, we have rank A = n. Thus, the columns
of A are right linearly independent. By Theorem 9.6, this implies det A*A = ddetA # 0.

Suff ciency. Since ddetA = det A*A # 0, then by Theorem 7.1 there exists the
inverse (A*A)_1 of the Hermitian matrix A*A. Multiplying it on the right by A*, we
obtain the left inverse (LA)~' = (A*A)~! A*. By representing (A*A) ! = (ddLﬁ)an
as the left inverse matrix, we get

(LA)™ = (L(A"A)) A" =

> Lwag, > Limap, ... Y Lkag,
k k k
1 2 Lioagy X Lkaaky - X Lieag,
" ddetA | " ol
2 Linagy 22 Linajy - X Linagy,
k k k
cdet;(A*A) 1 (a*) cdeti(A*A) 1 (a%) ... cdeti(A*A) 1 (a*,)
1 cdeto(A*A) o (a*)) cdeta(A*A) 2 (a%y) ... cdeta(A*A) o (a¥,)
~ ddetA
cdet,(A*A) , (a*;) cdet,(A*A) ,(a%,) ... cdet,(A*A) ,(a%,)
By virtue of
ddetA = det(A*A) = cdet;(A*A) = cdet;(A*A) ; Ca; = ZLU aij,

i

for all j = 1, n, we obtain (20).
Now we prove the formula (21). By Theorem 7.1 there exists an inverse matrix
(AA*) ™! = (1230), .. By having left-multiplied it by A*, we obtain
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(RA)™' = A* (R(A*A)) ! =

Ya R ajRoe ... o aj Ry
k k k
1 Za;lek Za;lek e Za;kRnk
= JdetA | F k k
Yoa R Yoar Rop ... Yo ar R
k k k
rdet; (AA*); (aj ) rdeto(AA*)2 (a7) ... rdet,(AA*), (a})
1 rdet; (AA*); (a5 ) rdeta(AA*)s (a5) ... rdet,(AA*), (a3)
:ddetA* ... DY DY ...
rdet;(AA*); (a ) rdeto(AA*)2 (af) ... rdet,(AA*), (af)
By virtue of
ddetA = rdet;(AA*) = " a;; - rdet;(AA");, Z aij - Rij,

J

for all i = 1, n, the formula (21) is valid. The equality (LA)™" = (RA)™" is immediately
from the well-known fact that if there exists an inverse matrix over an arbitrary skew f eld,
then it is unique.ll

Remark 11.1. In Theorem 11.1, the inverse matik~! of an arbitrary A € M(n, H)
under the assumption didet A # 0 is represented by the analog of the classical adjoint
matrix. If we denote this analog of the adjoint matrix odiby Adj[[A]], then the next
formula is valid oveiH:

Adj[[A]]

ddetA -

Remark 11.2. From Theorems 9.6 and 10.2 follows that for an arbitrary matAix €
M (n, H) the double determinantdet A satisfies Axioms 1, 2, 3 of Definition 1.1.

Al =

12. The Relations between the Noncommutative Determinants

It is evident that ddet A = Mdet (A*A), then from [1, 6] we have the following relations
between the noncommutative determinants of Moore, Study, Diedonné and the double de-

terminant,
ddetA = Mdet (A*A) = SdetA = Ddet?A.

Due to wide use recently the quasideterminants of Gelfand-Retax relations between them
and the row and column determinants can be important.

Theorem 12.1. If A € M(n, H) is a invertible matrix, then there are the following repre-
sentations of a quasidetermingnA |,, forall p,g =1,...,n

(A= ddetA - cdet,(A*A) 4 (a%))
M n(cdetg(A*A).q (a%,))

(22)
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ddetA - rdet,(AA*),. (a})
| A ‘pq: AA* *
n(rdet,( )p. (aq.))

(23)

Proof. Let A~! = (b;;) is the inverse of A € M(n, H). By (1) there is simple relation-
ship between the quasideterminant | A |, , of A € M(n, H) and an element of its inverse
Al = (bij), that is

‘ A |pq: bq_pl
for all p,q = 1,...,n. At the same time the theory of column and row determinants by

Theorem (11.1) gives the deteminantal representations of the inverse matrix by the left (20)
and right (21) double complements. So we have

— * * -1

(A = bl = Lpq 1 _ cdety(A*A) 4 (A%) (24)
b= "ap ddetA ddetA ’
- * * -1

(A= b) = Ry, \ _ (rdety(AAT),, (Ar) 25)
pa—"ap ddetA ddetA '

Since ddetA # 0 € F, then 3(ddetA)~! € F. In turn, we have

1 cdety(A*A) 4 (Afkp)
- n(cdety(A*A) , (Afkp”’

cdety(A*A) 4 (A7) (26)

rdet,(AA*),. (A;-)
n(rdet,(AA*),. (Aj;))
Substituting (26) in (24) and (27) in (25), we respectively obtain (22) (23). B

The formula (22) represent the quasideterminant | A |, , of A € M(n,H) for all

p,q = 1,...,n by the column determinant of A* A, and (23) represent the quasideterminant
by the row determinant of AA*.

rdet,(AA"), (AL) ! =

27

13.  Cramer’s Rule for Systems of Linear Equations over
Quaternion Algebra

Theorem 13.1. Let
A-x=y (28)

be a right system of linear equations with a matrix of coefficiénts M(n, H), a column
of constanty = (y1, . .. ,yn)T € H™*!, and a column of unknowns= (z1, ... ,:cn)T. If
ddetA # 0, then the solution to the linear system (28) is given by components

i cdet;j(A*A) ; (f)
7 ddetA ’

Jj=1mn, (29)

wheef = A*y.
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Proof. By Theorem 11.1, A is invertibility. Thus, there exists the unique inverse matrix
A~!. From this the existence and uniqueness of solutions of (28) follows immediately.
Consider A~ as the left inverse: (LA)~' = (A*A)~! A*. Then we get

x=A"l-y=(A"A)TA* .y
Denote f := A* -y. Here f = (f1, fo, ..., fn)T is the n-dimension column vector over

H. By considering (A*A)_1 as the left inverse, the solution of (28) is represented by
components:

T4 = (ddetA)il ZL” . fi, ] = 1,7’L,
=1

where L;; is the left ij-th cofactor of the Hermitian matrix (A*A). From here we obtain
(29).m

Theorem 13.2. Let
x-A=y (30)

be a left system of linear equations with a matrix of coefficighitsE M(n,H), a row
of constantyy = (y1,...,y,) € H>", and a row of unknowng = (z1,...,z,). If
ddet A # 0, then the solution to the linear system (30) is given by components

. rdetZ(AA*)l (Z)
Ti = ddetA

i=1,n (D)
wherez = yA*.
Proof is similar to the proof of Theorem 13.1.

Remark 13.1. The formulas (29) and (31) are the obvious and natural generalizations of
Cramer’s rule for systems of linear equations over quaternion algebra.

The closest analog to Cramer’s rule, as follows from Theorem 7.1, can be obtained in
the following specific cases.

Theorem 13.3. If the matrix of coefficients\ € M(n,H) in the right system of linear
equations oveH (28) is Hermitian, then the unique solution vector= (x1,x2, ..., x,)
of the system is given by

_cdet; A (y)

= = 1,n.
K deta 70"
Theorem 13.4. If the matrix of coefficientd € M(n, H) in the left system of linear equa-
tions overH (30) is Hermitian, then the unique solution vector= (x1,x2,...,x,) IS
given by
rdetiAZ-_ (y)
Ti det A e
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14. Cramer’s Rule for Some Matrix Equations
We denote A*B =: B = (b;;), BA* =: B = (by;).
Theorem 14.1. Suppose
AX =B (32)

is a right matrix equation, wheréA, B} € M(n, H) are given X € M(n, H) is unknown.
If ddetA = 0, then (32) has a unique solution, and the solution is
cdetZ(A*A), (f)])

ddetA

(33)

mij:

WheEB_j is thejth column ofB for all ,7=1,...,n.

Proof. By Theorem 11.1 the matrix A is invertible. There exists the unique inverse
matrix A~!. From this it follows that the solution of (32) exists and is unique, X =
A~'B. If we represent A~! = (A*A)"'A* as a left inverse and use the determinantal
representation of (A*A)~! by (13), then for all 4, = 1, ..., n we obtain

n

1 .
- § Liibus
ij ddetA £~ ki%kj>

where L;; is a left ijth cofactor of (A*A) for all ¢, j = 1, ..., n. From this by Lemma 3.1
and denoting the j-th column of B by b ;, it follows (33).H

Theorem 14.2. Suppose
XA =B (34)
is a left matrix equation, wherfA, B} € M(n, H) are given,X € M(n, H) is unknown.
If ddetA = 0, then (8) has a unique solution, and the solution is
rdetj(AA*)j. (f)l)
ddetA

(35)

Tij =

whee b;_is theith column ofB forall i, j = 1, ..., n.

Proof. By Theorem 11.1 the matrix A is invertible. There exists the unique inverse
matrix A~!'. From this it follows that the solution of (34) exists and is unique, X =
BA~!. If we represent (A) "' = A* (AA*) " as a right inverse and use the determinantal
representation of (AA*)~! by (12), then for all 4,7 = 1,...,n we have

n

1 .
Tij = ddetAkZ:I bik Rk

where R, ; is a right ijth cofactor of (AA*) for all ¢, j = 1,...,n. From this by means of
Lemma 3.2 and denoting the ith row of B by b; , it follows (35). B
We denote A*CB* =: C = (¢;;).
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Theorem 14.3. Suppose
AXB=C (36)

is a two-sided matrix equation, whefeA, B, C} € M(n, H) are given,X € M(n,H) is
unknown. liddet A # 0 andddetB # 0, then (36) has a unigue solution, and the solution
is

rdet;(BB*);. (c?)

= i) 3
P77 T ddetA - ddetB 37
or
cdet;(A*A) (c?ij)
Tij = ; (38)
ddetA - ddetB

wheec* := (cdet;(A*A) ; (€1),...,cdet;(A*A); (C.,)) is the row vector and®} :=
(rdet;(BB*);. (¢, ),...,rdet;(BB*); (¢, )" is the column vector and; , ¢ j are the

ith row vector and the jth column vector @f, respectively, foralt, j = 1,...,n

Proof. By Theorem 11.1 the matrices A and B are invertible. There exist the unique
inverse matrices A~! and B~!. From this it follows that the solution of (36) exists and
is unique, X = A"!CB~!. If we represent A~! = (A*A)"1A* as a left inverse and
(B)~! = B* (BB*) ! as a right inverse, then for all i, j = 1, ..., n we have

= (A*A)"'A*CB* (BB*)"!

r11 12 ... Tin L‘f‘l L2Al . L?l
A JA A
_ | Y21 T22 Lon | _ 1 Ly Ly L «
B DY ddetA DY DY
A TA A
Tnl Tn2 Tnn Ly, Lo, Ly
ci1 12 Cin RY, R Ry
o | Cr G2 Con 1 R%, RS, RY,
DY . . ddetA DY DY DY o e . ’
= = B B B
Cnl  Cn2 Cnn RY, R3, ... R,
where LA is a left ijth cofactor of (A*A) and RB is a right 7jth cofactor of (BB*) for all

1,7 = 1,...,n. This implies

Z (Z mekm>

m=1

YT T ddetA - ddetB (39)
for all ¢, j = 1, n. From this by Lemma 3.2, we obtain
n
> Liérm = cdeti(A*A) i (&),
k=1
where €., is the mth column-vector of C for all m = 1,...,n. Denote by cﬁ =

(cdet;(A*A). i (e. ) ,cdet;(A*A) ; (€.,)) the row-vector for all ¢ = 1,...,n. Reduc-
ing the sum Z Z Lklc km) R >, by Lemma 3.1, we obtain an analog of Cramer’s rule

k=1
for (36) by (37)
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Having changed the order of summation in (39), we have

n n
S5 A ( > ekaij)
_ k=1 m=1

T T qdetA - ddetB

n
By Lemma 3.1, we obtain Y ¢z, RB

m
m=1 J

row-vector of C for all k = 1,...,n. We denote by

= rdet;(BB*); (€;.), where ¢ is a kth

cB := (rdet;(BB*);. (€1.),...,rdet;(BB*); (¢,))"

n n
the column-vector for all j = 1,...,n. Reducing the sum > L& < e ka}%) by
k=1 m=1

Lemma 3.2, we obtain Cramer’s rule for (36) by (38). B -
In solving the matrix equations by Cramer’s rules (33), (35), (37), (38) we do not use
the complex representation of quaternion matrices and work only in the quaternion algebra.

15. Example 1

Let us consider the two-sided matrix equation

AXB =C (40)
where
i —7 k -k 7 2 1 ¢ g
A=k — 1 ]|,B=|¢ k ¢)andC=1[|k 5 -2
2 kK —j -5 1 1 i 1 4
Then we have
—i -k 2 6 7+3k —j—k
A*=| 4 i —k|, A*A=|—-j-3k 3 i
-k 1 ] j+k —1 3
and
kK —i 3 6 —-3i+7 —i+7
B'=|—-j5 -k 1|,BB*=|3i—j 3 1+2k 1,
2 —1 —1 i—j 1-2k 3

. 2k 1—i—-k 3+:¢4+3k
C=ACB"=|-2—-4i -2+i—k i—k
—4+2i 1+2i+j5 14+4i+47j
It is easy to get, ddetA = det A*A = 8 and ddetB = det BB* = 4. Therefore (40) has
a solution. We shall fnd it by (37). At frst we obtain the row-vectors cﬁ foralli =1,2,3.
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2%k  j+3k —j—k

cdetl(A*A). 1 (61) = cdet1 —2—43 3 7 =3 3(2]{2)*
-4+ 2 —1 3

—i(—i)(3] + Bk) + (—j — k)(—i)(—2 — 4i) — 3(j + 3k)(—2 — 4i)+

(5 + 3k)i(—4 + 20) — 3(—j — k) (=4 + 2i) =

— 245 + 8k,

and so forth. Continuing in the same way, we get

cf = (245 + 8k, —8 — 8i + 45 + 4k, 8 + 8i + 45 + 4k),
¢ = (=20 — 36, —10 — 2i — 12j — 12k, —2 — 2i + 125 + 4k),
e = (12 + 40,6 + 2 + 12j — 4k, 6 + 10i — 45 + 4k).

Then by (37) we have

. rdet; (BB*);. (c‘?) B
T11 = ~ ddetA-ddetB

24j+8k —8—8i+4j+4k 8+8i+4j+4k

= 5 rdety | 3i— 3 1+ 2k =
i—j 1 -2k 3

3 - (247 + 8k) - 3-3 — (245 + 8k)(1 + 2k)(1 — 2k)+

+(—8 — 8i + 4j + 4k) (1 4 2k) (i — §) — (—8 — 8i + 45 + 4k)(3i — 5)3+

+(8 + 8i + 45 + 4k) (1 — 2k)(3i — 5) — (8 + 8i +4j + 4k)(i — 5)3) =

= &5 - (=32 + 32i),

and so forth. Continuing in the same way, we obtain

32432 _ —8B-T2i424j-8k _ 2448i—40j+56k
7 _ -

xr11 = 39 12 39 Z13 32 3
_ —16i+325—48k _ 20—28i—1165—"T76k _ —44+468:+205+12k
Tl = —35°" 5 X2="" 35 ", TWB3=—" 35
_ 16+165+32k _ 204-44i+525—28k _ —12—20:4+125—4k
€31 = — 32 €r32 = - 32 xr32 = - 32 -

16. The Singular Value Decomposition and the Moore-Penrose
Inverse of a Quaternion Matrix

In the all following sections we shall consider the Hamilton quaternion skew feld H (the
quaternion algebra over the real feld).
Due to the noncommutativity of quaternions, there are two types of eigenvalues.

Def nition 16.1. Let A € M (n, H). A quaternion\ is said to be a right eigenvalue & if
A -x = x- )\ for some nonzero quaternion column-vectoiSimilarly \ is a left eigenvalue
ifA-x=M\ x

The theory on the left eigenvalues of quaternion matrices has been investigated in par-
ticular in [12, 24, 26]. The theory on the right eigenvalues of quaternion matrices is more
developed. In particular we note [2, 8, 27]. From this theory we cite the following proposi-
tions.
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Proposition 16..1. [27] Let A € M (n, H) is Hermitian. ThenA has exactly: real right
eigenvalues.

Def nition 16.2. SupposéU € M (n,H) and U*U = UU* = I, then the matrixU is
called unitary.

Proposition 16..2. [27] Let A € M (n,H) be given. ThenA is Hermitian if and
only if there are a unitary matrikdJ € M (n,H) and a real diagonal matrixD =
diag (A1, A2, ..., A,) such thatA = UDU*, where)y, ..., \,, are right eigenvalues of
A.

Suppose A € M (n, H) is Hermitian and A € R is its right eigenvalue, then A - x =
X - A = A-x. This means that all right eigenvalues of a Hermitian matrix are its left
eigenvalues as well. For real left eigenvalues, A € R, the matrix A\I — A is Hermitian.

Def nition 16.3. If ¢ € R, then for a Hermitian matrixA the polynomialpa (t) =
det (tI — A) is said to be the characteristic polynomial Af

The roots of the characteristic polynomial of a Hermitian matrix are its real left eigen-
values, which are its right eigenvalues as well. We shall investigate coeff cients of the
characteristic polynomial like to the commutative case (see, e.g. [21]). At frst we prove
the auxiliary lemma.

Lemma 16.1. Let A € M (n,H) is Hermitian and the columng, ..., of A coincide
with the unit vectore;, , ..., e;,. Thendet A equals to a principal minor obtained frof
by deleting the rows and colum#is . . ., ig.

Proof. We claim that if A € M (n,H) is Hermitian and the columns 41, ...,i; of A
coincide with the unit column vectors e;,, ..., e;, respectively, then the rows iy,... 1
coincide with the unit row vectors e;,, . . . , e;, as well. Using Lemma 3.2 we expand det A
along the 7th column, where a;, , = 0 for all k¥ # i; and a;,;, = 1. Then we obtain

det A = cdet;, A =

= —cdet;, A}l (a1) - ay; — ...+ cdetlAi”il “Giyiy — - — cdety AT (an,) - ani,
= —CdetilAzlll. (a1)-0+...+cdet] A" - 1+ ... — cdet;, A7" (an.) -0
= cdet; Ai,

Since the submatrix A“! is obtained from A by deleting both the i1-th rows and columns,
then by Theorem 4.1 it follows that cdet; A%t = det A%1, Now we calculate this prin-
cipal minor expanding along the 72-th column. Similarly to above we have that det A is
equals to a principal minor obtained from A by deleting both the ;th and ioth rows and
columns. Continuing this line of reasoning we complete the proof of the lemma. ll

Taking into account Lemma 16.1 we can prove the following theorem by analogy to the
commutative case (see, e.g. [21]).

Theorem 16.1. If A € M (n,H) is Hermitian, therpa (t) = t* — dit" ! + dot" 2 —
..+ (=1)"d,, whered, is the sum of principle minors ok of orderr, 1 < r < n, and
d, = det A.
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For any quaternion matrix A € M (n, H), the eigenvalues of A*A are all nonnegative
real numbers [25].

Def nition 16.4. Let A € H™*™. The nonnegative square roots of theeigenvalues of
A*A are called the singular values .

A key value for a determinantal representation of the Moore-Penrose inverse over the
quaternion skew f eld have the following singular value decomposition (SVD) theorem.

Theorem 16.2. [25, 27] (SVD) LetA € H™*". Then there exist unitary quaternion matri-
cesU; € H™*™ and Uy € H™"*"™ such that

U,AU, = D, 0 H™*™, (41)
0 0
whereD, = diag(01,02,...,0,),01 > 092 > ... > o, > 0,andoy,09,...,0, are the

all nonzero singular values k.

As unitary matrices are invertible, the equality (41) can be written as follows
A =VIW*, (42)

where V. € H™*™ and W € H"*" are unitary matrices, and the matrix X = (0y;) €
H;>™ is such that 011 > 092 > ... > 0pp > Oppirpl = ... = 0gq = 0, ¢ = min {n, m}.
We get the following lemmas, which have the analogues in the complex case [11].

Lemma 16.2. SupposeA € H™*" has the singular value decompositioh,= VXW*,
LetAT = W . Xt . V* whereX™ € H"™™ is obtained fromX by transposition and
replacing positive entries aE by reciprocal. Then forA* the following conditions are
true

1) (AAT)" = AAH;

2) (ATA)" = A*A;

3) AATA = A; 43)
4) ATAAT = AT

Proof. We obviously have (£7)" = ¥ and ((E+)T) "~ ©* for 2 from the SVD by
(42) and 7. Then it follows that

(AAH) = (VEW*WEHV*)* = (VSISHV*) = <V (=+)” va*>* _
- (V (=" W*WETV*)* — VEW*WEHV* = AA*,

The proof of 1) is completed. By analogy we can prove 2).
I. O
0 O
XXTY = ¥, then AATA = VEW* . WETV*. VEW* = V. IX Y . W* =
V.X-W"=A.

By analogy to 3) can be prove the condition 4).

|

Now we prove the condition 3). Note that X3+ = { ] € H™>™, This implies
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Lemma 16.3. Thek exists a unique matriA ™ that satisfies conditions 1)-4) in (43).

Proof. Suppose that both matrices B € H™*™ and C € H"*™ satisfy conditions 1)-4)
in Lemma 16.2. Then we have

B = BAB = B(AB)" = BB*A* = BB* (ACA)" = BB*A*C*A*

= B(AB)* (AC)" = BABAC = BAC = BACAC = (BA)* (CA)*C

= A*B*A*C*C = (ABA)*C*C = A*C*C = (CA)* C = CAC = C.
|

Def nition 16.5. Let A ¢ H™*™, The matrixAt is called the Moore-Penrose inverse if it
satisfies all conditions in (43).

By analogy to the complex case [3] we have the theorem about the limit representation
of the Moore-Penrose inverse.

Theorem 16.3. If A € H™*™ and AT is its Moore-Penrose inverse, theA™ =
lim A* (AA” + o)l = lim (A*A + o)~ A*, wherea € R,
a— a—

Proof. Suppose A = VEW?*, then A* = WX*V* and AT = WXTV*, Since V is
unitary, then V* = V~1. We have

A*(AA* +al) ' = WEV* . (VE-W*W . ZV* +ol) ! =
=WIV* (V(EZ* +al) V¥) ! = WE (ZZ* + ol) "' V™,

Consider the matrix

T(EZ +al) =] 0 S

It is obviously that lim 3 (X" + o)~ = =+, This implies lim A* (AA™ + o)™t =
lim WX (S5* + o) tvE = AT

By analogy we can prove that AT = gg% (A*A +ol) ' A* 1

It is evidently the following corollary.

Corollary 16.1. If A € H™*", then the following statements are true.
i) If rank A = n, thenAt = (A*A)" " A*.
i) If rank A = m, thenA™ = A* (AA*)" L.

ji) If rank A =n =m, thenAt = A~1,
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17. Determinantal Representation of the Moore-Penrose In-
verse

Lemma 17.1. If A € H™*, thenrank (A*A) , (a%) <.

Proof. Let’s lead elementary transformations of the matrix (A*A) , (af*j) right-

multiplying it by elementary unimodular matrices P, (—ajk), k # j. The matrix
P (‘%‘k) has —a;y, in the (i, k) entry, 1 in all diagonal entries, and 0 in others. It

is the matrix of an elementary transformation. Right-multiplying a matrix by P ; 1, ( —a; k) ,

where £ # j, means adding to kth column its ¢th column right-multiplying on —a ;. Then
we get

k;_ i@kl .. Ay .- ]g; aj,0kn
J j
(A*A) ; (a%) - [[ Pir (—ajk) = U
ki Yoarap ... Qi - > akakn
ki ki
i—th

The obtained matrix has the following factorization.

* * *
Z‘ T P Z aj,akn
k#j k#j
* * *
Z‘ UppQk1 e Qi e Z ay . Qkn
k#j k#j
i—th
ail ... 0 ... Qpl
* * *
i1 G2 - Qi
a a ceoa )
= " = 2m 0 ... 1 ...0 j —th.
* * *
a a a
nl Tn2 nm ami -~ 0 ... amn
i—th
ail 0 an1
Denote by A := | 0 R O (| j — th. The matrix A is obtained from
am1 .- 0 .. amnp
i—th

A by replacing all entries of the jth row and of the ith column with zeroes except that
the (j,) entry equals 1. Elementary transformations of a matrix do not change its rank
and the rank of a matrix product does not exceed a rank of each factors. It follows that
rank (A*A) , (af}) < min {rank A*, rank A} It is obviously that rank A > rank A =
rank A*. Taking into account Theorem 9.7 we obtain rank A*A = rank A. This com-
pletes the proof.

The following lemma is proved in the same way.
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Lemma 17.2. If A € H", thenrank (AA”) , (a%) <.

We shall use the following notations. Let o := {ay,...,ax} C {1,...,m} and
B = {f1,...,0k} C {1,...,n} be subsets of the order 1 < k < min{m,n}.
By Ag denote the submatrix of A determined by the rows indexed by « and the
columns indexed by 3. Then A denotes the principal submatrix determined by the
rows and columns indexed by a. If A € M(n,H) is Hermitian, then by |A%| de-
note the corresponding principal minor of det A. For 1 < k£ < n, denote by Ly ,, :=
{a:a=(a1,...,ar), 1 <ag <...<a < n} the collection of strictly increasing se-
quences of k integers chosen from {1,...,n}. Forfxedi € arand j € 3, let I, ,,{i} :=
{araeL,pmical, Jo{j}={B:08€Lmn,jecpf}

Lemma 17.3. If A ¢ H™*" andt € R, then
cdet; (T + A*A) , (a%) = 1 4 D=2 g i), (44)

wherec!?) = cdet; (A*A) | (a%j) andc(?) = Wz {‘}cdeti ((A*A)_i (a%j)) 4 forall

k=1,n-1,i=1,n,andj =1,m.

Proof. Denote by b_; the ith column of the Hermitian matrix A*A =: (b;;),,.,,- Con-
sider the Hermitian matrix (tI+ A*A) , (b.;) € H"*". It differs from (tI+ A*A) an
entry b;;. Taking into account Theorem 16.1 we obtain

det (t(1+ A*A) (b ;) = dit" ' +dot" 2 + ... + dy, (45)
whered, = Y ‘ det (A*A) g is the sum of all principal minors of order & that contain
the ith colurrif ;zrn;ﬁ k=1,n—1andd, = det (A*A). Consequently we have

; ayay;
ayay;
b= ; o = Zafklau,
: l
Zlf Qi

where a* is the /th column-vector of A* for all [ = 1, m. Taking into account Theorem
4.1, Lemma 3.1 and Theorem 3.3 we obtain on the one hand

det (t1 + A*A) ; (b ;) = cdet; (T + A*A) ; (b ;) =
= Y cdet; (f1 + A*A) |, (a%,a;;) = Y. cdet; (t1 + A*A) , (a%) - ay (46)
l l

On the other hand having changed the order of summation, we get forallk = 1,n — 1

de= Y det(A*A)G= 3 cdet;(A*A) ] =
ﬁeJk,n{i} ﬁeJk,n{i}
Y Yodet; (A*A) ; (%)) = Xl: > cdet; ((A*A) , (a%) - .

BeJk,n{i} l ﬂEJk,n{i}

(47)
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By substituting (46) and (47) in (45), and equating factors at a;; when [ = j, we obtain the
equality (44). &
By analogy can be proved the following lemma.

Lemma 174. If A ¢ H™*"™ andt € R, then

rdet; (1 + AA*); (al) = p{ D=t p =2 4 4 i),

7.

wherer(?) = rdet;(AA%); (af) andr(? = 3 rdet; (AA*); (at)) 2 for all
a€lrmij}

k=1n-1,i=1,n,andj =1, m.

Theorem 17.1. If A € H”*", then the Moore-Penrose inverget = (a;?) e Hrxm
possess the following determinantal representations:

o o e (ara) ; (a5)) 4
K ) (48)
> |ara)g)
ﬂeJr, n

or
T rdet; (A7), (a1) 8
+ aclrm)
a;; = ” . (49)
! > [(AA¥) g

a€ly m

Proof. At frst we prove (48). Using Theorem 16.3, we have

At = lim (oI + A*A) ' A*.

a—0

The matrix (oI + A*A) € H"*" is a full-rank Hermitian matrix. Taking into account
Theorem 7.1 it has an inverse, which we represent as a left inverse matrix

Lin Loy ... Ly

— 1 L12 L22 L2

I+A*A) = n
I+ AA) = o aisaa) | o o |

Li, Loy ... Lpn

where L;; is a left ijth cofactor of a matrix aI + A*A. Then we have

(al+ A*A)" P A*

n n n
> Liiag;,  >- Linag, > Lriay,,
k=1 k=1 k=1
n n n
* * *
_ 1 > Lioay,  >° Lisaj, > Li2aj,,
~ det(aI+A*A) k=1 k=1 k=1
' n ' n ' n
> Linagy > Linaiy --. 32 Lgnag,,
k=1 k=1 k=1
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Using the def nition of a left cofactor, we obtain

cdety (oI+A*A) , (a¥)) cdet1 (aI+A*A) | (a%,)
det(aI+A*A) T det(aI+A*A)
AT = lim (50)
a—0 * *
cdet,, (aI+A*A)  (a%) cdet, (aI+A*A) (a*,)
det(al+A*A) e det(al+A*A)

By Theorem 16.1 we have det (oI + A*A) = a" + d1a™ ! + dea™ 2 + ... + d,, where

dp = >, ’(A*A) g‘ is a sum of principal minors of A*A of order k forallk = 1,n — 1
ﬁe‘]k,n

and d, = det A*A. Since rank A*A =rank A =randd, =d,—1=... =dr41 =0, it

follows that

det (el + A*A) =" + dia™ P+ doa™ 2+ ...+ d.a .
Using (44) we get

cdet; (ol + A*A), (a%) = cgij)a”_l + cgj)o/‘_2 + . ),
foralli = 1,n and j = 1,m, where c](jj) = > cdet; ((A*A).i (a*})) g for all
/Bejk,n{i}
k=1,n—1and ) = cdet; (A*A), (a*])
Now we prove that cl(jj ) — 0, whenk > r+1foralli = 1,n,and j = 1, m. By Lemma
17.1 rank (A*A) , <af‘].) < r, then the matrix (A*A) , (af}) has no more r right-linearly
independent columns.

Consider ((A*A).i (a*})) g, when 8 € J,,{i}. It is a principal submatrix of

(A*A) , (afj) of order £ > r + 1. Deleting both its ith row and column, we obtain a
principal submatrix of order £k — 1 of A*A. We denote it by M. The following cases are

possible.

I.If Kk = »r+ 1 and detM # 0. In this case all columns of M are right-
linearly independent. The addition of all of them on one coordinate to columns

of ((A*A). i (a”})) g keeps their right-linear independence. Hence, they are ba-
J

right linear combination of its basis columns. From this by Theorem 8.7, we get

cdet; ((A*A) (a* )) 0 =0, when § € Jp,fi} and k > 7+ 1.

J

sis in a matrix ((A*A).i (a* )) g, and by Theorem 9.4 the ith column is the

2.If k = r+ 1 and detM = 0, than p, (p < k), columns are basis in

M and in ((A*A).i (a*‘j)) g Then by Theorems 9.4 and 8.7 we obtain

cdet; ((A*A) L (a?)) g = 0 as well.

3. If kK > r + 1, then from Theorems 9.7 and 9.6 it follows that det M = 0 and p,

(p < k — 1), columns are basis in the both matrices M and ((A*A) y (a’})) g

Then by Theorems 9.4 and 8.7, we obtain that cdet; ((A*A) y (a*j)) g =0.
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Thus in all cases we have cdet; ((A*A) y (afj)) g =0,when g € Jyp,{i}andr +1 <
k < n. Fromhere if r + 1 < k < n, then
c,(fj) = Z cdet; ((A*A) y (a_*j)) g =0,
BE Ty, nii}
and
cﬁfj) = cdet; (A*A) , (a_*j) =0
foralli = 1,n and j = 1, m. Hence,

cdet; (ol + A*A) ; (a%;) = cgij)oz”_l + cgij)a"_2 + . W

forall i = 1,n and j = 1, m. By substituting these values in the matrix from (50), we
obtain

C§11>an71+”.+c7(}1)an77‘ Cglm)anfl_’_”._’_cglm)oénfr
a+dia" 4. . +d.an T t an+dian 1+, . +d.an "
AT = hn%) . . =
a— anmanfl_i_”._’_cg‘nl)anfr anm>an71+'..+cgnm)an7r
an+dian1+.. . +d.anr an+dian 4. . +d.an T
g‘ll) Cglm)
I - .
'C,&j;n 'Cir;m)
4 R
(i7) _ * * B _ * B
Here ¢ = > cdet; ((A*A) ;(a%)) zandd, = > |(A*A) ;). Thus,
ﬁGJr,n{i} BEJr, n

we have obtained the determinantal representation of A" by (48).
By analogy can be proved the determinantal representation of A™ by (49). B

-J

Remark 17.1. In (48) the index in cdet; ((A*A) ¥ (a*)) g designatesth column of
((A*A).i (a“})) but in the submatrix((A*A) Wy <a*.)) g the entries ofa”; may be

J
placed in a column with the another index. In (49) we have equivalently.

Remark 17.2. If rank A = n, then by Corollary 16.1A" = (A"‘A)’1 A*. Considering
(A*A)~! as aleft inverse, we get the following representatioAdf:

cdet1 (A*A) q(a*) ... cdeti(A*A) 1 (a%,)
(51)
cdety,(A*A) , (a*) ... cdet,(A*A) ,(a%,).

1
ddetA

If m > n, then by Theorem 17.1 fox ™ we have (49) as well.

Remark 17.3. If rank A = m, then by Corollary 16.1A" = A* (AA*)‘l. Considering
(AA*)‘1 as aright inverse, we get the following representatioAdf:

1 rdet;(AA*); (aj ) ... rdet,,(AA*), (a])
Jr

~ ddetA (32)

rdet1 (AA*); (%) ... rdet,(AA*), (af)
If m < n, then by Theorem 17.1 féx ™ we also have (48).
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Corollary 17.1. If A € H*", wherer < min {m,n} orr = m < n, then for a projection
matrix ATA =: P = (p;;),,..,, Wwe have its following determinantal representation

> cdet; (A*A) ;(d;)
- Bedr a{i}
1)

5, e

whered ; is thej-th column ofA*A € H™*™ and for all7, j = 1, n.
Proof. Representing A" by (48) and right-multiplying it by A, we obtain for an entry
pij OfA+A =P = (pij)

nxn’

ST cdet; ((A*A)_i (a?kj>) g

pij = pz:l Cip - Upj = zk: BETy, n{i} S ’(A*A) g‘ - ag;
BEIr, n
> ara) ] > |ara)g| ’

BGJT, n ﬁeJ’l‘,n

where d ; is the j-th column of A*A € H"*" and foralli,j =1,n. B
By analogy can be proved the following corollary.

Corollary 17.2. If A € H"*", wherer < min {m,n} or r = n < m, then for the projec-
tion matrix AAT =: Q = (g;5) we have its following determinantal representation

mxXm

2. [((AA%)i (g;.))al

o€l m{i}

Gij = = ,
’ > [(AAT) g

Oée[r', m

whereg;. is thej-th row of (AA*) € H™*™ and for alli, j = 1, m.

Remark 17.4. By definition of a classical adjoint matrix @& € C™"*" can be putAdj [A]-
A = A -Adj[A] = detA -1I. LetA € H™". If rank A = n, the by Corollary

16.1 we haveAt A = I,,. RepresentindA™ by (51) asA™ = m, whee L =

<cdeti ((A*A).i (af}) ))nxm we obtainLA = det (A*A) - I,,. This means that the

matrix L =: Adj 1, [A] is the left classical adjoint matrix ok € H™*", i.e.

Adj L [A] = (cdet; (A*A) ; (%)), . .

If rank A = m, then by definition of a right classical adjoint matrix Af € H™*" by
Corollary 16.1 and by (52) we can put
Adj r[A] := ((rdet; (AAT);.(a7)) )y -

7.
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Since in this cas@ - Adj r[A] = det(AA*) - L
If rank A = r < min{m,n}, then an analog of a left classical adjoint matrix of
A € H™*" by (48) can accept

Adj 1 [A] :( > cdeti((A*A),ia%j)g) .

a€dr n{i}

Indeed, since eigenvalues of a projection matrix are only 1 and 0, then there exists such an
unitary matrixU € H"*"™ that

AdjL[A]-A= > [(ATA)G]-P=
Oéelr,n
= Y |[(A*A)?|- Udiag(l,...,1,0,...,0)U*.

Otelr, n

If rank A = r < min {m,n}, then by an analogue of a right classical adjoint matrix
of A € H™*™ by (49) we can put

Adjr[A] :( > rdet; (AAY); (ai‘.))§> :

a€ly, m{j}
Indeed, then there exists such unitary maWixc H™*™ that

A-Adjg[A] = ; I(AA") G- Q=
acdr m
— Y |(AA*) 9| Vdiag(L,...,1,0,...,0)V*.

CVGJT, m

Remark 17.5. If A € C"™*" is a matrix with complex entries, then we obtain the following
analogs of (48) and (49), respectively,

o = ﬁ&];n{i} ((A*A) i (a*])) g‘ L aeg;ﬂ{j} ‘((AA*)j- (a:)) o
! > )(A*A) g‘ Y e; [(AA™) 2|
BEIr n a€lr m

forall i = 1,7 andj = 1, m. These determinantal representations are original in this case
aswell. Itis reflected in [20].

18. Cramer’s Rule for a Least Squares Solution of Quaternion
System Linear Equations

Def nition 18.1. Suppose
A x=y, (53)

is a right system linear equations over the quaternion skew fieldthere A € H™*" is
the coefficient matrixy € H™*! is a column of constants, andc H"*! is a column of
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unknown. The least squares solution of (53) (with the least norm) is callegettiorx°
satisfying

1" = iy {15 11 A%~y = i [ A x -y 1},

whereH" is ann-dimension right quaternion vector space.

We recall that in the right quaternion vector space H" by def nition of the inner product
of vectors we put (X,y) := y*'X =71 - 1 - +... + Un - T, and [|x]| := /(x,x) is the
norm of a vector x € H". By analogy to a complex case (see, e.g. [13]) we can prove the
following theorem.

Theorem 18.1. The vectorx = A1y is the least square solution of (53).

Def nition 18.2. Suppose
x-A=y, (54)

is a left system linear equations over the quaternion skewlfieldhereA € H™*" is the
coefficient matrixy € H'*" is a row of constants, ang € H'*™ is a row of unknown.
The least squares solution of (54) (with the least norm) is called the vetsatisfying

0 . ~ ~ .
<] ;g}gﬁ{\XH % A~ y| = min |x yll},
where™H is anm-dimension left quaternion vector space.

We recall that in the left quaternion vector space ™ H by def nition of the inner product
of vectors we can put (X,y) = Xy* = &1 -1 + ... + Tm - Um. Then [|x]| := \/(x,X) is
the norm of x € ™HL.

Theorem 18.2. The vectorx = y - AT is the least square solution of (54).

Theorem 18.3. (i) If rank A = n, then for the least square solutior’? =
(@9,...,29)7 of (53) we get forallj = T,n
cdet; (A*A) . (f
I ddetA
wheef = A*y.

(i) If rank A = k < m < n, then for allj = 1, » wehave

S cdet; ((A*A) . (£)) 5
0 _ BEJIr, n{s} ! < ’ ) ’

2 (56)

> |ara) g
BEIr, n

Proof. i) If rank A = n, then A™ can be represented by (51). Denote f := A*y.
Representing ATy by coordinates we obtain (55).
ii) If rank A = k < m < n, then by Theorem 17.1 we represent the matrix A™ by (48).
Representing ATy by coordinates we obtain (56).
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Remark 18.1. In a complex case the following analogs of (55) and (56) are obtained re-
spectively in [20] for allj = 1, n,

) det(ATA) (), ﬁeg{j}‘((A*A)-a‘ (£) g“

TS T det (AA)
det (A A) Z (A*A) g‘
ﬂeJr,n
Theorem 18.4. (i) If rank A = m, then forx® = (29,...,29)) of (54) we obtain for
ali=1m
o _ rdet; (AAY), (2)
YT T ddetA (57)
wheez = yA*.
(i) If rank A = k£ < n < m, then for alli = 1, m wehave
> rdet; ((AA¥); (2)) &
0 a€lrm{i}
x; = (58)
> [(AA%) 3
OéEIr,m

The proof of this theorem is analogous to that of Theorem 18.3.

Remark 18.2. In a complex case the following analogs of (57) and (58) respectively are
obtained in [20] for alli = 1, m,

AA*), (z)) ¢
o det (AA*) ; (z) a€lonii} |(( )i.(2) al

YT T et AN T S |(AA¥) ¢

OéEI'r, m

19. Example 2

Let us consider the left system of linear equations.

Tt + 2291 — X3 = 1,
—r1k + x2j + 237 = J,

1] + 22 + 23k =k, (59)
T1 + 2ok + x31 = 1.
i1 —k 7 1
The coeff cient matrix of the system is the matrix A = | 2¢ 5 1 k|. The row of
-1 j k i
unknown is x = (21 22 3 ) and the row of constantsisy = (¢ j k 1 ). Then

for (59) we have x - A = y. We obtain

—i -2 -1
ko —=j —J
* _
AT = - 1 -k’
1 —k —i
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4 2—i+j—k —4i
AA* = [2+4+i—j+k 7 1-2i—j—k
4i 1+2i+j+k 4

Since ddetA = det AA* = rdet{AA* =0 and
33 4 2—i—|—j—]€ .
det (AA™*) _rdetl(Q—i—i—j—i—k: v =
=4-7—-2—-i+j—k)-2+i—7+k)=21+#0,

then by Theorem 9.7 rank A = 2. We shall represent AT by (49).

4 2 iti—k
AA*) 2| = det o
DRCSEETE <2+@_]+k i )+
7 1—2%—j—k 44\
+d“<y+%+j+k 4 )+d“<m 4.>_42

Now we shall calculate r;j; = Y rdet; ((AA*); (af)) ¢ foralli =1,4and j =1, 3.
aEIz}:g{j}
To obtain r11, we consider the matrix

— —2i ~1
(AA*), (ai) = [24+i—j+k 7 1-2i—j—k
4i 1+2i+j+k 4

Then we have
—i —2i —i —1
Tll—rdet1(2+i_j+k 7>+rdet1 4 4>_
=—0-7—(=20)-24i—j+k)—i-4—(—1-4i) = —-2—3i — 2j — 2k,
and so forth. Continuing in the same way, we get

—2-3i—2j—2k 2-12i+2j+2k —3+2i+2j—2k

ol 1404246k —2+2—6j—4k 1—i—6j+2k
T 42| —2—i—6j—k 6-—2+4j+2k —1+2i+j—6k
6+i+j+2k —4+2i—2j—6k 1—6i—2j+k

A+

We f'nd the least square solution by means of the matrix method by Theorem 18.2,

L

ony.A+:42

(8 +11i+ 35 — 3k, 12—4i—8j, 11 —8i+ 35+ 3k).

Now we shall fnd the least square solution of (59) by means of Cramer’s rule by (58).
Wehavez =y - A* = (2+2i, 3, 2—2z') . Since

2+ 3 2—2
(AAY) . (2) = [2+i—j+k 7 1-2—j—k|,
4i 1+2i+5+k 4
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then
1 2+ 2i 3 242 2—2
0 _
YR VV UK (rde“<2+z‘—j+k 7)“det1< 4 4 ))
0461273
8+ 11i+3j — 3k
B 42 ‘
Since
4 2—i+j—k —4i
(AA )3 (z) = | 2+ 2i 3 22|,
4i  14+2i+j+k 4
then
1 4 2—i+ji—k
0_
T AAY g <rdet2 <2+2z‘ 3 )
Oé61273
3 2— 2 12 — 4i — 8
Since
4 2—i+j—k —4i
(AA%)3.(2) = [2+i—j+k 7 1—2i—j—k|,
2+ 2i 3 2—2i
then
1 4 —4i 7T 1-2i—j—k
0 __ J
SRV VOF (rde”(ﬂ% 2—2z‘>+rdet1 (3 2 9 ))

OLGIQT 3

11 -8+ 35+ 3k
= o :
As you would expect, the solutions of (59) by matrix method and Cramer’s rule coincided.
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