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PREFACE

”Advances in Mathematics Research” presents original studies on the leading edge of
mathematics. Each article has been carefully selected in an attempt to present substantial re-
search results across a broad spectrum. Topics discussed herein include recent advances in
the periodicity in dynamical systems; nonlinear differential equations and Fucik Spectrum;
matrix theory; column and row determinants in quaternion linear algebra; elliptic perturba-
tions of parabolic and hyperbolic problems and a discrete time (s,S) inventory system with
service facility. (Imprint: Nova)

Periodic solutions and related notions of recurrence, invariance, limit sets and associ-
ated decompositions have been and remain among the most important topics in the theory
and applications of differential equations and dynamical systems. Chapter 1 comprises a
survey of some fundamental and recent advances along with several important open prob-
lems in these areas.

The topics discussed are the following: First, uniqueness of limit cycles for planar dy-
namical systems (differential equations) of Linard type, which is subsumed by Hilbert’s
16th problem on the number of limit cycles for planar systems (a fundamental problem of
long standing that is still largely unresolved). The discussion revolves around a very general
recent result of Zhou, Wang and Blackmore that subsumes virtually all extant theorems on
uniqueness for Linard systems. Next, the focus is on the use of variational, geometric and
topological methods for estimating the number of periodic solutions of Hamiltonian sys-
tems. Several recent results of Blackmore and Wang are described within the context of the
considerable body of known results, and some related problems and research-in-progress
are identif ed. Then, some advances in f xed point counts and persistence of invariant tori in
Hamiltonian systems are surveyed via recent generalizations of Poincar-Birkhoff f xed point
and KAM theorems, and several rather new and interesting applications of these results to
problems in vortex dynamics are described. Finally, a brief characterization of ?-limit sets
and its connections with recurrence is presented, where the approach emphasizes Conley
theory and Morse decompositions. A new result is described and its relations to existing
theorems, possible future research and open problems are treated in some detail.

Chapter 2 presents the development and evaluation of an approach to predict radon
gas concentrations for unmeasured zip codes, using the Geographic Information System
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(GIS) based interpolation techniques: kriging and cokriging. The radon gas concentration
data collected by the county health departments, commercial testing services, university re-
searchers, and the public between 1989 and 2008, for the state of Ohio, have been used to
predict radon gas concentrations during the study. Note that monitoring radon gas concen-
tration in houses across an entire state is very time consuming and involves huge investment.

Statistical performance measures, such as mean bias (MB), normalized mean square
error (NMSE), coeff cient of correlation (Corr.), factor of two (Fa2), fractional standard
deviation (FS), and fractional bias (FB) have been used to assess the performance of in-
terpolation schemes. Conf dence limits for the measures of association (NMSE, Corr., and
FB) have been obtained using the ”Bootstrap” method. The radon concentrations are over
predicted (negative bias) by both of the interpolation techniques. On comparing the per-
formance measures and the associated conf dence limits on performance measures, it was
observed that the cokriging interpolation technique had a slight edge over the kriging inter-
polation technique.

The zip code based results for radon gas concentrations exceeding 4 pCi/l have been
tabulated using the cokriging interpolation technique for radon planners in Ohio. These
results indicate that more work is needed to reduce radon gas concentrations in Ohio. The
developed approach could be applied to any affected area of the globe.

Chapter 3 reports the results of a numerical experiment on the traveling salesman prob-
lem. The results indicate that, a large majority of instances of the problem is solvable within
a practical time limit.

The goal of Chapter 4 is to put together some recent results concerning applications of
monotone second order differential equations to singularly perturbed problems of elliptic -
parabolic and elliptic - hyperbolic type. More exactly, the solution v of the heat equation
or of the telegraph system is compared with the solution vε of an elliptic regularization.
This elliptic regularization is a perturbed problem written with the aid of a small parameter
ε > 0 . It is a particular case of some second order differential equations governed by a
maximal monotone operator in the Hilbert space L2 (Ω) . Under some specif c hypotheses,
we construct a zero order asymptotic approximation for vε making use of the boundary
layer function method of Vishik and Lyusternik. The higher order regularity of the solutions
to both perturbed and unperturbed problems is investigated. The order of accuracy of the
difference vε−v is also established in some appropriate function spaces. Thus, the solution
v of the heat equation (or telegraph system) is approximated by the solution vε of its elliptic
regularization, which is a more regular function. This is a motivation for the study of the
above mentioned second order evolution equations associated with monotone operators.
This study can involve different unperturbed problems: semilinear heat equation, linear
heat equation with nonlinear boundary conditions, semilinear telegraph system, nonlinear
telegraph system with nonlinear boundary conditions, etc.

As discussed in Chapter 5, the diversity of problems involved in investigation of the
interaction of hydrogen and its isotopes with solids is extensively covered in specialized
literature [1]-[6]. In the context of hydrogen energy problems the interest in hydrides arises
mainly from the following. First of all, hydrides allow to retain large quantities of hydrogen
due to the high eff ciency of chemical bonds. Secondly, it is a relatively safe way of storage
and transportation as compared with high-pressure gas cylinders and cryogenic systems.
For instance, car hydrogen battery is a tank f lled with powder-like hydride. The hydride
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Preface xi

decomposes under heating and gaseous energy carrier is released. The problem is that no
material that would accumulate large quantities of hydrogen and satisfy competitive oper-
ational requirements has yet been found. However, if environmental requirements become
crucial under certain conditions, the prospects of hydrogen engines are obvious.

The problem of f lling also calls for an effective solution: hydriding under high pres-
sure causes intensive heat release, which triggers a reverse reaction of decomposition. Mo-
delling of hydrides formation is an independent problem. Let us dwell upon mathematical
models of dehydriding in the context of the experimental method of thermodesorption spec-
troscopy (TDS). Computational experiments allow to “scan” a wide range of parameters and
operating conditions of a material, and identify the limiting factors. The problems of the
control of dehydriding kinetics parameters and the heating law are quite topical. We are
interested in the problem for a tank with a huge number of powder particles of different
sizes rather than in the “basic” problem for an individual hydride particle.

In Chapter 6, a discrete time inventory system with demands occurring according to
a Bernoulli process and geometrically distributed lead time is considered, wherein a de-
manded item is delivered to the customers only after performing some random service. The
service facility is assumed to have an inf nite waiting hall. An (s, S) type ordering policy
is adopted. The joint probability distribution of the number of customers in the system and
the inventory level is obtained in steady state case. Some system performance measures are
derived and the results are illustrated numerically.

The adaptive linearization of dynamic nonlinear systems remains, in general, as an
open problem due the complexities associated to the method required to derive the linear
or quasilinear model. The problem is even more diff cult if the system is uncertain, that
is, when the formal description of the plant is almost unknown considering that number
of states is available. Chapter 7 discuses an adaptive linearization method for perturbed
nonlinear uncertain systems based on the application of special artif cial neural networks.
The proposal is based on no-parametric identif er and its convergence is analyzed using the
second method of Lyapunov. The suggested structure preserves some inherited structural
properties like controllability. The scheme was tested using three different set of activation
functions: sigmoid, wavelets and Chevyshev polynomials. The proposed method shows a
good transient performance and the identif cation goals are fulf lled. A distillation column
was used to show how the identif er works.

In four sections, Chapter 8 is organized as follows. In section 1 we investigate the basic
problem with jumping nonlinearity

u′′(x) + λ+u+(x) − λ−u−(x) = 0 , x ∈ (0, π) ,

u(0) = u(π) = 0.

We def ne Fucik spectrum Σ and describe the solutions corresponding to the point
(λ+, λ−) ∈ Σ. We introduce regions of type (I), (II), respectively def ned by the curves
of Fucik spectrum.

In section 2 we introduce some necessary notions and basic assertions. We formulate
linking theorem which we use to prove the existence of the solution to our problem.

In section 3 we apply variational approach to obtain the existence results to the follow-
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ing nonlinear problem

u′′(x) + αu+(x) − βu−(x) + g(x, u(x)) = f(x) , x ∈ (0, π) ,

u(0) = u(π) = 0

where the point (α, β) falls in regions of type (I), (II), respectively. For (α, β) in region of
type (II) we def ne the right hand side f such that the equation is not solvable and f nd a set
of f for which we get solutions.

The last section 4 deals with the damping differential equation

u′′(x) + cu′(x) + αu+(x) − βu−(x) + g(x, u(x)) = f(x) , x ∈ (0, π) ,

u(0) = u(π) = 0

where c 6= 0 .
The Quantum Information Theory is a reach source of fascinating problems in Linear

and Multilinear Algebra. In Chapter 9 we shall discuss one of such problems, namely the
Distillation Problem.

Let ρW
k , k = 1, 2, . . . , m, be the critical Werner state in a bipartite dk × dk quantum

system, i.e., the one that separates the 1-distillable Werner states from those that are 1-
indistillable. We propose a new conjecture (GDC) asserting that the tensor product of ρW

k

is 1-indistillable. This is much stronger than the familiar conjecture saying that a single
critical Werner state is indistillable. We prove that GDC is true for arbitrary m provided
that dk > 2 for at most one index k. We reformulate GDC as an intriguing inequality for
four arbitrary complex hypermatrices of type d1 × · · ·× dm. This hypermatrix inequality is
just the special case n = 2 of a more general conjecture (CBS conjecture) for 2n arbitrary
complex hypermatrices of the same type. Surprisingly, the case n = 1 turns out to be quite
interesting as it provides hypermatrix generalization of the classical Lagrange identity. We
also formulate the integral version of the CBS conjecture and derive the integral version of
the hypermatrix Lagrange identity.

In applications, it turns out that the matrices one encounters typically have certain prop-
erties. For example, such matrices are almost always invertible. This phenomenon may be
explained by the fact that the set of singular matrices, being of lower dimension, forms a
set of measure zero. This is the coarsest way to obtain statement about properties of typical
matrices.

In some case it is possible to ref ne such statements. In particular, if the matrices are
def ned over a compact f eld or ring then the ring Matn of all matrices carries a unique
normalized Haar measure, or in other words, a natural probability measure. Hence, it is
possible to def ne and study random matrices. Important matrix subrings like SLn, GLn,
On, Unm and Spn,m carry similar probability measures.

For matrices over Z, no such Haar measure exists. However, it is possible to compute
the probabilities in every localisation. It is tempting to def ne global probabilities as the
product over all local probabilities. Unfortunately, this method will in general not yield a
probability measure.

In Chapter 10, we will study in which situations the local reductions induce a probability
measure for integral matrices, thereby answering the question what properties of integral
matrices are susceptible to studies by means of probability theory.
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New def nitions of determinant functionals (the column and row determinants) over the
quaternion division algebra are given in Chapter 11. We study their properties and relations
with other well-known noncommutative determinants (Study, Moore, Diedonne, Chen) and
the quasideterminants of Gelfand-Retakh. We introduce a def nition of a determinant of
a Hermitian matrix and a double determinant and their properties are investigated. We
build the theory of invertibility of a square matrix over the quaternion division algebra
relying on the introduced determinants by analogy with the classical theory in the complex
case. Within the framework of the theory of the column and row determinants we obtain a
determinantal representation of the inverse matrix over the quaternion algebra by analogs of
the classical adjoint matrix and Cramer’s rule for right and left systems of linear equations.
We consider some left, right and two-sided matrix equations over the quaternion algebra
and solve them by the Cramer rule as well. We investigate the problem of eigenvalues of
a quaternion matrix and it’s singular value decomposition. Determinantal representation of
the Moore-Penrose inverse is extended to a matrix over the quaternion skew f eld within
the framework of a theory of the column and row determinants. Using the obtained analogs
of the adjoint matrix, we get Cramer’s rules for the least squares solutions of left and right
systems of quaternionic linear equations. As a consequence we obtain the recent results for
the Moore-Penrose inverse and the least squares solution in the complex case.

Brood sorting, observed in leptothorax unifasciatus ant colonies, is a major example of
social insects ability to solve problems at the collective level. Two processes characterize
this phenomenon: a process of aggregation of all brood items in a single cluster, coupled
with a process of segregation of items in concentric annuli, each containing items of dif-
ferent type, and ordered such a way that the smallest items are at the center and the largest
at the periphery. This phenomenon has been a part of what triggered a lot of studies about
swarm intelligence. Nevertheless, there is still a lot to understand about that phenomenon.
We propose a detailed mathematic analysis of this entire process and that leads to under-
stand how and why swarm intelligence may occur. Chapter 12 includes “tutorial” about the
mathematic tools we used in order to show how possible and useful the theoretical analysis
of some swarm models may be.
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Abstract

New definition of determinant functionals (the column and row determinants)
over the quaternion division algebra are given in this chapter. We study their proper-
ties and relations with other well-known noncommutative determinants (Study, Moore,
Diedonne, Chen) and the quasideterminants of Gelfand-Retakh. We introduce a defi
nition of a determinant of a Hermitian matrix and a double determinant and their prop-
erties are investigated. We build the theory of invertibility of a square matrix over the
quaternion division algebra relying on the introduced determinants by analogy with the
classical theory in the complex case. Within the framework of the theory of the column
and row determinants we obtain a determinantal representation of the inverse matrix
over the quaternion algebra by analogs of the classical adjoint matrix and Cramer’s
rule for right and left systems of linear equations. We consider some left, right and
two-sided matrix equations over the quaternion algebra and solve them by the Cramer
rule as well. We investigate the problem of eigenvalues of a quaternion matrix and it’s
singular value decomposition. Determinantal representation of the Moore-Penrose in-
verse is extended to a matrix over the quaternion skew fiel within the framework of a
theory of the column and row determinants. Using the obtained analogs of the adjoint
matrix, we get Cramer’s rules for the least squares solutions of left and right systems
of quaternionic linear equations. As a consequence we obtain the recent results for the
Moore-Penrose inverse and the least squares solution in the complex case.

Keywords: quaternion skew field noncommutative determinant, inverse matrix, quater-
nionic system of linear equation, Cramer’s rule.
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1. Introduction

Linear algebra has accumulated a rich collection of different methods. At the transition
from linear algebra over a f eld to linear algebra over a noncommutative ring, we want to
save as many tools as we regularly use in linear algebra over a f eld. At the beginning of
XX century, soon after the creation of Hamilton quaternion algebra, mathematics sought
answer how looks algebra with noncommutative multiplication. In particular, since that
time there is a problem of a determinant of matrices with noncommutative entries (which
are also def ned as noncommutative determinants). There are several versions of the def ni-
tion noncommutative determinants. But any of the previous noncommutative determinants
has not fully retained those properties which it owned for matrices over a f eld. In partic-
ulary, determinants of matrices over a f eld are multiplicative. But in [10] it is proved that
there no exists an extension of the def nition of determinants of real matrices to quaternion
matrices, such that the multiplication theorem holds. Therefore, f nding a solution to the
problem of noncommutative determinants is yet continued. The theory of noncommutative
determinants can be divided into three approaches.

Let M (n,R) be the ring of n × n matrices with entries in a ring R. The f rst approach
[1, 6, 9] to def ning the determinant of a matrix in M (n,R) is as follows.

Def nition 1.1. Let a functionald : M (n,R) → R satisfy the following axioms.

Axiom 1 d (A) = 0 if and only if the matrixA is singular.

Axiom 2 d (A · B) = d (A) · d (B) for ∀B ∈ M (n,R).

Axiom 3 If the matrixA′ is obtained fromA by adding a left-multiple of a row to
another row or a right-multiple of a column to another column, thend (A)′ = d (A).

Then a value of the functionald is called the determinant of the matrixA ∈ M (n,R).

If a determinant functional satisf es Axioms 1, 2, 3, then it takes on a value in a com-
mutative subset of the ring. It is proved in [1]. Examples of such determinant are the
determinants of Study and Diedonné.

The most famous and widely used noncommutative determinant is the Diedonné deter-
minant. It was def ned for matrices over a division ring R by Diedonné in 1943 [7]. His
idea was to consider determinants with values in R∗ \ [R∗,R∗] where R∗ is the monoid
of invertible elements in R. The properties of Diedonné determinants are close to those
of commutative ones, but, evidently, Diedonné determinants cannot be used for solving
systems of linear equations. A determinantal representation of an inverse matrix by such
determinants is impossible as well. These are just some reasons which forces to def ne de-
terminant functionals unsatisfying all above-stated axioms. However Axiom 1 is considered
[9] indispensable for the utility of the notion of a determinant.

In another way of looking a noncommutative determinant is def ned as a rational func-
tion from entries. Herein I. M. Gelfand and V. S. Retah have reached the greatest success by
the theory of quasideterminants [14, 15, 16]. An arbitrary n× n matrix over a skew f eld is
associated with an n×n matrix whose entries are quasideterminants. The quasideterminant
is not an analog of the commutative determinant but rather of a ratio of the determinant of
an n × n-matrix to the determinant of an (n − 1) × (n − 1)-submatrix.
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The Theory of the Column and Row Determinants... 303

Def nition 1.2. Let I, J betwo finite sets of the same cardinalityn. LetA = (aij), i ∈ I,
j ∈ J be a matrix over ringR. For i ∈ I, j ∈ J the(i, j)th quasideterminant| A |i,j of
A ∈ M(n,R) is defined by the formula

| A |ij= b−1
ji (1)

whereB = A−1 = (bij).

There is an equivalent def nition which is obtained by the following recurrence relations.

Def nition 1.3. If n = 1 so thatI = i, J = j, then| A |ij= aij .

Letn ≥ 2 and letAij be the(n− 1)× (n− 1)-matrix obtained fromA by deleting theith
row and thejth column. Then

| A |ij= aij −
∑

xip(| A
ij |qp)

−1xqj

Here the sum is taken overp ∈ I \ i, q ∈ J \ j.

Since quasideterminants can not be expanded by cofactors along an arbitrary row or
column, an inverse matrix is not represented by the adjoint classical matrix. Despite this,
quasideterminants are now widely used and naturally that means one can solve systems of
linear equations using quasideterminants.

For left system of linear equations

A · x = ξ,

where A ∈ M (n,R) is a matrix coeff cients, ξ = (ξ1, . . . , ξn)T is the known column, we
have

xi =
n∑

j=1

|A|−1
ji ξj ,

and the analog of Cramer’s rule

|A|ij xj = |Aj (ξ)|
ij

,

where Al (ξ) is obtained from A by replacing the lth column by ξ.
At last, at the third approach a noncommutative determinant is def ned as the alternating

sum of n! products of entries of a matrix but by specifying a certain ordering of coeff cients
in each term. E. H. Moore was the f rst who achieved the fulf llment of the main Axiom
1 by such def nition of a noncommutative determinant. This is done not for all square
matrices over a ring but rather only Hermitian matrices. Moore’s theory of noncommutative
determinants was introduced in [23]. Later, Dyson gave some natural generalizations and
described the theory in more modern terms [9].

Moore’s determinant of a Hermitian matrix A = (aij)n×n ( i.e. aij = aji) over a ring
R with an involution is introduced by induction on n in the following way ([9]).
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Def nition 1.4. Denoteby A(i → j) the matrix obtained from HermitianA ∈ M (n,R)
by replacing itsjth column with theith column, and then by deleting both theith row and
column. Moore’s determinant is defined by the formula

MdetA =





a11, n = 1
n∑

j=1
εijaijMdet (A(i → j)) , n > 1 (2)

whereεkj =

{
1, i = j
−1, i 6= j

.

Another def nition of this determinant is represented in [1] in terms of permutations:

MdetA =
∑

σ∈Sn

|σ|an11n12
· . . . · an1l1

n11
·an21n22

· . . . · anrl1
nr1

.

The disjoint cycle representation of the permutation σ ∈ Sn is written in the normal form,

σ = (n11 . . . n1l1) (n21 . . . n2l2) . . . (nr1 . . . nrlr) ,

where, for each i = 1, ..., r, we have ni1 < nim for all m > 1, and

n11 > n21 > ... > nr1.

However there was no extension of the def nition of the Moore determinant to arbitrary
square matrices. F. J. Dyson has emphasized this point in [9]. Longxuan Chen has offered
the following decision of this problem in [4, 5]. He has def ned the determinant of an
arbitrary square matrix A = (aij) ∈ M (n,H) over the quaternion skew f eld H as follows.

detA =
∑

σ∈Sn

ε (σ) an1i2 · ai2i3 . . . · aisn1
· . . . · anrk2

· . . . · aklnr
,

σ = (n1i2 . . . is) . . . (nrk2 . . . kl) ,
n1 > i2, i3, . . . , is; . . . ; nr > k2, k3, . . . , kl,

n = n1 > n2 > . . . > nr ≥ 1.

L. Chen has obtained a determinantal representation of an inverse matrix over the quaternion
skew f eld even though the determinant does not satisfy Axiom 1. However this determinant
also can not be expanded by cofactors along an arbitrary row or column with the exception
of the nth row. Therefore he has not obtained the classical adjoint matrix or its analog as
well.

He def ned ‖A‖ := det(A∗A) as the double determinant and obtained the following
determinantal representation of an inverse matrix.

Theorem 1.1. If ‖A‖ := det(A∗A) 6= 0 for A = (α1, . . . , αm) over H, then exists its
inverseA−1 = (bjk), where

bjk =
1

‖A‖
ωkj , (j, k = 1, 2, . . . , n) ,

where

ωkj = det (α1 . . . αj−1αnαj+1 . . . αn−1δk)
∗ (α1 . . . αj−1αnαj+1 . . . αn−1αj) .

Hereαi is theith column ofA, δk is then-dimension column with 1 in thekth row and 0
in others.
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If ‖A‖ 6= 0, then a solution of a right system of linear equations
∑n

j=1 αjxj = β over
H is represented by the next formula, def ned as Cramer’s formula,

xj = ‖A‖−1
Dj ,

for all j = 1, n, where

Dj = det




α∗

1
...
α∗

j−1

α∗

n

α∗

j+1
...
α∗

n−1

β∗




(
α1 . . . αj−1 αn αj+1 . . . αn−1 αj

)
.

Here αi is the ith column of A, α∗

i is the ith row of A∗, and β∗ is the n-dimension row
vector conjugated with β.

In this chapter we consider the theory of the row and column determinants over the
quaternion algebra. The chapter is organized as follows. In Section 2 we consider the main
provisions of the quaternion algebra.

In Section 3 def nitions of the row and column determinants are given and their prop-
erties of an arbitrary quadratic matrix over the quaternion algebra (including the lemmas
enable expend their by cofactors) are described.

In Section 4 we introduce the determinant of a Hermitian matrix, which coincide with
the Moore determinant.

In Section 5 we establish the properties of the row and column determinants of a Her-
mitian matrix and its diagonalization by unimodular matrices in Section 6.

In Section 7 we gives the determinantal representation of an inverse of a Hermitian
matrix.

In Section 8 we obtain the properties of the left and right corresponding Hermitian
matrices.

In Section 9 we set the criterion of the corresponding Hermitian matrices and introduce
the rank of a Hermitian matrix by principal minors.

In Section 10 we def ne the double determinant in within the framework of the theory of
the row and column determinants over the quaternion algebra and its properties are given.

In Section 11 we obtain the determinantal representations of an inverse matrix by the
analogs of the classical adjoint matrix.

In Section 12 we establish relations between noncommutative determinants (including
the quasideterminants) and the row and column determinants.

We get Cramer’s rule for left and right system of linear equations in Section 13 and
some matrix equations over the quaternion algebra in Section 14. In Section 15 we gives an
example of solving of some matrix equation by Cramer’s rule.

In Section 15 we investigate the problem of eigenvalues of a quaternion matrix and
it’s singular value decomposition, and introduce the Moore-Penrose inverse of a quaternion
matrix.
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These results obtained in Section 15 lead us to the determinantal representation of the
Moore-Penrose inverse (Section 16) and to Cramer’s rule for a least squares solution of
quaternion system linear equations (Section 17). In Section 18 we gives an example of
f nding a least squares solution of some quaternion system linear equations by Cramer’s
rule.

Facts set forth in Sections 2-13 are published in [17], in Sections 14-15 are published
in [18] and in Sections 16-18 are published in [19, 20].

2. Quaternion Algebra

The row and column determinants are def ned for quadratic matrices over a quaternion
algebra H. A quaternion algebra H(a, b) over a f eld F is a central simple algebra over F

that is a four-dimensional vector space over the F. A quaternion algebra H(a, b) over a f eld
F with basis {1, i, j, k} and the following multiplication rules:

i2 = a,
j2 = b,
ij = k,

ji = −k.

A quaternion algebra H(a, b) over a f eld F is denoted (α,β
F

) as well. To every quaternion
algebra H(a, b), one can associate a quadratic form n (called the norm form) on H such
that n(xy) = n(x)n(y) for all x and y in H. A linear mapping x → x = t(x) − x is
also def ned on H. It is an involution, i.e. x = x, x + y = x + y and x · y = y · x An
element x is called the conjugate of x ∈ H. t(x) and n(x) are called the trace and the norm
of x respectively, at that {n(x), t(x)} ⊂ F for all x in H. They also satisfy the following
conditions: n (x) = n(x), t (x) = t(x) and t (q · p) = t (p · q). The last property is the
rearrangement property of the trace.

Depending on the choice of F, a and b we have only two possibilities [22]:
1.(a,b

F
) is a division algebra,

2. (a,b
F

) is isomorphic to the algebra of all 2 × 2 matrices with entries from F.
(If an F-algebra is isomorphic to a full matrix algebra over F we say that the algebra is

split, so (2) is the split case.)
Consider some non-isomorphic quaternion algebra with division.
1. If F is the f eld of the real numbers R, then (a,b

R
) is isomorphic to the Hamilton

quaternion skew f eld H whenever α < 0 and β < 0. Otherwise (a,b
R

) is split.
2. If F is the f eld of the real numbers Q, then there exist inf nitely many non-isomorphic

division quaternion algebras (a,b
Q

).
3. Let Qp is padic f eld, where p is a prime. For each prime p there is a unique quater-

nion division algebra over Qp.
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3. Def nitions and Basic Properties
of the Column and Row Determinants

To introduce the row and column determinants, we need the following def nitions in the
theory of permutations.

Def nition 3.1. SupposeSn is the symmetric group on the setIn = {1, . . . , n}. If two-line
notation of a permutationσ ∈ Sn corresponds to its some cycle notation, then we say that
the permutationσ ∈ Sn forms the direct product of disjoint cycles, i.e.

σ =

(
n11 n12 . . . n1l1 . . . nr1 nr2 . . . nrlr

n12 n13 . . . n11 . . . nr2 nr3 . . . nr1

)
. (3)

Def nition 3.2. If cycle notation ofσ ∈ Sn is written as the upper row of its corresponding
two-line notation, then it is called the left-ordered cycle notation of the permutationσ ∈ Sn.
This means that if two-line notation ofσ ∈ Sn by the direct product of disjoint cycles has
the form (3), then the left-ordered cycle notation is represented by

σ = (n11n12 . . . n1l1) (n21n22 . . . n2l2) . . . (nr1nr2 . . . nrlr) .

We use the term ”left-ordered”, because each cycle is started from some x of In on
the left. Then we obtain the sequence (x σ(x)σ(σ(x))...) of successive images under σ
(ordered from left to right), until the image would be x.

Def nition 3.3. If cycle notation ofσ ∈ Sn is written as the lower row of its corresponding
two-line notation, then it is called the right-ordered cycle notation of the permutationσ ∈

Sn. This means that if two-line notation ofσ ∈ Sn by the direct product of disjoint cycles
has the form (3), then the right-ordered cycle notation is represented by

σ = (n12 . . . n1l1n11) (n22 . . . n2l2n21) . . . (nr2 . . . nrlrnr1) .

We use the term ”right-ordered”, because each cycle is started from some x of In on
the right. Then we obtain the sequence (...σ−1(σ−1(x)) σ−1(x) x) of successive images
under σ−1 (ordered from right to left), until the image would be x.

Def nition 3.4. Theith row determinant ofA = (aij) ∈ M (n,H) is defined as the alter-
native sum ofn! monomials compounded from entries ofA such that the index permutation
of each monomials forms the direct product of disjoint cycles. If the permutation is even,
then the monomial has a sign ”+”. If the permutation is odd, then the monomial has a sign
”−”. That is

rdetiA =
∑

σ∈Sn

(−1)n−r ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . . aikr+lr ikr

,

whereSn is the symmetric group on the setIn. Left-ordered cycle notation of the permuta-
tion σ is written as follows

σ = (i ik1
ik1+1 . . . ik1+l1) (ik2

ik2+1 . . . ik2+l2) . . . (ikr
ikr+1 . . . ikr+lr) .
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Here the indexi starts the first cycle from the left and other cycles satisfy the following
conditions

ik2
< ik3

< . . . < ikr
, ikt

< ikt+s.

for all t = 2, r ands = 1, lt.

Let a.j be the jth column and ai. be the ith row of a matrix A ∈ M (n, H). Denote by
A.j (b) a matrix obtained from A by replacing its jth column with the column b , and by
Ai. (b) a matrix obtained from A by replacing its ith row with the row b. Denote by Ai j

a submatrix of A obtained by deleting both the ith row and the jth column.
The next lemma enables us to expand rdeti A by cofactors along the i-th row for all

i = 1, n. The calculation of the row determinant of a n × n matrix is reduced to the calcu-
lation of the row determinant of a lower dimension matrix.

Lemma 3.1. Let Ri j be the rightijth cofactor ofA ∈ M (n, H), that is rdeti A =
n∑

j=1
ai j · Ri j for all i = 1, n. Then

Ri j =

{
−rdetj Ai i

. j (a. i) , i 6= j,

rdetk Ai i, i = j,

whereAi i
. j (a. i) is obtained fromA by replacing thejth column with theith column, and

then by deleting both theith row and column;k = min {In \ {i}}.

Proof. At f rst we prove that Ri i = rdetk Ai i, where k = min {In \ {i}}.
If i = 1, then rdet1 A = a11 · R11 + a12 · R12 + . . . + a1n · R1n. Consider the mono-

mials of rdet1 A such that begin with a11 from the left:

a11 · R11 =
∑

σ̃∈Sn

(−1)n−r a11a2 ik2
. . .aik2+l2

2 . . . aikr ikr+1
. . . aikr+lr ikr

,

where σ̃ = (1) (2 ik2
. . . ik2+l2) . . . (ikr

ikr+1 . . . ikr+lr). By factoring the common left-side
factor a11, we obtain

a11R11 = a11

∑

σ̃1∈Sn−1

(−1)n−1−(r−1) a2 ik2
. . .aik2+l2

2 . . . aikr ikr+1
. . . aikr+lr ikr

,

where σ̃1 = (2 ik2
. . . ik2+l2) . . . (ikr

ikr+1 . . . ikr+lr). Here Sn−1 is the symmetric group on
In \ {1}. The numbers of the disjoint cycles and the coeff cients of every monomial of R11

decrease by one. Each monomial of R11 begins on the left with some entry of the second
row of A. There are no entries of the f rst row and column of A among its coeff cients.
Thus, we have

R11 =
∑

σ̃1∈Sn−1

(−1)n−1−(r−1) a2 ik2
. . .aik2+l2

2 . . . aikr+lr ikr
= rdet2A

11. (4)

If now i 6= 1, then

rdeti A = ai1 · Ri1 + ai2 · Ri2 + . . . + ain · Rin (5)
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Consider monomials of rdeti A such that begin with ai i from the left:

ai i · Ri i =
∑

⌢
σ∈Sn

(−1)n−r ai ia1 ik2
. . .aik2+l2

1 . . . aikr ikr+1
. . . aikr+lr ikr

,

where ⌢
σ = (i) (1 ik2

. . . ik2+l2) . . . (ikr
ikr+1 . . . ikr+lr) . By factoring the common left-side

factor ai i, we get

ai i · Ri i = ai i ·
∑

⌢
σ 1∈

⌢
S n−1

(−1)n−1−(r−1) a1 ik2
. . .aik2+l2

1 . . . aikr+lr ikr
,

where ⌢
σ1 = (1 ik2

. . . ik2+l2) . . . (ikr
ikr+1 . . . ikr+lr). Here

⌢

Sn−1 is the symmetric group
on In \ {i}. The numbers of disjoint cycles and the coeff cients of every monomial of Ri i

again decrease by one. Each monomial of Ri i begins on the left with an entry of the f rst
row. There are no entries of the ith row and column of A among its coeff cients. Thus, we
obtain

Ri i =
∑

⌢
σ 1∈

⌢
S n−1

(−1)n−1−(r−1) a1 ik2
. . .aik2+l2

1 . . . aikr+lr ikr
= rdet1A

i i. (6)

Combining (4) and (6), we get Ri i = rdetk Ai i, k = min {In \ {i}}.
Now suppose that i 6= j. Consider monomials of rdeti A in (5) such that begin with

ai j from the left:

ai j · Ri j =
∑

σ̄∈Sn

(−1)n−r ai j aj ik1
. . .aik1+l1

i . . . aikr ikr+1
. . . aikr+lr ikr

=

= −ai j ·
∑

σ̄∈Sn

(−1)n−r−1 aj ik1
. . .aik1+l1

i . . . aikr ikr+1
. . . aikr+lr ikr

,

where σ̄ = (i j ik1
. . . ik1+l1) . . . (ikr

ikr+1 . . . ikr+lr). Denote ãik1+l1
j = aik1+l1

i for all
ik1+l1 ∈ In. Then

ai j · Ri j = −ai j ·
∑

σ̄1∈

⌢
S n−1

(−1)n−r−1 aj ik1
. . .ãik1+l1

j . . . aikr+lr ikr
,

where σ̄1 = (j ik1
. . . ik1+l1) . . . (ikr

ikr+1 . . . ikr+lr). The permutation σ̄1 does not contain
the index i in each monomial of Ri j . This permutation satisf es the conditions of Def nition
3.4 for rdetjA

i i
. j (a. i). The matrix Ai i

. j (a. i) is obtained from A by replacing the jth
column with the column i, and then by deleting both the ith row and column. That is,

∑

σ̄1∈

⌢
S n−1

(−1)n−r−1 aj ik1
. . .ãik1+l1

j . . . aikr+lr ikr
= rdetj Ai i

.j (a. i)

Therefore, if i 6= j, then Rij = −rdetjA
i i
. j (a. i).�

Def nition 3.5. Thejth column determinant ofA ∈ M (n, H) is defined as the alternative
sum ofn! monomials compounded from entries ofA such that the index permutation of
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each monomials forms the direct product of disjoint cycles. If the permutationis even, then
a monomial has a sign ”+”. If the permutation is odd, then a monomial has a sign ”−”.
That is

cdetj A =
∑

τ∈Sn

(−1)n−r ajkr jkr+lr
. . . ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j ,

whereSn is the symmetric group on the setJn = {1, . . . , n}. Right-ordered cycle notation
of the permutationτ ∈ Sn is written as follows:

τ = (jkr+lr . . . jkr+1jkr
) . . . (jk2+l2 . . . jk2+1jk2

) (jk1+l1 . . . jk1+1jk1
j) .

Here the first cycle from the right begins with the indexj and other cycles satisfy the fol-
lowing conditions

jk2
< jk3

< . . . < jkr
, jkt

< jkt+s,

for all t = 2, r ands = 1, lt.

Remark 3.1. A feature of the column determinant is that it is always constructed from right
to left.

Lemma 3.2. Let Li j be the leftijth cofactor of of a matrixA ∈ M (n, H), that is

cdetj A =
n∑

i=1
Li j · ai j for all j = 1, n. Then

Li j =

{
−cdeti A

j j
i . (aj .) , i 6= j,

cdetk Aj j , i = j,

whereAjj
i . (aj .) is obtained fromA by replacing theith row with thejth row, and then by

deleting both thejth row and column;k = min {Jn \ {j}}.

The proof is similar to the proof of Lemma 3.1.

Remark 3.2. Clearly, any monomial of each row or column determinant of a square matrix
corresponds to a certain monomial of another row or column determinant such that both of
them consists of the same coefficients and differ only in their ordering. If the entries of an
arbitrary matrix A are commutative, thenrdet1 A = . . . = rdetnA = cdet1 A = . . . =
cdetnA.

Consider the basic properties of the column and row determinants of a square matrix
over H. Their proofs immediately follow from the def nitions.

Theorem 3.1. If one of the rows (columns) ofA ∈ M (n, H) consists of zeros only, then
rdeti A = 0 andcdeti A = 0 for all i = 1, n.

Theorem 3.2. If the ith row of A ∈ M (n, H) is left-multiplied byb ∈ H, then
rdeti Ai . (b · ai .) = b · rdeti A for all i = 1, n.

Theorem 3.3. If the jth column ofA ∈ M (n, H) is right-multiplied byb ∈ H, then
cdetj A. j (a. j · b) = cdetj A · b for all j = 1, n.

Complimentary Contributor Copy



The Theory of the Column and Row Determinants... 311

Theorem 3.4. If for A ∈ M (n, H) there exists such indext ∈ In thatatj = bj + cj for all
j = 1, n, then for alli = 1, n

rdeti A = rdeti At . (b) + rdeti At . (c) ,
cdeti A = cdeti At . (b) + cdeti At . (c) ,

whereb = (b1, . . . , bn), c = (c1, . . . , cn).

Theorem 3.5. If for A ∈ M (n, H) there exists such indext ∈ Jn such thatai t = bi + ci

i = 1, n, then for allj = 1, n

rdetj A = rdetj A. t (b) + rdetj A. t (c) ,
cdetj A = cdetj A. t (b) + cdetjA. t (c) ,

whereb = (b1, . . . , bn)T , c = (c1, . . . , cn)T .

Theorem 3.6. If A∗ is the Hermitian adjoint matrix ofA ∈ M (n, H), thenrdeti A
∗ =

cdeti A for all i = 1, n.

Remark 3.3. Since the column and row determinants of an arbitrary square matrix overH

do not satisfy Axiom 1 but these determinants are defined by analogy to the determinant of
a complex square matrix, then we can consider theirs as pre-determinants.

4. A Determinant of a Hermitian Matrix

The following lemma is needed for the sequel.

Lemma 4.1. LetTn be the sum of all possible products of then factors, each of which are
eitherhi ∈ H or hi for all i = 1, n, by specifying the ordering in the terms, i.e.:

Tn = h1 · h2 · . . . · hn + h1 · h2 · . . . · hn + . . . + h1 · h2 · . . . · hn.

ThenTn consistsof the2n terms andTn = t (h1) t (h2) . . . t (hn) .

Proof. The number 2n of terms of the sum Tn is equal to the number of ordered combi-
nations of n unknown elements with two values.

The proof goes by induction on n.
(i) If n = 1, then T1 = h1 + h1 = t (h1).
(ii) Suppose the lemma is true for n − 1:

Tn−1 = h1 · h2 · . . . · hn−1 + h1 · h2 · . . . · hn−1 + . . . + h1 · h2 · . . . · hn−1 =
= t (h1) t (h2) . . . t (hn−1) .

(iii) Now we prove that it is valid for n.

Tn = h1 · h2 · . . . · hn + h1 · h2 · . . . · hn + . . . + h1 · h2 · . . . · hn.

By factoring the right-side common factors either hn or hn respectively, we obtain

Tn = Tn−1 · hn + Tn−1 · hn = Tn−1 ·
(
hn + hn

)
= Tn−1 · t (hn) =

= t (h1) · t (h2) · . . . · t (hn−1) · t (hn) .�
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Theorem 4.1. If A ∈ M (n, H) is a Hermitian matrix, then

rdet1A = . . . = rdetnA = cdet1A = . . . = cdetnA ∈ F.

Proof. At f rst we note that if a matrix A = (aij) ∈ M (n, H) is Hermitian, then we
have aii ∈ R and aij = aji for all i, j = 1, n.

We divide the set of monomials of rdetiA for some i = 1, n into two subsets. If indices
of coeff cients of monomials form permutations as products of disjoint cycles of length 1
and 2, then we include these monomials in the f rst subset. Other monomials belong to
the second subset. If indices of coeff cients form a disjoint cycle of length 1, then these
coeff cients are entries of the principal diagonal of the Hermitian matrix A. Hence, they
belong to F. If indices of coeff cients form a disjoint cycle of length 2, then these entries
are conjugated, aikik+1

= aik+1ik , and their product takes on a value in F as well,

aikik+1
· aik+1ik = aik+1ik · aik+1ik = n(aik+1ik) ∈ F.

So, all monomials of the f rst subset take on values in F.
Now we consider some monomial d of the second subset. Assume that its index permu-

tation forms a direct product of r disjoint cycles. Denote ik1
:= i.

d = (−1)n−raik1
ik1+1

. . . aik1+l1
ik1

aik2
ik2+1

. . . aik2+l2
ik2

. . . aikm ikm+1
. . .×

×aikm+lm ikm
. . . aikr ikr+1

. . . aikr+lr ikr
= (−1)n−rh1h2 . . . hm . . . hr,

(7)

where hs = aiks iks+1
· . . . · aiks+ls iks

for all s = 1, r, and m ∈ {1, . . . , r}. If ls = 1, then
hs = aiks iks+1

aiks+1 iks
= n(aiks iks+1

) ∈ F. If ls = 0, then hs = aiks iks
∈ F. If ls = 0 or

ls = 1 for all s = 1, r in (7), then we obtain a monomial of the f rst subset. Let there exists
s ∈ In such that ls ≥ 2. Then

hs = aiks iks+1
. . . aiks+ls iks

= aiks+ls iks
. . . aiks iks+1

= aiks iks+ls
. . . aiks+1iks

.

Denote by σs (iks
) : = (iks

iks+1 . . . iks+ls) a disjoint cycle of indices of d for some
s = 1, r. The disjoint cycle σs (iks

) corresponds to the factor hs. Then σ−1
s (iks

) =
(iks

iks+lsiks+1 . . . iks+1) is the inverse disjoint cycle and σ−1
s (iks

) corresponds to the fac-
tor hs. By Lemma 4.1 there exist another 2p − 1 monomials for d, (where p = r − ρ and
ρ is the number of disjoint cycles of length 1 and 2), such that their index permutations
form the direct products of r disjoint cycles either σs (iks

) or σ−1
s (iks

) by specifying their
ordering by s from 1 to r. Their cycle notations are left-ordered according to Def nition 3.4.
Suppose C1 is the sum of these 2p − 1 monomials and d, then by Lemma 4.1 we obtain

C1 = (−1)n−rα t(hν1
) . . . t(hνp) ∈ F.

Here α ∈ F is the product of coeff cients whose indices form disjoint cycles of length 1 and
2, νk ∈ {1, . . . , r} for all k = 1, p.

Thus for an arbitrary monomial of the second subset of rdeti A, we can f nd the 2p

monomials such that their sum takes on a value in F. Therefore, rdeti A ∈ F.
Now we prove the equality of all row determinants of A. Consider an arbitrary rdetj A

such that j 6= i for all j = 1, n. We divide the set of monomials of rdetj A into two subsets
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using the same rule as for rdeti A. Monomials of the f rst subset are products of entries of
the principal diagonal of A or norms of entries. Therefore they take on a value in F and
each monomial of the f rst subset of rdeti A is equal to a corresponding monomial of the
f rst subset of rdetj A.

Now consider the monomial d1 of the second subset of monomials of rdeti A consisting
of coeff cients that are equal to the coeff cients of d but are placed in another arrangement.
Consider all possibilities of the arrangement of coeff cients in d1.

(i) Suppose that the index permutation of its coeff cients form a direct product of r
disjoint cycles and these cycles coincide with the r disjoint cycles of d but differ by their
ordering Then we have

d1 = (−1)n−rαhµ . . . hλ,

where {µ, . . . , λ} = {ν1, . . . , νp}. By Lemma 4.1 there exist 2p − 1 monomials of the
second subset of rdetj A such that each of them is equal to a product of p factors either hs

or hs for all s ∈ {µ, . . . , λ}, multiplied by (−1)n−rα. Hence by Lemma 4.1, we obtain

C2 = (−1)n−rα t(hµ) . . . t(hλ) = (−1)n−r α t(hν1
) . . . t(hνp) = C1.

(ii) Now suppose that in addition to the case (i) the index j is placed inside some disjoint
cycle of the index permutation of d, e.g. j ∈ {ikm+1

, ..., ikm+lm}. Denote j = ikm+q. Then
d1 is represented as follows:

d1 = (−1)n−raikm+qikm+q+1
. . . aikm+lm ikm

aikm ikm+1
. . .×

×aikm+q−1ikm+q
aikµ ikµ+1

. . . aikµ+lµ ikµ
. . . aikλ

ikλ+1
. . . aikλ+lλ

ikλ
=

= (−1)n−rαh̃mhµ . . . hλ,

(8)

where {m, µ, . . . , λ} = {ν1, . . . , νp}. Except for h̃m, each factor of d1 in (8) corresponds
to the equal factor of d in (7). By the rearrangement property of the trace, we have t(h̃m) =
t(hm). Hence by Lemma 4.1 and by analogy to the previous case, we obtain the following
equality.

C2 = (−1)n−rα t(h̃m) t(hµ) . . . t(hλ) =
= (−1)n−r α t(hν1

) . . . t(hm) . . . t(hνp) = C1.

(iii) If in addition to the case (i) the index i is placed inside some disjoint cycles of the
index permutation of d1, then we apply the rearrangement property of the trace to this cycle.
As in the previous cases we f nd 2p monomials of the second subset of rdetj A such that
by Lemma 4.1 their sum is equal to the sum of the corresponding 2p monomials of rdetiA.
Clearly, we obtain the same conclusion at association of all previous cases, then we apply
twice the rearrangement property of the trace.

Thus, in any case each sum of 2p corresponding monomials of the second subset of
rdetj A is equal to the sum of 2p monomials of rdeti A. Here p is the number of disjoint
cycles of length more than 2. Therefore, for all i, j = 1, n we have

rdeti A = rdetj A ∈ F.

Now we prove the equality cdeti A = rdeti A for all i = 1, n. Again we divide the set
of monomials of cdeti A into two subsets by following the same rule as for rdeti A. Each
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monomial of the f rst subset of cdeti A is equal to the corresponding monomial of rdeti A,
since their factors are real numbers (either entries of the principal diagonal of A or norms
of entries of A). Consider the monomial d2 of the second subset of monomials of cdeti A

consisting of coeff cients that are equal to the coeff cients of d. The coeff cients of d2 are
placed in the same ordering as for d but from left to right. If ρ is the number of disjoint
cycles of length 1 and 2, and p = r − ρ, then

d2 = (−1)n−raikr ikr+lr
. . . aikr+1ikr

. . . aik2
ik2+l2

. . . aik2+1ik2
×

×aik1
ik1+l1

. . . aik1+1ik1
= (−1)n−rα hτp . . . hτ1

Here α is a product of coeff cients whose indices form disjoint cycles of length 1 and 2. We
have for all s = 1, p

hτs = aiks iks+ls
· . . . · aiks+1iks

= aiks iks+1
· . . . · aiks+ls iks

.

By Lemma 4.1 among monomials of the second subset of cdeti A, there exist 2p−1 mono-
mials for d2 such that each of them is equal to a product of p factors either hτs or hτs for
some s = 1, p by specifying their right-ordering, and is multiplied by (−1)n−rα. Con-
sider the sum C3 of these monomials and d. Due to commutativity of real numbers and by
Lemma 4.1, we get

C3 = (−1)n−rα t(hτp) . . . t(hτ1) = (−1)n−rα t(hνp) . . . t(hν1
) =

= (−1)n−rα t(hν1
) . . . t(hνp) = C1

Therefore, each sum of the 2p corresponding monomials of the second subset of cdeti A

is equal to a sum of the 2p monomials of rdeti A and vice versa.
Thus, cdeti A = rdeti A ∈ R for all i = 1, n.�

Remark 4.1. Since all column and row determinants of a Hermitian matrix overH are
equal, we can define the determinant of a Hermitian matrixA ∈ M (n, H). By definition,
we put for alli = 1, n

detA := rdeti A = cdeti A.

Remark 4.2. By Lemma 4.1 we have

detA = −
∑

σ∈In

ai j · rdetj Ai i
.j (a.i) + ai i · rdetk Ai i, k = min {In \ {i}}. (9)

By comparing expressions (2) and (9) for HermitianA ∈ M (n, H), we conclude that the
row determinant of a Hermitian matrix coincides with the Moore determinant. Hence the
row and column determinants extend the Moore determinant to an arbitrary square matrix.

5. Properties of the Column and Row
Determinants of a Hermitian Matrix

Theorem 5.1. If the matrixAj. (ai.) is obtained from a Hermitian matrixA ∈ M (n, H)
by replacing itsjth row with theith row, then for alli, j = 1, n such thati 6= j we have

rdetjAj . (ai .) = 0.
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Proof. We assume n > 3 for A ∈ M (n, H). The case n ≤ 3 is easily proved by a sim-
ple check. Consider some monomial d of rdetj Aj . (ai .). Suppose the index permutation
of its coeff cients forms a direct product of r disjoint cycles, and denote i = is. Consider
all possibilities of disposition of an entry of the isth row in the monomial d.

(i) Suppose an entry of the isth row is placed in d such that the index is opens some
disjoint cycle, i.e.:

d = (−1)n−raj i1 . . . aikj u1 . . . uρ aisis+1
. . . ais+mis v1 . . . vp (10)

Here we denote by uτ and vt products of coeff cients whose indices form some disjoint
cycles for all τ = 1, ρ and t = 1, p such that ρ + p = r − 2 or there are no such products.
For d there are the following three monomials of rdetj Aj . (ai .).

d1 = (−1)n−r+1aj is+1
. . . ais+mis aisi1 . . . aikj u1 . . . uρ v1 . . . vp,

d2 = (−1)n−r+1aj is+m . . . ais+1isais i1 . . . aikj u1 . . . uρ v1 . . . vp,
d3 = (−1)n−raj i1 . . . aikj u1 . . . uρ aisis+m . . . ais+1is v1 . . . vp.

Suppose aji1 . . . aikj = x and aisis+1
. . . ais+mis = y, then y = aisis+m . . . ais+1 is . Taking

into account aj i1 = aisi1 , aj is−1
= aisis−1

and aj is+1
= aisis+1

, we consider the sum of
these monomials.

d + d1 + d2 + d3 = (−1)n−r(xu1 . . . uρ y − yxu1 . . . uρ − y · xu1 . . . uρ+
+xu1 . . . uρy)v1 . . . vp = (−1)n−r(xu1 . . . uρt(y) − t(y)xu1 . . . uρ)v1 . . . vp = 0.

Thus among the monomials of rdetj Aj . (ai .) we f nd three monomials for d such that the
sum of these monomials and d is equal to zero.

If in (10) m = 0 or m = 1, we obtain such monomials accordingly:

d̃ = (−1)n−raj i1 . . . · aikj u1 . . . uρ aisis v1 . . . vp,
⌢

d = (−1)n−raj i1 . . . aikj u1 . . . uρ aisis+1
ais+1is v1 . . . vp.

There are the following monomials for them:

d̃1 = (−1)n−r+1aj is ais i1 . . . aikj u1 . . . uρ v1 . . . vp,
⌢

d1 = (−1)n−r+1aj is+1
ais+1 is ais i1 . . . aikj u1 . . . uρ v1 . . . vp.

Taking into account aj i1 = aisi1 , aj is = aisis ∈ F, aj is+1
= aisis+1

, and aisis+1
ais+1is ∈

F, we get d̃ + d̃1 = 0,
⌢

d +
⌢

d1 = 0. Hence, the sums of corresponding two monomials of
rdetj Aj .(ai .) are equal to zero in this case.

ii) Now suppose that the index is is placed in another disjoint cycle than the index j and
does not open this cycle,

⌣

d = (−1)n−raji1 . . . aikj u1 . . . uρ aiqiq+1
. . . ais−1isaisis+1

. . . aiq−1iqv1 . . . vp.

Here we denote by uτ and vt products of coeff cients whose indices form some disjoint
cycles for all τ = 1, ρ and t = 1, p such that ρ + p = r − 2 or there are no such products.
Now for d there are the following three monomials of rdetj Aj .(ai .):

⌣

d1 = (−1)n−r+1aj is+1
. . . aiq−1iq aiqiq+1

. . . ais−1isaisi1 . . . aikj u1 . . . uρv1 . . . vp,
⌣

d2 = (−1)n−r+1aj is−1
. . . aiq+1iq aiqiq−1

. . . ais+1isaisi1 . . . aikj u1 . . . uρv1 . . . vp,
⌣

d3 = (−1)n−raj i1 . . . aikj u1 . . . uρ aiqiq−1
. . . ais+1isaisis−1

. . . · aiq+1iqv1 . . . vp.
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Assume that aisis+1
. . . aiq−1iq = ϕ, aiqiq+1

. . . ais−1is = φ, aj i1 . . . aikj =
x, aiqiq+1

. . . ais−1isaisis+1
. . . aiq−1iq = y, aisis+1

. . . aiq−1iqaiqiq+1
. . . ais−1is = y1. Then

we obtain y = φϕ, y1 = ϕφ, y = aiqiq−1
. . . ais+1isaisis−1

. . . aiq+1iq , and y1 =
aisis−1

. . . aiq+1iqaiqiq−1
. . . ais+1is . Accounting for aj i1 = aisi1 , ajis−1

= aisis−1
, ajis+1

=
aisis+1

, we have
⌣

d +
⌣

d1 +
⌣

d2 +
⌣

d3 =
= (−1)n−r(xu1 . . . uρy − y1xu1 . . . uρ − y1 xu1 . . . uρ + xu1 . . . uρy)×
×v1 . . . vp = (−1)n−r(xu1 . . . uρt(y) − t(y1)xu1 . . . uρ)v1 . . . vp =

= (−1)n−r(t(φ · ϕ) − t(ϕ · φ))xu1 . . . uρv1 . . . vp.

Since by the rearrangement property of the trace t(φ · ϕ) = t(ϕ · φ), then we obtain
⌣

d +
⌣

d1 +
⌣

d2 +
⌣

d3 = 0.
(iii) If the indices is and j are placed in the same cycle, then we have the following

monomials: d1, d̃1,
⌢

d1 or
⌣

d1. As shown above, for each of them there are another one or
three monomials of rdetj Aj .(ai .) such that the sums of these two or four corresponding
monomials are equal to zero.

We have considered all possible kinds of disposition of an entry of the isth row as a
factor of some monomial d of rdetj Aj .(ai .). In each case there exist one or three corre-
sponding monomials for d such that the sum of the two or four monomials is equal to zero
respectively. Hence, rdetj Aj .(ai .) = 0. �

Corollary 5.1. If a Hermitian matrixA ∈ M (n, H) consists two same rows (columns),
thendetA = 0.

Proof. Suppose the ith row of A coincides with the jth row, i.e. aik = ajk for all
k ∈ In and {i, j} ∈ In such that i 6= j. Then aik = ajk for all k ∈ In. Since the matrix
A is Hermitian, we get for all k ∈ In that aki = akj , where {i, j} ∈ In and i 6= j. This
means that if a Hermitian matrix has two same rows, then it has two same corresponding
columns as well. The matrix A may be represented as Aj. (ai.), where the matrix Aj. (ai.)
is obtained from A by replacing the jth row with the ith row. Then by Theorem 5.1, we
have

detA = rdetiA = rdetiAj. (ai.) = 0.�

The next theorem is proved in a similar way to Theorem 5.1.

Theorem 5.2. If the matrixA. i (a.j) is obtained from a Hermitian matrixA ∈ M (n, H) by
replacing of itsith column with thejth column, thencdeti A. i(a.j) = 0 for all i, j = 1, n
such thati 6= j.

Theorem 5.3. If the matrixAi . (b · aj .) is obtained from a Hermitian matrixA ∈ M (n, H)
by replacing of itsith row with the jth row multiplied byb ∈ H on the left, then
rdeti Ai . (b · aj .) = 0 for all i, j = 1, n such thati 6= j.

The proof follows immediately from Theorems 3.2 and 5.1.

Theorem 5.4. If the matrixA. j (a. i · b) is obtained from a Hermitian matrixA ∈ M (n, H)
by replacing of itsjth column with theith column right-multiplied byb ∈ H, then
cdetj A. j (a. i · b) = 0 for all i, j = 1, n such thati 6= j.
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The proof follows immediately from Theorems 3.3 and 5.2.

Theorem 5.5. If the matrixA. j (a. i · b) is obtained from a Hermitian matrixA ∈ M (n, H)
by replacing of itsjth column with theith column right-multiplied byb ∈ H, then
rdetj A. j (a. i · b) = 0 for all i, j = 1, n such thati 6= j.

Proof. We assume n > 3 for A ∈ M (n, H). The case n ≤ 3 is easily proved by a
simple check. Consider some monomial d of rdetj A. j (a. i · b) for all i, j = 1, n such that
i 6= j.

Suppose the index permutation of its coeff cients forms a direct product of r disjoint
cycles, and denote i = is. Consider all possibilities of disposition of an entry of the isth
row in the monomial d.

(i) Suppose an entry of the isth row is placed in d such that the index is opens some
disjoint cycle, i.e.:

d = (−1)n−raj i1 . . . aikj b u1 . . . uρ aisis+1
. . . ais+misv1 . . . vp, (11)

Here we denote by uτ and vt products of coeff cients whose indices form some disjoint
cycles for all τ = 1, ρ and t = 1, p such that ρ + p = r − 2 or there are no such products.
For d there are the following three monomials of rdetj A. j (a. i · b),

d1 = (−1)n−raj i1 · . . . · aikj · b · u1 · . . . · uρ · aisis+m · . . . · ais+1is · v1 · . . . · vp,

d2 = (−1)n−r+1aj i1 · . . . · aikis · aisis+1
. . . ais+mj · b · u1 · . . . · uρ · v1 · . . . · vp,

d3 = (−1)n−r+1aji1 · . . . · aikis · ais is+m · . . . · ais+1j · b · u1 · . . . · uρ · v1 · . . . · vp.

Denote aj i1 ·. . .·aikj = :x and aisis+1
. . . ais+mis = :y, then y = aisis+m . . . ais+1is . Taking

into account aikj = aikis , ais+mj = ais+mis , ais+1j = ais+1is , we have

d + d1 + d2 + d3 =

= (−1)n−r(x · b · u1 · . . . · uρ · y + x · b · u1 · . . . · uρ · y − x · y · b · u1 · . . . · uρ−

−x · y · b · u1 · . . . · uρ) · v1 · . . . · vp = (−1)n−r(x · b · u1 · . . . · uρ · (y + y)−

−x · (y + y) · b · u1 · . . . · uρ) · v1 · . . . · vp = (−1)n−r(x · b · u1 · . . . · uρ · t(y)−

−x · t(y) · b · u1 · . . . · uρ) · v1 · . . . · vp = 0.

Thus among the monomials of rdetj A. j (a. i · b) we f nd three monomials for d such that
the sum of these monomials and d is equal to zero.

If in (11) m = 0 or m = 1, we obtain such monomials accordingly:

d̃ = (−1)n−raj i1 · . . . · aikj · b · u1 · . . . · uρ · aisis · v1 · . . . · vp,

⌣

d = (−1)n−raj i1 · . . . · aikj · b · u1 · . . . · uρ · aisis+1
· ais+1is · v1 · . . . · vp.

There are the following monomials for them:

d̃1 = (−1)n−r+1aj i1 · . . . · aikisaisj · b · u1 · . . . · uρ · v1 · . . . · vp,
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⌣

d1 = (−1)n−r+1aj i1 · . . . · aikis · aisis+1
· ais+1j · b · u1 · . . . · uρ · v1 · . . . · vp,

Taking into account, that aikj = aikis , aisj = aisis , ais+1j = ais+1is and aisis ∈ F,
aisis+1

ais+1is = n
(
aisis+1

)
∈ F, we obtain

d̃ + d̃1 = (−1)n−r(aj i1 · . . . · aikj · b · u1 · . . . · uρ · aisis−

−aj i1 · . . . · aikis · aisj · b · u1 · . . . · uρ) · v1 · . . . · vp = 0,

⌣

d +
⌣

d1 = (−1)n−r(aj i1 · . . . · aikj · b · u1 · . . . · uρ · n
(
aisis+1

)
−

−aj i1 · . . . · aikis · n
(
aisis+1

)
· b · u1 · . . . · uρ) · v1 · . . . · vp = 0.

Hence, the sums of corresponding two monomials of rdetj A. j (a. i · b) are equal to zero in
this case.

ii) Now suppose that the index is is placed in another disjoint cycle than the index j and
does not open this cycle,

d = (−1)n−raj i1 . . . aikjb u1 . . . uρaiqiq+1
. . . ais−1isaisis+1

. . . aiq−1iqv1 . . . vp,

Here we denote by uτ and vt products of coeff cients whose indices form some disjoint
cycles for all τ = 1, ρ and t = 1, p such that ρ + p = r − 2 or there are no such products.
Now for d there are the following three monomials of rdetj A. j (a. i · b),

⌢

d1 = (−1)n−raj i1 . . . aikjbu1 . . . uρaiqiq−1
. . . ais+1isaisis−1

. . . aiq+1iqv1 . . . vp ,

⌢

d2 = (−1)n−raj i1 . . . aikisaisis−1
. . . · aiq+1iqaiqiq−1

. . . ais+1j bu1 . . . uρv1 . . . vp ,
⌢

d3 = (−1)n−raj i1 . . . aikisaisis−1
. . . aiq+1iqaiqiq−1

. . . ais+1j b u1 . . . uρv1 . . . vp .

Denote aj i1 · . . . · aikj = :x, aiqiq+1
· . . . · ais−1is = :φ, aisis+1

· . . . · aiq−1iq = :ϕ , then
we have aisis−1

· . . . · aiq+1iq = φ aiqiq−1
· . . . · ais+1is = ϕ. Taking into account that

aikj = aikis , ais−1j = ais−1is , ais+1j = ais+1is , we obtain

d +
⌢

d1 +
⌢

d2 +
⌢

d3 =

= (−1)n−r(xbu1 . . . uρφϕ + xbu1 . . . uρϕ φ−

−xϕ φbu1 . . . uρ − xφϕ bu1 . . . uρ)v1 . . . vp =

= (−1)n−r(xbu1 . . . uρ(φϕ + φϕ) − x(ϕφ + ϕφ)bu1 . . . uρ)v1 . . . vp =

= (−1)n−r(xbu1 . . . uρt(φϕ) − x t(ϕ φ)bu1 . . . uρ)v1 . . . vp.

by the rearrangement property of the trace t(φ · ϕ) = t(ϕ · φ) ∈ F , we obtain d +
⌢

d1 +
⌢

d2 +
⌢

d3 = 0.
(iii) If the indices is and j are placed in the same cycle, then we have the following

monomials:
⌢

d1 or
⌣

d1, d2, d̃2, and d3, d̃3 as well. As shown above, for each of them there
are another one or three monomials of rdetj Aj .(ai .) such that the sums of these two or
four corresponding monomials are equal to zero.

We have considered all possible kinds of disposition of an entry of the isth row as a
factor of some monomial d of rdetj Aj .(ai .). In each case there exist one or three corre-
sponding monomials for d such that the sum of the two or four monomials is equal to zero
respectively. Hence, rdetj A. j (a. i · b) = 0. �
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Corollary 5.2. If the matrixA. j (a. i) is obtained from a Hermitian matrixA ∈ M (n, H)
by replacing of itsjth column with theith column, thenrdetj A. j (a. i) = 0 for all i, j =
1, n such thati 6= j.

The proof follows immediately from Theorem 5.5, by putting b = 1.

Theorem 5.6. If the matrix Ai . (b · aj .) is obtained from a Hermitian matrixA ∈

M (n, H) by replacing of itsith row with thejth row left-multiplied byb ∈ H, then
cdeti Ai . (b · aj .) = 0 for all i, j = 1, n such thati 6= j.

The proof is similar to the proof of Theorem 5.5.

Corollary 5.3. If the matrixAi . (aj.) is obtained from a Hermitian matrixA ∈ M (n, H)
by replacing of itsith row with thejth row, thencdeti Ai . (aj .) = 0 for all i, j = 1, n such
that i 6= j.

The proof follows immediately from Theorem 5.6, by putting b = 1.

Lemma 5.1. If the matrixA. i (a. i · b) is obtained from a Hermitian matrixA ∈ M (n, H)
by right-multiplying of itsith column byb ∈ H, then for alli = 1, n wehave

rdeti A. i (b · a. i) = rdeti A. i (a. i · b) = detA · b

.

Proof. Consider some monomial d of A. i (a. i · b) for i = 1,n, where the matrix
A. i (a. i · b) is obtained from a Hermitian matrix A ∈ M (n, H) by right-multiplying of
its ith column by b ∈ H Denote ik1

: = i.

d = (−1)n−raik1
ik1+1

. . . aik1+l1
ik1

b aik2
ik2+1

. . . aik2+l2
ik2

. . .×

×aikr ikr+1
. . . aikr+lr ikr

= (−1)n−rh1 · h2 · . . . · hr,

where hs = aiks iks+1
· . . . · aiks+ls iks

for all
(

s = 1, r
)
. If ls = 1, then hs = aiks iks+1

·

aiks+1 iks
= n(aiks iks+1

) ∈ F, and if ls = 0, then hs = aiks iks
∈ F . Suppose there is s

such that ls ≥ 2. The index permutation σ of d forms a direct products of disjoint cycles
and its cycle notation is left-ordered. Denote by σs (iks

) : = (iks
iks+1 . . . iks+ls) a cycle

which corresponds to a factor hs. Then σ−1
s (iks

) : = (iks
iks+lsiks+1 . . . iks+1) is the cycle

which is inverse to σs (iks
) and corresponds to the factor hs. There are 2p−1 monomials

of A. i (a. i · b) such that their indices permutations form the direct products of the disjoint
cycles σs (iks

) or σ−1
s (iks

) for all
(

s = 1, r
)

and keeping their ordering from 1 to r. We
have p = r − ρ, where ρ is the number of the cycles of the f rst and second orders. Then by
lemma 4.1 for the sum C1 of these monomials and d we obtain,

C = (−1)n−rb · αt(hν1
) . . . t(hνp),

where α ∈ F is a product of the factors whose indices form the cycles of the f rst and
second orders. Since t(hνk

) ∈ F for all νk ∈ {1, . . . , r} and k = 1, p, then b commutes
with t(hνk

) ∈ F for all νk ∈ {1, . . . , r} and k = 1, p. Then we obtain rdetiA. i (a. i · b) =
rdetiA · b = b · detA.

By theorem 3.2 we have rdetiA. i (b · a. i) = b · rdetiA = b · detA as well. �
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Lemma 5.2. If Ai . (b · ai .) is obtained from a Hermitian matrixA ∈ M (n, H) by left-
multiplying of itsith row byb ∈ H, then for alli = 1, n wehave

cdetiAi . (b · ai .) = cdetiAi . (ai . · b) = b · detA

The proof is similar to the proof of Lemma 5.1
From Theorems 5.1, 5.6 and basic properties of the row and column determinants for

arbitrary matrices we have the following theorem.

Theorem 5.7. If the ith row of a Hermitian matrixA ∈ M (n, H) is replaced with a left
linear combination of its other rows, i.e.ai. = c1ai1. + . . . + ckaik., wherecl ∈ H for all
l = 1, k and{i, il} ⊂ In, then

rdeti Ai . (c1ai1. + . . . + ckaik.) = cdeti Ai . (c1ai1. + . . . + ckaik.) = 0.

Theorem 5.8. If the jth column of a Hermitian matrixA ∈ M (n, H) is replaced with a
right linear combination of its other columns, i.e.a.j = a.j1c1 + . . .+a.jk

ck, wherecl ∈ H

for all l = 1, k and{j, jl} ⊂ Jn, then

cdetj A.j (a.j1c1 + . . . + a.jk
ck) = rdetj A.j (a.j1c1 + . . . + a.jk

ck) = 0.

The proof follows immediately from Theorems 5.2, 5.5 and basic properties of the row
and column determinants for arbitrary matrices as well.

From Theorems 5.7, 5.8 and basic properties of the row and column determinants for
arbitrary matrices we obtain the following theorems respectively.

Theorem 5.9. If the ith row of a Hermitian matrixA ∈ M (n, H) is added a left linear
combination of its other rows, then

rdeti Ai· (ai. + c1 · ai1. + . . . + ck · aik.) =
= cdeti Ai· (ai. + c1 · ai1. + . . . + ck · aik.) = detA,

wherecl ∈ H for all l = 1, k and{i, il} ⊂ In.

Theorem 5.10. If the jth column of a Hermitian matrixA ∈ M (n, H) is added a right
linear combination of its other columns, then

cdetj A.j (a.j + a.j1c1 + . . . + a.jk
ck) =

= rdetj A.j (a.j + a.j1c1 + . . . + a.jk
ck) = detA,

wherecl ∈ H for all l = 1, k and{j, jl} ⊂ Jn.

6. Diagonalization of Hermitian Matrices

Suppose the matrix Eij = (epq)n×n such that epq =

{
1, p = i, q = j,
0, p 6= i, q 6= j.
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Def nition 6.1. ThematrixPij(b) := I+b·Eij ∈ M(n, H) for i 6= j is called an elementary
unimodular matrix, whereI is the identity matrix. MatricesPij(b) for i 6= j and for all
b ∈ H generate the unimodular groupSL(n, H), its elements is called the unimodular
matrices.

Theorem 6.1. If A ∈ M(n, H) is a Hermitian matrix andPij (b) is an elementary unimod-

ular matrix, thendetA = det
(
Pij (b) · A · P∗

ij (b)
)

.

Proof. First note that for all U ∈ M(n, H) and a Hermitian matrix A, the matrix U∗AU

is Hermitian as well. Really, (U∗AU)∗ = U∗A∗U = U∗AU. Multiplying a matrix A by
Pij (b) on the left adds the jth row left-multiplied by b to the ith row. Whereas multiplying
a matrix A by P∗

ij (b) on the right adds the jth column right-multiplied by b to the jth
column. Therefore,

Pij (b) · A · P∗

ij (b) =



a11 . . . a1i + a1jb . . . a1n

. . . . . . . . . . . . . . .

ai1 + baj1 . . . (bajj + aij)b + baji + aii . . . ain + bajn

. . . . . . . . . . . . . . .

an1 . . . ani + anj b . . . ann




Then by Theorems 3.4 and 3.5, we have

det
(
Pij (b) · A · P∗

ij (b)
)

= cdeti

(
Pij (b) · A · P∗

ij (b)
)

=

= cdeti




a11 ... a1i ... a1n

... ... ... ... ...
ai1 + baj1 ... aii + baji ... ain + bajn

... ... ... ... ...
an1 ... ani ... ann




+

+cdeti




a11 ... a1jb ... a1n

... ... ... ... ...

ai1 + baj1 ... (bajj + aij)b ... ain + bajn

... ... ... ... ...

an1 ... anj b ... ann




=

= cdetiA + cdetiAi.(b · aj.) + cdetiA. i(a.j) · b+

+cdeti




a11 ... a1j ... a1n

... ... ... ... ...
baj1 ... bajj ... bajn

... ... ... ... ...
an1 ... anj ... ann




· b.

The matrix




a11 ... a1j ... a1n

... ... ... ... ...
baj1 ... bajj ... bajn

... ... ... ... ...
an1 ... anj ... ann




= (A. i(a.j))i .(baj .) is obtained from A by

replacing its ith column with the jth column, and then by replacing the ith row of the

Complimentary Contributor Copy



322 Ivan I. Kyrchei

obtained matrix with its jth row left-multiplied by b. The ith row of A. i(a.j))i .(baj .) is
baj . and its jth row is aj.. Then by Theorem 5.6, we get cdeti(A. i(a.j))i .(baj .) = 0.
Furthermore by Theorem 5.2 we have cdetiA. i(a.j) = 0, and by Theorem 5.6 we obtain
cdetiAi .(b · aj.) = 0.

Finally, we have det
(
Pij (b) · A · P∗

ij (b)
)

= cdetiA = detA. �

Theorem 6.2. If A ∈ M (n, H) is a Hermitian matrix andU ∈ SL(n,H), then

detA = det (U · A · U∗) .

Proof. We claim that there exist {P1, . . . ,Pk} ⊂ SL(n, H) and k ∈ N for U ∈

SL (n, H) such that U = Pk · . . . · P1. Then U∗ = P∗

1 · . . . · P
∗

k.
We prove the theorem by induction on k.
i) The case k = 1 has been proved Theorem 6.1.
ii) Suppose the theorem is valid for k − 1. That is U = Pk−1 · . . . · P1 and

detA = det
(
Pk−1 · . . . · P1 · A · P∗

1 · . . . · P
∗

k−1

)
.

Denote Ã := Pk−1 · . . . ·P1 ·A ·P∗

1 · . . . ·P
∗

k−1. As shown in Theorem 6.1 a matrix Ã is
Hermitian.

iii) If now U = Pk · Pk−1 . . . · P1, then

det (U · A · U∗) = det
(
Pk · Ã · P∗

k

)
= det Ã = detA.�

Lemma 6.1. If U ∈ SL(n, H), then
{
U−1,U∗

}
∈ SL(n, H).

Proof. Let U is a unimodular matrix and U =
m∏

k=1

Pk, where Pk = Pij (bk) are

unimodular matrices, (i.e. ∃m ∈ N, ∀k = 1, m, ∃bk ∈ H, ∃i ∈ In, ∃j ∈ In, i 6= j). Then
P−1

k = P−1
ij (bk) = Pij(−bk) ∈ SL(n, H),

∏1
k=m P−1

k = U−1 ∈ SL(n, H),
P∗

k = P∗

ij (bk) = Pji

(
bk

)
∈ SL(n, H),

∏1
k=m P∗

k = U∗ ∈ SL(n, H). �

Theorem 6.3. If A ∈ M (n, H) is a Hermitian matrix, then there existU ∈ SL(n, H) and
µi ∈ F for all i = 1, n, such thatU ·A ·U∗ = diag(µ1, . . . , µn), wherediag(µ1, . . . , µn)
is a diagonal matrix. ThendetA = µ1 · . . . · µn.

Proof. Consider the f rst column of a Hermitian matrix A ∈ M (n, H). It is possible the
following cases.

i) If a11 6= 0, then µ1 = a11 ∈ F. By sequentially left-multiplying the matrix A

by elementary unimodular matrices Pi1

(
−ai1

µ1

)
for all i = 2, n, we obtain zero for all

entries of the f rst column save for diagonal. Since −ai1

µ1
= −a1i

µ1
, then P∗

i1

(
−ai1

µ1

)
=

P1i

(
−a1i

µ1

)
. By sequentially right-multiplying the matrix A by elementary unimodular

matrices P∗

i1

(
−ai1

µ1

)
, we get zero for all entries of the f rst row save for diagonal. Due to

Theorem 6.1 the obtained matrix is Hermitian as well.
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ii) Suppose a11 = 0 and there exists i ∈ In such that ai1 6= 0. Having multiplied
the matrix A by elementary unimodular matrices P1i (a1i) on the left and by Pi1 (ai1)
on the right, we get the matrix Ã with an entry ã11 = n(ai1) (2 + ai i) ∈ F. Let now
µ1 = ã11. Again by sequentially multiplying the matrix Ã by Pi1

(
− ãi1

µ1

)
on the left and

by P∗

i1

(
− ãi1

µ1

)
for all i = 2, n, on the right, we obtain the matrix with zero for all entries

of the f rst row and column save for diagonal.
iii) If i ∈ In for all ai1 = 0, then put µ1 = a11.
Having carried through the described procedure for all diagonal entries and entries of

corresponding rows and columns by means of a f nite number of multiplications the Her-
mitian matrix A by elementary unimodular matrices Pk = Pij (bk) on the left and by
P∗

k = Pji

(
bk

)
on the right, we obtain the diagonal matrix with diagonal entries µi ∈ F for

all i = 1, n. Suppose U =
∏
k

Pk, then by Theorem 6.2 we f nally obtain

det(U · A · U∗) = det (diag (µ1, . . . , µn)) = µ1 · . . . · µn.�

Corollary 6.1. If A,B are Hermitian overH andAB = BA, thendet (AB) = detA ·

detB.

Proof. We have A = A∗ and B = B∗. Hence, (AB)∗ = B∗A∗ = BA = AB.
By theorem 6.3 there exist U,V ⊂ SL(n, H) and µi, ηi ⊂ F for all i = 1, n, such that
U · A · U∗ = diag(µ1, . . . , µn) and V · A · V∗ = diag(η1, . . . , ηn). Then we obtain

det (AB) = det (U · A · U∗V · B · V∗) =
det (diag (µ1, . . . , µn) diag (η1, . . . , ηn)) =

= µ1 · η1 · . . . · µn · ηn = µ1 · . . . · µn · η1 · . . . · ηn = detA · detB.

�

7. The Inverse of a Hermitian Matrix

Def nition 7.1. A Hermitian matrixA ∈ M (n, H) is called nonsingular, ifdetA 6= 0.

Theorem 7.1. There exist a unique right inverse matrix(RA)−1 and a unique left in-
verse matrix(LA)−1 of a nonsingular Hermitian matrixA ∈ M (n, H), where(RA)−1 =
(LA)−1 =: A−1 and

(RA)−1 =
1

detA




R11 R21 · · · Rn1

R12 R22 · · · Rn2

· · · · · · · · · · · ·

R1n R2n · · · Rnn


 , (12)

(LA)−1 =
1

detA




L11 L21 · · · Ln1

L12 L22 · · · Ln2

· · · · · · · · · · · ·

L1n L2n · · · Lnn


 , (13)

whereRij , Lij are right and leftij-th cofactor ofA respectively for alli, j = 1, n.
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Proof. Let B = A · (RA)−1. We obtain the entries of B by multiplying matrices for
all i = 1, n

bi i = (detA)−1
n∑

j=1

ai j · Ri j = (detA)−1 rdeti A =
detA

detA
= 1,

and for all i 6= j

bi j = (detA)−1
n∑

s=1

ais · Rj s = (detA)−1 rdetjAj . (ai .) .

If i 6= j, then by Theorem 5.1 rdetjAj . (ai .) = 0. Consequently bi j = 0. Thus B = I and
(RA)−1 is the right inverse of the Hermitian matrix A.

Suppose D = (LA)−1
A. We again get the entries of D by multiplying matrices, for

all i = 1, n:

di i = (detA)−1
n∑

i=1

Li j · ai j = (detA)−1 cdetjA =
detA

detA
= 1,

and for all i 6= j

di j = (detA)−1
n∑

s=1

Ls i · asj = (detA)−1 cdetiAi. (aj.) .

If i 6= j, then by Theorem 5.2 cdetiAi. (aj.) = 0. Therefore di j = 0 for all i 6= j. Thus
D = I and (LA)−1 is the left inverse of the Hermitian matrix A.

The equality (RA)−1 = (LA)−1 is immediate from the well-known fact that if there
exists an inverse matrix over an arbitrary skew f eld, then it is unique.�

Theorem 7.2. If A is a nonsingular Hermitian matrixA ∈ M (n, H), thendetA−1 =
(detA)−1.

Proof. Whereas A ∈ M (n, H) is a nonsingular Hermitian matrix, then by theorem
6.3 there exist {λ1, . . . , λn} ⊂ F and an unimodular matrix U ∈ SL(n, H) such that
A = U · diag (λ1, . . . , λn) · U∗ and detA = λ1 · . . . · λn. The matrix A−1 is Hermitian
as well. Then we obtain

A−1 = (U · diag (λ1, . . . , λn) · U∗)−1 = (U∗)−1 · diag
(
λ−1

1 , . . . , λ−1
n

)
· U−1

By lemma 6.1, we have
{
U−1, (U∗)−1

}
⊂ SL(n, H). Then by theorem 7.1, we obtain

detA−1 =

det
(
diag

(
λ−1

1 , . . . , λ−1
n

))
= λ−1

1 · . . . · λ−1
n = (λ1 · . . . · λn)−1 = (detA)−1 .

�
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Remark 7.1. If A ∈ M (n, H) is a nonsingular Hermitian matrix, then its classic adjoint
matrix may be represented asAdjA = (Lij)n×n

or AdjA = (Rij)n×n
. We have for a

nonsingular Hermitian matrixA ∈ M (n, H):

A−1 =
Adj [A]

detA
.

SinceA−1 is Hermitian, thenA, A−1, andA, Adj [A] are commutative pairs of Hermitian
matrices. Then by Corollary 6.1, we obtain

detA ·
(
A−1A

)
= Adj [A] · A = diag (detA, . . . ,detA) .

From here we havedet (Adj [A]) = (detA)n−1.

The following criterion of invertibility of Hermitian matrix completes this subsection.

Theorem 7.3. If A ∈ M (n, H) is a nonsingular Hermitian matrix, then the following
propositions are equivalent

i) A is invertibility, i.e.A ∈ GL (n, S) ;

ii) detA 6= 0;

iii) the rows ofA are left-linearly independent;
iiii) the columns ofA are right-linearly independent.

Proof. The equivalence of the propositions i) and ii) follows from Theorems 7.1 and 7.2.
The equivalence of the propositions ii) and iii) follows from Theorem 5.7. The equivalence
of the propositions ii) and iiii) follows from Theorem 5.8 as well. �

Remark 7.2. The determinant of a Hermitian matrix satisfies Axioms 1 and 3 from Defini-
tion 1.1. It follows from Theorem 7.3, Theorems 3.4 and 3.5 and Corollary 5.1 respectively.

8. Properties of the Corresponding
Hermitian Matrices

Denote by H
m×n a set of m × n matrices with entries in H.

Def nition 8.1. For an arbitrary matrixA ∈ H
m×n the matrixA∗A ∈ M (n, H) is called

its left corresponding Hermitian andAA∗ ∈ M (m, H) is called its right corresponding
Hermitian matrix.

Theorem 8.1. If thejth column ofA ∈ H
m×n is right-multiplied byb ∈ H for all j = 1, n,

thenthe determinant of its left corresponding Hermitian matrix is multiplied byn(b).

Proof. The matrix A.j (a. j · b) is obtained from A ∈ H
m×n by right-multiplying of its

jth column on b ∈ H for all j = 1, n. Then we have

(A.j (a. j · b))
∗ = A∗

j.

(
b · aj.

)
,
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where A∗

j.

(
b · aj.

)
is obtained from A ∈ Sn×m by left-multiplying of its jth row on b.

Then we obtain

A∗

j.

(
b · aj.

)
· A.j (a. j · b) =

=




m∑
k=1

ak1ak1 . . .
m∑

k=1

ak1ak j · b . . .
m∑

k=1

ak1akn

. . . . . . . . . . . . . . .
m∑

k=1

b · ak jak1 . . .
m∑

k=1

b · ak jak j · b . . .
m∑

k=1

b · ak jakn

. . . . . . . . . . . . . . .
m∑

k=1

aknak1 . . .
m∑

k=1

aknak j · b . . .
m∑

k=1

aknakn




j − th

j − th

The matrix A∗

j.

(
b · aj.

)
· A.j (a. j · b) is Hermitian. Then by Theorem 3.2 and Lemma 5.1,

we have

det
(
A∗

j.

(
b · aj.

)
· A.j (a. j · b)

)
= b · rdetj (A∗ · A.j (a. j · b)) =

= b · rdetj (A∗A) · b = b · det (A∗A) · b = n (b) det (A∗A) .

�

Theorem 8.2. If ith row ofA ∈ H
m×n is left-multiplied byb ∈ H for all j = 1, n, then the

determinantof its right corresponding Hermitian matrix is multiplied byn(b).

The proof is similar to the proof of Theorem 8.2

Theorem 8.3. If the matrixA ∈ H
m×n has two identical columns, thendet(A∗A) = 0.

Proof. Let the matrix A ∈ H
m×n has two identical columns, sth and tth, i.e. ais = ai t

for all i ∈ Im such that s 6= t and {s, t} ⊂ Jn. Then the Hermitian adjoint matrix A∗ has
two identical rows, sth and tth. Consider the matrix A∗A.

A∗A =




a11 · · · as1 · · · at1 · · · am1

· · · · · · · · · · · · · · · · · · · · ·

a1s · · · ass · · · at s · · · ams

· · · · · · · · · · · · · · · · · · · · ·

a1s · · · ast · · · at t · · · am t

· · · · · · · · · · · · · · · · · · · · ·

a1n · · · as n · · · ats · · · amn




×




a11 · · · a1s · · · a1t · · · a1n

· · · · · · · · · · · · · · · · · · · · ·

as1 · · · ass · · · ast · · · asn

· · · · · · · · · · · · · · · · · · · · ·

at1 · · · ats · · · att · · · atn

· · · · · · · · · · · · · · · · · · · · ·

am1 · · · ams · · · amt · · · amn




=
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=




m∑
k=1

ak1 · ak1 · · ·
m∑

k=1

ak1 · ak s · · ·
m∑

k=1

ak1 · ak t · · ·
m∑

k=1

ak1 · ak n

· · · · · · · · · · · · · · · · · · · · ·
m∑

k=1

ak s · ak1 · · ·
m∑

k=1

ak s · ak s · · ·
m∑

k=1

ak s · ak t · · ·
m∑

k=1

aks · akn

· · · · · · · · · · · · · · · · · · · · ·
m∑

k=1

ak t · ak1 · · ·
m∑

k=1

ak t · ak s · · ·
m∑

k=1

ak t · ak t · · ·
m∑

k=1

ak t · ak n

· · · · · · · · · · · · · · · · · · · · ·
m∑

k=1

ak m · ak1 · · ·
m∑

k=1

ak m · ak s · · ·
m∑

k=1

ak m · ak t · · ·
m∑

k=1

ak m · ak n




Since for all k ∈ Im we have ak s = ak t, then
m∑

k=1

ak l · ak s =
m∑

k=1

ak l · ak t for all l = 1, n.

Therefore the Hermitian matrix A∗A has two identical rows, sth and tth as well. Then by
Corollary 5.1, detA∗A = 0. �

Theorem 8.4. If the matrixA ∈ H
m×n has two identical rows, thendet(A∗A) = 0.

The proof is similar to the proof of Theorem 8.3

Theorem 8.5. If ith column ofA ∈ H
m×n is replaced with itsjth column right-multiplied

by an arbitraryb ∈ H andi 6= j, thendetA∗A = 0.

Proof. Let A. i (a. j · b) is a matrix obtained from A ∈ H
m×n by replaced its ith column

with its jth column right-multiplied by an arbitrary b ∈ H and i 6= j for all j, i = 1, n.
Then its Hermitian adjoint matrix is a matrix A∗

i .

(
b · aj.

)
. This matrix is obtained from

A ∈ H
m×n by replaced its ith row with its jth row left-multiplied by b. Then by Theorem

8.1, we obtain

det
(
A∗

i .

(
b · aj.

)
· A. i (a. j · b)

)
= n (b) · det (A∗

i . (aj.) · A. i (a. j)) .

Therefore the matrix A. i (a. j) has two identical columns, i.e. ak i = ak j for all k = 1, m,
then by Theorem 8.3 we obtain

det (A∗

i . (aj.) · A. i (a. j)) = 0.

�

Theorem 8.6. If ith row ofA ∈ H
m×n is replaced with itsjth row left-multiplied by an

arbitrary b ∈ H andi 6= j, thendetAA∗ = 0.

The proof is similar to the proof of Theorem 8.5 and follows immediately from Theo-
rems 8.2 and 8.4.

Theorem 8.7. If an arbitrary column ofA ∈ H
m×n is a right linear combination of its

other columns, thendetA∗A = 0.
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Proof. Let the jth column of A is a right linear combination of other columns. That is
there exist b1, . . . , bk, such that bl ∈ H for all l = 1, k and

A =




a11 · · · a1i1 · b1 + . . . + a1jk
· bk · · · a1n

· · · · · · · · · · · · · · ·

am1 · · · amj1 · b1 + . . . + amjk
· bk · · · amn


 ,

j − th

where jl ∈ {1, . . . , j − 1, j + 1, . . . , n}. Then jth row of A∗ is the left linear combination
of the rows j1, . . . , jk with coeff cients b1, . . . , bk. That is,

A∗ =




a11 · · · am1

· · · · · · · · ·

b1 · a1j1 + . . . + bk · a1jk
a32 b1 · amj1 + . . . + bk · amjk

· · · · · · · · ·

a1n · · · amn




j − th

Then the jth column of the left corresponding Hermitian matrix A∗A is




m∑
s=1

(
b1asj1 + · · · + bk·asjk

)
as1

· · ·
m∑

s=1

(
b1 · asj1 + . . . + bk·asjk

)
(asj1b1 + . . . + asjk

bk)

· · ·
m∑

s=1
asn (asj1b1 + · · · + asjk

bk)




.

The jth row of A∗A is




m∑
s=1

as1 · (asj1 · b1 + . . . + asjk
· bk)

· · ·
m∑

s=1

(
b1 · asj1 + . . . + bk·asjk

)
(asj1b1 + . . . + asjk

bk)

· · ·
m∑

s=1

(
b1 · asj1 + · · · + bkasjk

)
asn




T

The j-th column of A∗A is the right linear combination of the column j1, . . . , jk Then by
Corollary 5.1, we obtain

detA∗A = 0.

Theorem 8.8. If an arbitrary row ofA ∈ H
m×n is a left linear combination of its other

rows, thendetAA∗ = 0.
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9. The Criterion of a Singularity of the Corresponding Hermi-
tian Matrix

Def nition 9.1. Row vectors

a1. = (a11, . . . , a1n) ,
...
am. = (am1, . . . , amn) ,

(14)

are said to be left linearly independent, if there are{b1, . . . , bm} ⊂ H (which are not all
zero) such that

b1 · a1. + . . . + bm · am. = 0. (15)

whereai j ∈ H for all i ∈ Im andj ∈ Jn, and0 is the zero row vector.

Def nition 9.2. The row vectors (14) is called the left linear dependent, if the equality (15)
is possible only when allb1, . . . , bm are zero.

Def nition 9.3. Column vectors

a.1 =




a11
...
am1


 , . . . , a. n =




a1n

...
amn


 , (16)

are said to be right linearly independent, if there are{c1, . . . , cm} ⊂ H (which are not all
zero) such that

a.j1 · c1 + . . . + a.jn · cn = 0. (17)

whereai j ∈ H for all i ∈ Im andj ∈ Jn, and0 is the zero column vector.

Def nition 9.4. The column vectors (16) is called the right linear dependent, if the equality
(17) is possible only when allc1, . . . , cm are zero.

We have immediately the following linear independence criterions which are similar to
the commutative case.

Theorem 9.1. Row vectors is left linear dependentiff one of them can be written as a left
linear combination of the others.

Theorem 9.2. Column vectors is right linear dependentiff one of them can be written as a
right linear combination of the others.

Since the principal submatrices of a Hermitian matrix are also Hermitian, then the basis
principal minor may be def ned in this noncommutative case as well.

Def nition 9.5. Let Hermitian matrixA ∈ M (n, H) has a nonzero principal minor of order
r ≤ n and all principal minors of order more thanr (if there exist) are equal zeros. Then
the natural numberr is called the rank by principal minors ofA. A principal nonzero
minor of orderr is said to be basic, rows and columns which form this minor are called
basic as well.
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Def nition 9.6. If the rows and the columns with indicesi1, . . . , ir of the Hermitian matrix
A∗A are basis, then the rows with indicesi1, . . . , ir ofA∗ are called basis and the columns
with indicesi1, . . . , ir of A ∈ H

m×n are called the basis ones as well.

Theorem 9.3. The basis rows ofA∗A andA∗ ∈ H
n×m are left-linearly independent, and

the basis columns ofA∗A andA ∈ H
m×n are right-linearly independent.

Proof. Suppose that basis rows of A∗A are left-linearly dependent. Then by Theorem
9.1 one of them can be written as a left linear combination of the others. Subtracting the
linear combination from this row, we obtain a row that consists of zeros only. Then by
Theorem 3.1 the basis principal minor of A∗A is equal to zero, but this contradicts its
def nition.

Suppose that basis columns of A∗A are right-linearly dependent. Then by Theorem
9.2 one of them can be written as a right linear combination of the others. Subtracting the
linear combination from this column, we obtain a column that consists of zeros only. Then
by Theorem 3.1 the basis principal minor of A∗A is equal to zero, but this contradicts its
def nition.

Suppose that basis rows of A∗ are left-linearly dependent. Then by Theorem 9.1 one of
them can be written as a left linear combination of the others. Hence by Theorem 8.8 the
basis principal minor of A∗A is equal to zero, but this contradicts its def nition as well.

Suppose f nally that basis columns of A∗ are right-linearly dependent. Then by The-
orem 9.2 one of them can be written as a right linear combination of the others. Hence
by Theorem 8.7 the basis principal minor of A∗A is equal to zero, but this contradicts its
def nition as well. �

Theorem 9.4. An arbitrary column ofA ∈ H
m×n is a right linear combination of its basis

columns.

Proof. If columns with indices i1, . . . , ir are the basis columns of A, then the basis
principal minor of A∗A =: (dij)n×n

is placed on the crossing of its columns and rows with
indices i1, . . . , ir as well. Denote by M the matrix of the basis principal minor. Supplement
it by the (r + 1)th row and column consisting of corresponding entries of the j-th row and
column of A∗A respectively. Suppose j ∈ {i1, . . . , ir} . The obtained matrix is denoted
by Dj .

Dj =




di1i1 · · · di1ir di1j

· · · · · · · · · · · ·

diri1 · · · dirir dirj

dj i1 · · · dj ir dj j




Since the Hermitian matrix Dj contains two coinciding columns, by Corollary 5.1 we ob-
tain that

detDj = cdetj Dj =
r∑

l=1

Lil j · dil j + Lj j · dj j = 0,

where Lilj is the left iljth cofactor of Dj . Whereas Lj j = detM 6= 0, we get

dj j = −

r∑

l=1

(detM)−1 Lilj · dilj for all j ∈ {i1, . . . , ir} . (18)
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Now suppose that j /∈ {i1, . . . , ik, ik+1, . . . , ir} and ik < j < ik+1. Consider the
matrix Dj obtained from M by supplementing it by the jth row and column:

Dj =




di1i1 · · · di1ik di1j di1ik+1
· · · di1ir

· · · · · · · · · · · · · · · · · · · · ·

diki1 · · · dikik dikj dikik+1
· · · dikir

dj i1 · · · dj ik dj j dj ik+1
· · · dj ir

dik+1i1 · · · dik+1ik dik+1j dik+1ik+1
· · · dik+1ir

· · · · · · · · · · · · · · · · · · · · ·

diri1 · · · dirik dirj dirik+1
· · · dirir




The matrix Dj is Hermitian in this case as well. Then we have

detDj = cdetjDj =
r∑

l=1

Lil j · dil j + Lj j · dj j = 0.

Since Lj j = detM 6= 0, then

djj = −

r∑

l=1

(detM)−1 Lilj · dilj , j /∈ {i1, . . . , ir} ⊂ In. (19)

Combining (18) and (19), we obtain dj j = −
r∑

l=1

(detM)−1 Lilj · dilj for all j = 1, n.

If − (detM)−1 Lilj := µl, then dj j =
r∑

l=1

µl · dilj . Since dj j =
m∑

k=1

ak jak j and dilj =

m∑
k=1

ak ilak j , then

m∑

k=1

ak jak j =
r∑

l=1

µl

m∑

k=1

ak ilak j =
m∑

k=1

r∑

l=1

µlak ilak j .

Hence, ak j =
r∑

l=1

µlak il and so ak j =
r∑

l=1

ak ilµl (∀k = 1, m). Therefore, an arbitrary col-

umn of the matrix A is the right linear combination of its basis columns with the coeff cients
µ1, . . . , µr, i.e.:

a. i1 · µ1 + . . . + a. ir · µr = a. j for all il ∈ In, for all l = 1, r.

�

The following theorem is proved in a similar manner.

Theorem 9.5. An arbitrary row ofA ∈ H
m×n is a left linear combination of its basis rows.

Theorem 9.6. The right linearly dependence of columns ofA ∈ H
m×n or the left linearly

dependence of rows ofA∗ is the necessary and sufficient condition fordetA∗A = 0.
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Proof. (Necessity) If the columns of A ∈ H
m×n are right-linearly dependent, then by

Theorem 9.2 one of them can be written as a right linear combination of the others. Hence,
by Theorem 8.7 we have detA∗A = 0.

Similarly, if the rows of A∗ are left-linearly dependent, then by Theorem 9.1 one of
them can be written as a left linear combination of the others. Hence, by Theorem 8.8 we
have detA∗A = 0 as well.

(Suff ciency) If detA∗A = 0, then by Theorem 7.3 its columns are right-linearly de-
pendent. Hence, an its basis principal minor has the order r < n. Then at least one of the
columns of A ∈ H

m×n is not basic and at least one of the rows of A∗ is not basic as well.
By Theorem 9.4 this column is a right linear combination of the other column of A and by
Theorem 9.5 this row is a right linear combination of the other rows of A∗. So by Theorem
9.2 the columns of A ∈ H

m×n are right-linearly dependent. By Theorem 9.1 the rows of
A∗ are left-linearly dependent as well. �

Def nition 9.7. If r is the maximum number of right-linearly independent columns ofA ∈

H
m×n, thenr is called the column rank of the matrixA.

Def nition 9.8. If r is the maximum number of left-linearly independent columns ofA ∈

H
m×n, thenr is called the row rank of the matrixA? denote byrankA.

It is well-known that the column rank of an arbitrary matrix over skew f eld is equal
to its row rank. Whereas we can def ne the rank of a matrix over the quaternion algebra
with division, as the maximum number of left-linearly independent rows or right-linearly
independent columns.

Theorem 9.7. A rank by principal minors ofA∗A is equal to its rank and a rank of of
A ∈ H

m×n.

Proof. Let a rank by principal minors of A∗A is r, then by Theorem 9.3 r basic n-
dimension column of A are right-linearly independent. Let for certainty they are a.1, ...,a.n.
Consider span (a.1, ...,a.n) ⊂ H

n, where H
n is the right vector space. Since by Theorem

9.4 an arbitrary column of A is right-linearly combination of its basic columns, then the
basic columns are a basis of span (a.1, ...,a.n). Then any r+1 vectors of span (a.1, ...,a.n)
are right-linearly dependent. So any r+1 columns of A are right-linearly dependent as well
and r is the maximal number of right-linearly independent columns of A, i.e. rankA = r.

Similarly, by Theorem 9.3 r basic n-dimension column of A∗A are right-linearly
independent. Denote by ã. k a column of A∗A for all k = 1, ..., n. Consider
span (ã. 1, ..., ã. n) ⊂ H

n. Since by Theorem 9.4 an arbitrary column of A is right-linearly
combination of its basic columns, then as shown in Theorem 8.7 an arbitrary column of
A∗A is right-linearly combination of its basic columns. So the basic columns are a ba-
sis of span (ã. 1, ..., ã. n) and dim (span (ã. 1, ..., ã. n)) = r. Then any r + 1 vectors
of span (ã. 1, ..., ã. n) are right-linearly dependent. So any r + 1 columns of A∗A are
right-linearly dependent as well and r is the maximal number of right-linearly independent
columns A∗A, i.e. rank (A∗A) = r. �

The following theorem is proved in a similar manner.

Theorem 9.8. A rank by principal minors ofAA∗ is equal to its rank and a rank of of
A ∈ H

m×n.
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10. Properties of the Double Determinant
of a Quaternion Square Matrix

Theorem 10.1. If A ∈ M (n, H), thendetAA∗ = detA∗A.

Proof. Suppose A ∈ M (n, H). It is easy to see that

det

(
−I A

A∗ 0

)
= det

(
0 A

A∗ −I

)
.

The matrix
(

I A

0 I

)
can be represented as a product of n2 elementary unimodular 2n×2n

matrices, i.e. for all k = 1, n2 there exists i = 1, n and j = n + 1, n2 and there exists
Pk = P

(k)
ij (aij) such that (

I A

0 I

)
=
∏

k

Pk.

Thus, (
I A

0 I

)
∈ SL(2n, H).

In a similar manner (
I 0

A∗ I

)
∈ SL(2n, H).

From this by Theorem 6.2, we have

(−1)n detAA∗ = det

(
AA∗ 0

0 −I

)
=

= det

((
I A

0 I

)(
0 A

A∗ −I

)(
I 0

A∗ I

))
= det

(
0 A

A∗ −I

)
=

= det

(
−I A

A∗ 0

)
= det

((
I 0

A∗ I

)(
−I A

A∗ 0

)(
I A

0 I

))
=

= det

(
AA∗ 0

0 −I

)
= (−1)n detA∗A.�

Def nition 10.1. For A ∈ M (n, H) the determinant of its corresponding Hermitian matrix
is called its double determinant, i.e.

ddetA := det (A∗A) = det (AA∗) .

Theorem 10.2. If ∀{A,B} ⊂ M (n, H), thenddet (A · B) = ddetA · ddetB.

Proof. Due to Theorem 6.3 for the Hermitian matrix A∗A, there exists U ∈ SL (n, H)
such that

U∗ · A∗A · U = (A · U)∗ · A · U = diag (α1, . . . , αn) ,

where αi ∈ R. If A · U = (qi j)n×n, then αi =
∑
k

qkiqki =
∑
k

n(qki) ∈ R+ for all

i = 1, n, where R+ is the set of the nonnegative real numbers. Therefore for any αi ∈ R+
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there exists √
αi ∈ R+ for all i = 1, n. By virtue of (U∗)−1 = (U−1)∗ for Hermi-

tian (U−1B)∗(U−1B) there exist W ∈ SL (n, H) and βi ∈ R+ for all i = 1, n such
that W∗(U−1B)∗(U−1B)W = diag(β1, . . . , βn). Hence by Theorems 6.3 and 10.1, we
obtain

ddet(A · B) = det(B∗(A∗A)B) = det(B∗(U∗)−1U∗(A∗A)UU−1B)

= det
((

U−1B
)
∗

diag (α1, . . . , αn)U−1B
)

= det
(
(diag

(√
α1, . . . ,

√
αn

)
U−1B)∗(diag

(√
α1, . . . ,

√
αn

)
U−1B)

)

= det
(
(diag

(√
α1, . . . ,

√
αn

)
U−1B)(diag

(√
α1, . . . ,

√
αn

)
U−1B)∗

)

= det
(
diag

(√
α1, . . . ,

√
αn

)
(U−1B)(U−1B)∗diag

(√
α1, . . . ,

√
αn

))

= det
(
diag

(√
α1, . . . ,

√
αn

)
(W−1)∗diag (β1, . . . , βn)W−1×

diag
(√

α1, . . . ,
√

αn

))
= det

((
(W−1)T

)
∗

diag
(√

α1, . . . ,
√

αn

)
×

×diag (β1, . . . , βn) · diag
(√

α1, . . . ,
√

αn

)
(W−1)T

)

= det
(
diag

(√
α1, . . . ,

√
αn

)
· diag (β1, . . . , βn) diag

(√
α1, . . . ,

√
αn

))

= α1 · . . . · αn · β1 · . . . · βn = detA · detB = detB · detA.�

Remark 10.1. The proofs of Theorems 10.1 and 10.2 are similarly to the proofs in [5,
p.533], and they differ by using different determinant functionals.

Remark 10.2. Unfortunately, if non-Hermitian matrix is not full rank, then nothing can
be said about singularity of its row and column determinant. We show it in the following
example

Example 10..1. Consider the matrixA =

(
i j
j −i

)
. Its second row is obtained from the

first row by left-multiplying byk. Then by Theorem 8.6ddetA = 0. Indeed,

A∗A =

(
−i −j
−j i

)
·

(
i j
j −i

)
=

(
2 −2k
2k 2

)
,

thenddetA = 4 + 4k2 = 0. But

cdet1A = cdet2A = rdet1A = rdet2A = −i2 − j2 = 2.

At the same timerankA = 1, that corresponds to Theorem 9.7.

11. Determinantal Representation of the Inverse Matrix

Def nition 11.1. Suppose thatA ∈ M(n, H) and

ddetA = cdetj (A∗A) =
∑

i

Lij · aij ,

for all j = 1, n. ThenLij is called the left doubleij-th cofactor ofA.

Def nition 11.2. Suppose thatA ∈ M(n, H) and

ddetA = rdeti (AA∗) =
∑

j

aij ·Ri j ,

for all i = 1, n. ThenRi j is called the right doubleij-th cofactor ofA.

Complimentary Contributor Copy



The Theory of the Column and Row Determinants... 335

Theorem 11.1. Thenecessary and sufficient condition of invertibility ofA ∈ M(n, H) is
ddetA 6= 0. Then there existsA−1 = (LA)−1 = (RA)−1, where

(LA)−1 = (A∗A)−1
A∗ =

1

ddetA




L11 L21 . . . Ln1

L12 L22 . . . Ln2

. . . . . . . . . . . .
L1n L2n . . . Lnn


 (20)

(RA)−1 = A∗ (AA∗)−1 =
1

ddetA∗




R11 R21 . . . Rn1

R12 R22 . . . Rn2

. . . . . . . . . . . .
R1n R2n . . . Rnn


 (21)

and
Lij = cdetj(A

∗A).j (a∗

. i) , R ij = rdeti(AA∗)i.

(
a∗

j.

)
,

for all i, j = 1, n.

Proof. Necessity. Suppose that there exists the inverse matrix A−1 of A ∈ M(n, H). By
virtue of rankA ≥ rank(A−1A) = rank I = n, we have rankA = n. Thus, the columns
of A are right linearly independent. By Theorem 9.6, this implies detA∗A = ddetA 6= 0.

Suff ciency. Since ddetA = detA∗A 6= 0, then by Theorem 7.1 there exists the
inverse (A∗A)−1 of the Hermitian matrix A∗A. Multiplying it on the right by A∗, we
obtain the left inverse (LA)−1 = (A∗A)−1

A∗. By representing (A∗A)−1 = (
Lij

ddetA)n×n

as the left inverse matrix, we get

(LA)−1 = (L (A∗A))−1
A∗ =

=
1

ddetA




∑
k

Lk1a
∗

k1

∑
k

Lk1a
∗

k2 . . .
∑
k

Lk1a
∗

kn

∑
k

Lk2a
∗

k1

∑
k

Lk2a
∗

k2 . . .
∑
k

Lk2a
∗

kn

. . . . . . . . . . . .∑
k

Lkna∗k1

∑
k

Lkna∗k2 . . .
∑
k

Lkna∗kn




=
1

ddetA




cdet1(A
∗A). 1 (a∗

. 1) cdet1(A
∗A). 1 (a∗

. 2) . . . cdet1(A
∗A). 1 (a∗

. n)
cdet2(A

∗A). 2 (a∗

. 1) cdet2(A
∗A). 2 (a∗

. 2) . . . cdet2(A
∗A). 2 (a∗

. n)
. . . . . . . . . . . .

cdetn(A∗A). n (a∗

. 1) cdetn(A∗A). n (a∗

. 2) . . . cdetn(A∗A). n (a∗

. n)




By virtue of

ddetA = det(A∗A) = cdetj(A
∗A) =

∑

i

cdetj(A
∗A).j (a∗

.i) · aij =
∑

i

Lij · aij ,

for all j = 1, n, we obtain (20).
Now we prove the formula (21). By Theorem 7.1 there exists an inverse matrix

(AA∗)−1 = (
Rij

ddetA)n×n. By having left-multiplied it by A∗, we obtain
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(RA)−1 = A∗ (R (A∗A))−1 =

= 1
ddetA




∑
k

a∗1kR1k

∑
k

a∗1kR2k . . .
∑
k

a∗1kRnk

∑
k

a∗2kR1k

∑
k

a∗2kR1k . . .
∑
k

a∗2kRnk

. . . . . . . . . . . .∑
k

a∗nkR1k

∑
k

a∗nkR2k . . .
∑
k

a∗nkRnk




= 1
ddetA∗




rdet1(AA∗)1. (a
∗

1.) rdet2(AA∗)2. (a
∗

1.) . . . rdetn(AA∗)n. (a
∗

1.)
rdet1(AA∗)1. (a

∗

2.) rdet2(AA∗)2. (a
∗

2.) . . . rdetn(AA∗)n. (a
∗

2.)
. . . . . . . . . . . .

rdet1(AA∗)1. (a
∗

n.) rdet2(AA∗)2. (a
∗

n.) . . . rdetn(AA∗)n. (a
∗

n.)




By virtue of

ddetA = rdeti(AA∗) =
∑

j

aij · rdeti(AA∗)i.

(
a∗

j.

)
=
∑

j

aij · R ij ,

for all i = 1, n, the formula (21) is valid. The equality (LA)−1 = (RA)−1 is immediately
from the well-known fact that if there exists an inverse matrix over an arbitrary skew f eld,
then it is unique.�

Remark 11.1. In Theorem 11.1, the inverse matrixA−1 of an arbitrary A ∈ M(n, H)
under the assumption ofddetA 6= 0 is represented by the analog of the classical adjoint
matrix. If we denote this analog of the adjoint matrix overH by Adj[[A]], then the next
formula is valid overH:

A−1 =
Adj[[A]]

ddetA
.

Remark 11.2. From Theorems 9.6 and 10.2 follows that for an arbitrary matrixA ∈

M (n, H) the double determinantddetA satisfies Axioms 1, 2, 3 of Definition 1.1.

12. The Relations between the Noncommutative Determinants

It is evident that ddetA = Mdet (A∗A), then from [1, 6] we have the following relations
between the noncommutative determinants of Moore, Study, Diedonné and the double de-
terminant,

ddetA = Mdet (A∗A) = SdetA = Ddet2A.

Due to wide use recently the quasideterminants of Gelfand-Retax relations between them
and the row and column determinants can be important.

Theorem 12.1. If A ∈ M(n, H) is a invertible matrix, then there are the following repre-
sentations of a quasideterminant| A |pq for all p, q = 1, ..., n

| A |pq=
ddetA · cdetq(A∗A). q

(
a∗

. p

)

n(cdetq(A∗A). q

(
a∗

. p

)
)

, (22)
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| A |pq=
ddetA · rdetp(AA∗)p .

(
a∗

q .

)

n(rdetp(AA∗)p .

(
a∗

q .

)
)

. (23)

Proof. Let A−1 = (bij) is the inverse of A ∈ M(n, H). By (1) there is simple relation-
ship between the quasideterminant | A |p,q of A ∈ M(n,H) and an element of its inverse
A−1 = (bij), that is

| A |pq= b−1
qp

for all p, q = 1, ..., n. At the same time the theory of column and row determinants by
Theorem (11.1) gives the deteminantal representations of the inverse matrix by the left (20)
and right (21) double complements. So we have

| A |pq= b−1
qp =

(
Lpq

ddetA

)
−1

=

(
cdetq(A

∗A). q

(
A∗

. p

)

ddetA

)
−1

, (24)

| A |pq= b−1
qp =

(
Rpq

ddetA

)
−1

=

(
rdetp(AA∗)p .

(
A∗

q .

)

ddetA

)
−1

. (25)

Since ddetA 6= 0 ∈ F, then ∃(ddetA)−1 ∈ F. In turn, we have

cdetq(A
∗A). q

(
A∗

. p

)
−1

=
cdetq(A∗A). q

(
A∗

. p

)

n(cdetq(A∗A). q

(
A∗

. p

)
)
, (26)

rdetp(AA∗)p .

(
A∗

q .

)
−1

=
rdetp(AA∗)p .

(
A∗

q .

)

n(rdetp(AA∗)p .

(
A∗

q .

)
)
. (27)

Substituting (26) in (24) and (27) in (25), we respectively obtain (22) (23). �

The formula (22) represent the quasideterminant | A |p,q of A ∈ M(n,H) for all
p, q = 1, ..., n by the column determinant of A∗A, and (23) represent the quasideterminant
by the row determinant of AA∗.

13. Cramer’s Rule for Systems of Linear Equations over
Quaternion Algebra

Theorem 13.1. Let
A · x = y (28)

be a right system of linear equations with a matrix of coefficientsA ∈ M(n, H), a column
of constantsy = (y1, . . . , yn)T ∈ H

n×1, and a column of unknownsx = (x1, . . . , xn)T . If
ddetA 6= 0, then the solution to the linear system (28) is given by components

xj =
cdetj(A

∗A).j (f)

ddetA
, j = 1, n, (29)

where f = A∗y.
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Proof. By Theorem 11.1, A is invertibility. Thus, there exists the unique inverse matrix
A−1. From this the existence and uniqueness of solutions of (28) follows immediately.
Consider A−1 as the left inverse: (LA)−1 = (A∗A)−1

A∗. Then we get

x = A−1 · y = (A∗A)−1
A∗ · y.

Denote f := A∗ · y. Here f = (f1, f2, ..., fn)T is the n-dimension column vector over
H. By considering (A∗A)−1 as the left inverse, the solution of (28) is represented by
components:

xj = (ddetA)−1
n∑

i=1

Lij · fi, j = 1, n,

where Lij is the left ij-th cofactor of the Hermitian matrix (A∗A). From here we obtain
(29).�

Theorem 13.2. Let

x · A = y (30)

be a left system of linear equations with a matrix of coefficientsA ∈ M(n, H), a row
of constantsy = (y1, . . . , yn) ∈ H

1×n, and a row of unknownsx = (x1, . . . , xn). If
ddetA 6= 0, then the solution to the linear system (30) is given by components

xi =
rdeti(AA∗)i. (z)

ddetA
, i = 1, n (31)

wherez = yA∗.

Proof is similar to the proof of Theorem 13.1.

Remark 13.1. The formulas (29) and (31) are the obvious and natural generalizations of
Cramer’s rule for systems of linear equations over quaternion algebra.

The closest analog to Cramer’s rule, as follows from Theorem 7.1, can be obtained in
the following specific cases.

Theorem 13.3. If the matrix of coefficientsA ∈ M(n, H) in the right system of linear
equations overH (28) is Hermitian, then the unique solution vectorx = (x1, x2, . . . , xn)
of the system is given by

xj =
cdetjA.j (y)

detA
j = 1, n.

Theorem 13.4. If the matrix of coefficientsA ∈ M(n, H) in the left system of linear equa-
tions overH (30) is Hermitian, then the unique solution vectorx = (x1, x2, . . . , xn) is
given by

xi =
rdetiAi. (y)

detA
i = 1, n.
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14. Cramer’s Rule for Some Matrix Equations

We denote A∗B =: B̂ = (b̂ij), BA∗ =: B̌ = (b̌ij).

Theorem 14.1. Suppose
AX = B (32)

is a right matrix equation, where{A,B} ∈ M(n, H) are given,X ∈ M(n, H) is unknown.
If ddetA 6= 0, then (32) has a unique solution, and the solution is

xi j =
cdeti(A

∗A). i

(
b̂.j

)

ddetA
(33)

where b̂.j is thejth column ofB̂ for all i, j = 1, ..., n.

Proof. By Theorem 11.1 the matrix A is invertible. There exists the unique inverse
matrix A−1. From this it follows that the solution of (32) exists and is unique, X =
A−1B. If we represent A−1 = (A∗A)−1A∗ as a left inverse and use the determinantal
representation of (A∗A)−1 by (13), then for all i, j = 1, ..., n we obtain

xij =
1

ddetA

n∑

k=1

Lkib̂kj ,

where Lij is a left ijth cofactor of (A∗A) for all i, j = 1, ..., n. From this by Lemma 3.1
and denoting the j-th column of B̂ by b̂.j , it follows (33).�

Theorem 14.2. Suppose
XA = B (34)

is a left matrix equation, where{A,B} ∈ M(n, H) are given,X ∈ M(n, H) is unknown.
If ddetA 6= 0, then (8) has a unique solution, and the solution is

xi j =
rdetj(AA∗)j.

(
b̌i .

)

ddetA
(35)

where b̌i. is theith column ofB̌ for all i, j = 1, ..., n.

Proof. By Theorem 11.1 the matrix A is invertible. There exists the unique inverse
matrix A−1. From this it follows that the solution of (34) exists and is unique, X =
BA−1. If we represent (A)−1 = A∗ (AA∗)−1 as a right inverse and use the determinantal
representation of (AA∗)−1 by (12), then for all i, j = 1, ..., n we have

xij =
1

ddetA

n∑

k=1

b̌i kRjk.

where Ri j is a right ijth cofactor of (AA∗) for all i, j = 1, ..., n. From this by means of
Lemma 3.2 and denoting the ith row of B̌ by b̌i ., it follows (35). �

We denote A∗CB∗ =: C̃ = (c̃ij).
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Theorem 14.3. Suppose
AXB = C (36)

is a two-sided matrix equation, where{A,B,C} ∈ M(n, H) are given,X ∈ M(n, H) is
unknown. IfddetA 6= 0 andddetB 6= 0 , then (36) has a unique solution, and the solution
is

xi j =
rdetj(BB∗)j.

(
cA

i .

)

ddetA · ddetB
, (37)

or

xi j =
cdeti(A

∗A). i

(
cB

.j

)

ddetA · ddetB
, (38)

wherecA
i . := (cdeti(A

∗A). i (c̃.1) , . . . , cdeti(A
∗A). i (c̃.n)) is the row vector andcB

.j :=

(rdetj(BB∗)j. (c̃1 .) , . . . , rdetj(BB∗)j. (c̃n .))
T is the column vector and̃ci ., c̃. j are the

ith row vector and the jth column vector of̃C, respectively, for alli, j = 1, ..., n.

Proof. By Theorem 11.1 the matrices A and B are invertible. There exist the unique
inverse matrices A−1 and B−1. From this it follows that the solution of (36) exists and
is unique, X = A−1CB−1. If we represent A−1 = (A∗A)−1A∗ as a left inverse and
(B)−1 = B∗ (BB∗)−1 as a right inverse, then for all i, j = 1, ..., n we have

X = (A∗A)−1A∗CB∗ (BB∗)−1 =

=




x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . .
xn1 xn2 . . . xnn


 = 1

ddetA




LA
11 LA

21 . . . LA
n1

LA
12 LA

22 . . . LA
n2

. . . . . . . . . . . .
LA

1n LA
2n . . . LA

nn


×

×




c̃11 c̃12 . . . c̃1n

c̃21 c̃22 . . . c̃2n

. . . . . . . . . . . .
c̃n1 c̃n2 . . . c̃nn




1
ddetA




RB
11 RB

21 . . . RB
n1

RB
12 RB

22 . . . RB
n2

. . . . . . . . . . . .
RB

1n RB
2n . . . RB

nn


 ,

where LA
ij is a left ijth cofactor of (A∗A) and RB

i j is a right ijth cofactor of (BB∗) for all
i, j = 1, ..., n. This implies

xij =

n∑
m=1

(
n∑

k=1

LA

kic̃ km

)
RB

jm

ddetA · ddetB
, (39)

for all i, j = 1, n. From this by Lemma 3.2, we obtain

n∑

k=1

LA

kic̃k m = cdeti(A
∗A). i (c̃. m) ,

where c̃. m is the mth column-vector of C̃ for all m = 1, ..., n. Denote by cA
i . :=

(cdeti(A
∗A). i (c̃.1) , . . . , cdeti(A

∗A). i (c̃.n)) the row-vector for all i = 1, ..., n. Reduc-

ing the sum
n∑

m=1

(
n∑

k=1

LA

kic̃ km

)
RB

jm by Lemma 3.1, we obtain an analog of Cramer’s rule

for (36) by (37).
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Having changed the order of summation in (39), we have

xij =

n∑
k=1

LA

ki

(
n∑

m=1
c̃ kmRB

jm

)

ddetA · ddetB
.

By Lemma 3.1, we obtain
n∑

m=1
ck mRB

j m = rdetj(BB∗)j. (c̃k .), where c̃k . is a kth

row-vector of C̃ for all k = 1, ..., n. We denote by

cB

. j := (rdetj(BB∗)j. (c̃1 .) , . . . , rdetj(BB∗)j. (c̃n .))
T

the column-vector for all j = 1, ..., n. Reducing the sum
n∑

k=1

LA

ki

(
n∑

m=1
c̃ kmRB

jm

)
by

Lemma 3.2, we obtain Cramer’s rule for (36) by (38). �

In solving the matrix equations by Cramer’s rules (33), (35), (37), (38) we do not use
the complex representation of quaternion matrices and work only in the quaternion algebra.

15. Example 1

Let us consider the two-sided matrix equation

AXB = C (40)

where

A =




i −j k
k −i 1
2 k −j


 , B =



−k j 2
i k i
−j 1 i


 and C =




1 i j
k j −2
i 1 j


 .

Then we have

A∗ =



−i −k 2
j i −k
−k 1 j


 , A∗A =




6 j + 3k −j − k
−j − 3k 3 i
j + k −i 3




and

B∗ =




k −i j
−j −k 1
2 −i −i


 , BB∗ =




6 −3i + j −i + j
3i − j 3 1 + 2k
i − j 1 − 2k 3


 ,

C̃ = A∗CB∗ =




2k 1 − i − k 3 + i + 3k
−2 − 4i −2 + i − k i − k
−4 + 2i 1 + 2i + j 1 + 4i + j


 .

It is easy to get, ddetA = detA∗A = 8 and ddetB = detBB∗ = 4. Therefore (40) has
a solution. We shall f nd it by (37). At f rst we obtain the row-vectors cA

i . for all i = 1, 2, 3.
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cdet1(A
∗A). 1 (c̃.1) = cdet1




2k j + 3k −j − k
−2 − 4i 3 i
−4 + 2i −i 3


 = 3 · 3(2k)−

−i(−i)(3j + 5k) + (−j − k)(−i)(−2 − 4i) − 3(j + 3k)(−2 − 4i)+
+(j + 3k)i(−4 + 2i) − 3(−j − k)(−4 + 2i) =
= 24j + 8k,

and so forth. Continuing in the same way, we get

cA
1 . = (24j + 8k,−8 − 8i + 4j + 4k, 8 + 8i + 4j + 4k),

cA
2 . = (−20 − 36i,−10 − 2i − 12j − 12k,−2 − 2i + 12j + 4k),

cA
3 . = (12 + 4i, 6 + 2i + 12j − 4k, 6 + 10i − 4j + 4k).

Then by (37) we have

x1 1 =
rdet1(BB∗)1. (cA

1 .)
ddetA·ddetB =

= 1
32 · rdet1




24j + 8k −8 − 8i + 4j + 4k 8 + 8i + 4j + 4k
3i − j 3 1 + 2k
i − j 1 − 2k 3


 =

= 1
30 · ((24j + 8k) · 3 · 3 − (24j + 8k)(1 + 2k)(1 − 2k)+

+(−8 − 8i + 4j + 4k)(1 + 2k)(i − j) − (−8 − 8i + 4j + 4k)(3i − j)3+
+(8 + 8i + 4j + 4k)(1 − 2k)(3i − j) − (8 + 8i + 4j + 4k)(i − j)3) =
= 1

32 · (−32 + 32i),

and so forth. Continuing in the same way, we obtain

x11 = −32+32i
32 , x12 = −88−72i+24j−8k

32 x13 = 24+8i−40j+56k
32 ,

x21 = −16i+32j−48k
32 , x22 = 20−28i−116j−76k

32 , x23 = −44+68i+20j+12k
32 ,

x31 = 16+16j+32k
32 , x32 = 20+44i+52j−28k

32 , x32 = −12−20i+12j−4k
32 .

16. The Singular Value Decomposition and the Moore-Penrose
Inverse of a Quaternion Matrix

In the all following sections we shall consider the Hamilton quaternion skew f eld H (the
quaternion algebra over the real f eld).

Due to the noncommutativity of quaternions, there are two types of eigenvalues.

Def nition 16.1. LetA ∈ M (n, H). A quaternionλ is said to be a right eigenvalue ofA if
A ·x = x ·λ for some nonzero quaternion column-vectorx. Similarlyλ is a left eigenvalue
if A · x = λ · x.

The theory on the left eigenvalues of quaternion matrices has been investigated in par-
ticular in [12, 24, 26]. The theory on the right eigenvalues of quaternion matrices is more
developed. In particular we note [2, 8, 27]. From this theory we cite the following proposi-
tions.
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Proposition 16..1. [27] Let A ∈ M (n, H) is Hermitian. ThenA has exactlyn real right
eigenvalues.

Def nition 16.2. SupposeU ∈ M (n, H) and U∗U = UU∗ = I, then the matrixU is
called unitary.

Proposition 16..2. [27] Let A ∈ M (n, H) be given. Then,A is Hermitian if and
only if there are a unitary matrixU ∈ M (n, H) and a real diagonal matrixD =
diag (λ1, λ2, . . . , λn) such thatA = UDU∗, whereλ1, ..., λn are right eigenvalues of
A.

Suppose A ∈ M (n, H) is Hermitian and λ ∈ R is its right eigenvalue, then A · x =
x · λ = λ · x. This means that all right eigenvalues of a Hermitian matrix are its left
eigenvalues as well. For real left eigenvalues, λ ∈ R, the matrix λI − A is Hermitian.

Def nition 16.3. If t ∈ R, then for a Hermitian matrixA the polynomialpA (t) =
det (tI − A) is said to be the characteristic polynomial ofA.

The roots of the characteristic polynomial of a Hermitian matrix are its real left eigen-
values, which are its right eigenvalues as well. We shall investigate coeff cients of the
characteristic polynomial like to the commutative case (see, e.g. [21]). At f rst we prove
the auxiliary lemma.

Lemma 16.1. Let A ∈ M (n, H) is Hermitian and the columnsi1, . . . , ik of A coincide
with the unit vectorsei1 , . . . , eik . ThendetA equals to a principal minor obtained fromA
by deleting the rows and columnsi1, . . . , ik.

Proof. We claim that if A ∈ M (n, H) is Hermitian and the columns i1, . . . , ik of A

coincide with the unit column vectors ei1 , . . . , eik respectively, then the rows i1, . . . , ik
coincide with the unit row vectors ei1 , . . . , eik as well. Using Lemma 3.2 we expand detA
along the i1th column, where ai1 k = 0 for all k 6= i1 and ai1 i1 = 1. Then we obtain

detA = cdeti1A =
= −cdeti1A

11
i1. (a1.) · a1i1 − . . . + cdet1A

i1i1 · ai1i1 − . . . − cdeti1A
nn
i1. (an.) · ani1

= −cdeti1A
11
i1. (a1.) · 0 + . . . + cdet1A

i1i1 · 1 + . . . − cdeti1A
nn
i1. (an.) · 0

= cdet1A
i1i1 .

Since the submatrix Ai1i1 is obtained from A by deleting both the i1-th rows and columns,
then by Theorem 4.1 it follows that cdet1A

i1i1 = detAi1i1 . Now we calculate this prin-
cipal minor expanding along the i2-th column. Similarly to above we have that detA is
equals to a principal minor obtained from A by deleting both the i1th and i2th rows and
columns. Continuing this line of reasoning we complete the proof of the lemma. �

Taking into account Lemma 16.1 we can prove the following theorem by analogy to the
commutative case (see, e.g. [21]).

Theorem 16.1. If A ∈ M (n, H) is Hermitian, thenpA (t) = tn − d1t
n−1 + d2t

n−2 −

. . . + (−1)n dn, wheredr is the sum of principle minors ofA of orderr, 1 ≤ r < n, and
dn = detA.
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For any quaternion matrix A ∈ M (n, H), the eigenvalues of A∗A are all nonnegative
real numbers [25].

Def nition 16.4. Let A ∈ H
m×n. The nonnegative square roots of then eigenvalues of

A∗A are called the singular values ofA.

A key value for a determinantal representation of the Moore-Penrose inverse over the
quaternion skew f eld have the following singular value decomposition (SVD) theorem.

Theorem 16.2. [25, 27] (SVD) LetA ∈ H
m×n
r . Then there exist unitary quaternion matri-

cesU1 ∈ H
m×m andU2 ∈ H

n×n such that

U1AU2 =

[
Dr 0

0 0

]
∈ H

m×n, (41)

whereDr = diag (σ1, σ2, . . . , σr) , σ1 ≥ σ2 ≥ . . . ≥ σr > 0, andσ1, σ2, . . . , σr are the
all nonzero singular values ofA.

As unitary matrices are invertible, the equality (41) can be written as follows

A = VΣW∗, (42)

where V ∈ H
m×m and W ∈ H

n×n are unitary matrices, and the matrix Σ = (σij) ∈

H
m×n
r is such that σ11 ≥ σ22 ≥ . . . ≥ σrr > σr+1 r+1 = . . . = σqq = 0, q = min {n, m}.

We get the following lemmas, which have the analogues in the complex case [11].

Lemma 16.2. SupposeA ∈ H
m×n has the singular value decomposition,A = VΣW∗.

Let A+ = W · Σ+ · V∗, whereΣ+ ∈ H
n×m is obtained fromΣ by transposition and

replacing positive entries ofΣ by reciprocal. Then forA+ the following conditions are
true

1) (AA+)
∗

= AA+;
2) (A+A)

∗

= A+A;
3) AA+A = A;
4) A+AA+ = A+.

(43)

Proof. We obviously have
(
ΣT
)
∗

= Σ and
(
(Σ+)

T
)
∗

= Σ+ for Σ from the SVD by
(42) and Σ+. Then it follows that

(AA+)
∗

= (VΣW∗WΣ+V∗)
∗

= (VΣIΣ+V∗)
∗

=
(
V (Σ+)

T
ΣTV∗

)
∗

=

=
(
V (Σ+)

T
W∗WΣTV∗

)
∗

= VΣW∗WΣ+V∗ = AA+.

The proof of 1) is completed. By analogy we can prove 2).

Now we prove the condition 3). Note that ΣΣ+ =

[
Ir 0

0 0

]
∈ H

m×m. This implies

ΣΣ+Σ = Σ, then AA+A = VΣW∗ · WΣ+V∗ · VΣW∗ = V · ΣΣ+Σ · W∗ =
V · Σ · W∗ = A.

By analogy to 3) can be prove the condition 4).
�
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Lemma 16.3. There exists a unique matrixA+ that satisfies conditions 1)-4) in (43).

Proof. Suppose that both matrices B ∈ H
n×m and C ∈ H

n×m satisfy conditions 1)-4)
in Lemma 16.2. Then we have

B = BAB = B (AB)∗ = BB∗A∗ = BB∗ (ACA)∗ = BB∗A∗C∗A∗

= B (AB)∗ (AC)∗ = BABAC = BAC = BACAC = (BA)∗ (CA)∗ C

= A∗B∗A∗C∗C = (ABA)∗ C∗C = A∗C∗C = (CA)∗ C = CAC = C.

�

Def nition 16.5. LetA ∈ H
m×n. The matrixA+ is called the Moore-Penrose inverse if it

satisfies all conditions in (43).

By analogy to the complex case [3] we have the theorem about the limit representation
of the Moore-Penrose inverse.

Theorem 16.3. If A ∈ H
m×n and A+ is its Moore-Penrose inverse, thenA+ =

lim
α→0

A∗ (AA∗ + αI)−1 = lim
α→0

(A∗A + αI)−1
A∗, whereα ∈ R+.

Proof. Suppose A = VΣW∗, then A∗ = WΣ∗V∗ and A+ = WΣ+V∗. Since V is
unitary, then V∗ = V−1. We have

A∗ (AA∗ + αI)−1 = WΣV∗ · (VΣ · W∗W · ΣV∗ + αI)−1 =

= WΣV∗ · (V (ΣΣ∗ + αI)V∗)−1 = WΣ (ΣΣ∗ + αI)−1
V∗.

Consider the matrix

Σ (ΣΣ∗ + αI)−1 =




λ1

λ2
1
+α

. . . 0

. . . . . . . . . 0

0 . . . λr

λ2
r+α

...
... . . .
0 0




.

It is obviously that lim
α→0

Σ (ΣΣ∗ + αI)−1 = Σ+. This implies lim
α→0

A∗ (AA∗ + αI)−1 =

lim
α→0

WΣ (ΣΣ∗ + αI)−1
V∗ = A+.

By analogy we can prove that A+ = lim
α→0

(A∗A + αI)−1
A∗. �

It is evidently the following corollary.

Corollary 16.1. If A ∈ H
m×n, then the following statements are true.

i) If rankA = n, thenA+ = (A∗A)−1
A∗ .

ii) If rankA = m, thenA+ = A∗ (AA∗)−1 .

iii) If rankA = n = m, thenA+ = A−1 .
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17. Determinantal Representation of the Moore-Penrose In-
verse

Lemma 17.1. If A ∈ H
m×n
r , thenrank (A∗A). i

(
a∗

.j

)
≤ r.

Proof. Let’s lead elementary transformations of the matrix (A∗A). i

(
a∗

.j

)
right-

multiplying it by elementary unimodular matrices Pi k

(
−ajk

)
, k 6= j. The matrix

P i k

(
−ajk

)
has −aj k in the (i, k) entry, 1 in all diagonal entries, and 0 in others. It

is the matrix of an elementary transformation. Right-multiplying a matrix by P i k

(
−ajk

)
,

where k 6= j, means adding to kth column its ith column right-multiplying on −ajk. Then
we get

(A∗A). i

(
a∗

. j

)
·
∏

k 6=i

Pi k (−aj k) =




∑
k 6=j

a∗1kak1 . . . a∗1j . . .
∑
k 6=j

a∗1kakn

. . . . . . . . . . . . . . .∑
k 6=j

a∗nkak1 . . . a∗nj . . .
∑
k 6=j

a∗nkakn




i−th

.

The obtained matrix has the following factorization.



∑
k 6=j

a∗1kak1 . . . a∗1j . . .
∑
k 6=j

a∗1kakn

. . . . . . . . . . . . . . .∑
k 6=j

a∗nkak1 . . . a∗nj . . .
∑
k 6=j

a∗nkakn




i−th

=

=




a∗11 a∗12 . . . a∗1m

a∗21 a∗22 . . . a∗2m

. . . . . . . . . . . .
a∗n1 a∗n2 . . . a∗nm







a11 . . . 0 . . . an1

. . . . . . . . . . . . . . .
0 . . . 1 . . . 0
. . . . . . . . . . . . . . .
am1 . . . 0 . . . amn




i−th

j − th.

Denote by Ã :=




a11 . . . 0 . . . an1

. . . . . . . . . . . . . . .
0 . . . 1 . . . 0
. . . . . . . . . . . . . . .
am1 . . . 0 . . . amn




i−th

j − th. The matrix Ã is obtained from

A by replacing all entries of the jth row and of the ith column with zeroes except that
the (j, i) entry equals 1. Elementary transformations of a matrix do not change its rank
and the rank of a matrix product does not exceed a rank of each factors. It follows that
rank (A∗A). i

(
a∗

.j

)
≤ min

{
rankA∗, rank Ã

}
. It is obviously that rank Ã ≥ rankA =

rankA∗. Taking into account Theorem 9.7 we obtain rankA∗A = rankA. This com-
pletes the proof. �

The following lemma is proved in the same way.
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Lemma 17.2. If A ∈ H
m×n
r , thenrank (AA∗). i

(
a∗

.j

)
≤ r.

We shall use the following notations. Let α := {α1, . . . , αk} ⊆ {1, . . . , m} and
β := {β1, . . . , βk} ⊆ {1, . . . , n} be subsets of the order 1 ≤ k ≤ min {m, n}.
By Aα

β denote the submatrix of A determined by the rows indexed by α and the
columns indexed by β. Then Aα

α denotes the principal submatrix determined by the
rows and columns indexed by α. If A ∈ M (n, H) is Hermitian, then by |Aα

α| de-
note the corresponding principal minor of detA. For 1 ≤ k ≤ n, denote by Lk,n :=
{α : α = (α1, . . . , αk) , 1 ≤ α1 ≤ . . . ≤ αk ≤ n} the collection of strictly increasing se-
quences of k integers chosen from {1, . . . , n}. For f xed i ∈ α and j ∈ β, let Ir, m{i} :=
{α : α ∈ Lr,m, i ∈ α}, Jr, n{j} := {β : β ∈ Lr,n, j ∈ β}.

Lemma 17.3. If A ∈ H
m×n andt ∈ R, then

cdeti (tI + A∗A). i

(
a∗

.j

)
= c

(ij)
1 tn−1 + c

(ij)
2 tn−2 + . . . + c(ij)

n , (44)

wherec
(ij)
n = cdeti (A∗A). i

(
a∗

. j

)
andc

(ij)
k =

∑
β∈Jk, n{i}

cdeti

(
(A∗A). i

(
a∗

. j

))
β
β for all

k = 1, n − 1, i = 1, n, andj = 1, m.

Proof. Denote by b. i the ith column of the Hermitian matrix A∗A =: (bij)n×n
. Con-

sider the Hermitian matrix (tI + A∗A). i (b. i) ∈ H
n×n. It differs from (tI + A∗A) an

entry bii. Taking into account Theorem 16.1 we obtain

det (tI + A∗A). i (b. i) = d1t
n−1 + d2t

n−2 + . . . + dn, (45)

where dk =
∑

β∈Jk, n{i}

det (A∗A) β
β is the sum of all principal minors of order k that contain

the ith column for all k = 1, n − 1 and dn = det (A∗A). Consequently we have

b. i =




∑
l

a∗1lali

∑
l

a∗2lali

...∑
l

a∗nlali




=
∑

l

a∗

. lali,

where a∗

. l is the lth column-vector of A∗ for all l = 1, m. Taking into account Theorem
4.1, Lemma 3.1 and Theorem 3.3 we obtain on the one hand

det (tI + A∗A). i (b. i) = cdeti (tI + A∗A). i (b. i) =
=
∑
l

cdeti (tI + A∗A). l (a
∗

. lal i) =
∑
l

cdeti (tI + A∗A). i (a∗

. l) · ali
(46)

On the other hand having changed the order of summation, we get for all k = 1, n − 1

dk =
∑

β∈Jk, n{i}

det (A∗A) β
β =

∑
β∈Jk, n{i}

cdeti (A∗A) β
β =

∑
β∈Jk, n{i}

∑
l

cdeti ((A∗A). i (a∗

. lal i))
β
β =

∑
l

∑
β∈Jk, n{i}

cdeti ((A∗A). i (a∗

. l))
β
β · al i.

(47)
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By substituting (46) and (47) in (45), and equating factors at al i when l = j, we obtain the
equality (44). �

By analogy can be proved the following lemma.

Lemma 17.4. If A ∈ H
m×n andt ∈ R, then

rdetj(tI + AA∗)j . (a
∗

i.) = r
(ij)
1 tn−1 + r

(ij)
2 tn−2 + . . . + r(ij)

n ,

wherer
(ij)
n = rdetj(AA∗)j . (a

∗

i. ) and r
(ij)
k =

∑
α∈Ir,m{j}

rdetj ((AA∗)j . (a
∗

i. ))
α
α for all

k = 1, n − 1, i = 1, n, andj = 1, m.

Theorem 17.1. If A ∈ H
m×n
r , then the Moore-Penrose inverseA+ =

(
a+

ij

)
∈ H

n×m

possess the following determinantal representations:

a+
ij =

∑
β∈Jr, n{i}

cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
, (48)

or

a+
ij =

∑
α∈Ir,m{j}

rdetj ((AA∗)j . (a
∗

i. ))
α
α

∑
α∈Ir, m

|(AA∗) α
α|

. (49)

Proof. At f rst we prove (48). Using Theorem 16.3, we have

A+ = lim
α→0

(αI + A∗A)−1
A∗.

The matrix (αI + A∗A) ∈ H
n×n is a full-rank Hermitian matrix. Taking into account

Theorem 7.1 it has an inverse, which we represent as a left inverse matrix

(αI + A∗A)−1 =
1

det (αI + A∗A)




L11 L21 . . . Ln1

L12 L22 . . . Ln2

. . . . . . . . . . . .
L1n L2n . . . Lnn


 ,

where Lij is a left ijth cofactor of a matrix αI + A∗A. Then we have

(αI + A∗A)−1
A∗ =

= 1
det(αI+A∗A)




n∑
k=1

Lk1a
∗

k1

n∑
k=1

Lk1a
∗

k2 . . .
n∑

k=1

Lk1a
∗

km

n∑
k=1

Lk2a
∗

k1

n∑
k=1

Lk2a
∗

k2 . . .
n∑

k=1

Lk2a
∗

km

. . . . . . . . . . . .
n∑

k=1

Lkna∗k1

n∑
k=1

Lkna∗k2 . . .
n∑

k=1

Lkna∗km




.
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Using the def nition of a left cofactor, we obtain

A+ = lim
α→0




cdet1(αI+A∗A).1(a∗

.1)
det(αI+A∗A) . . .

cdet1(αI+A∗A).1(a∗

.m)
det(αI+A∗A)

. . . . . . . . .
cdetn(αI+A∗A).n(a∗

.1)
det(αI+A∗A) . . .

cdetn(αI+A∗A).n(a∗

.m)
det(αI+A∗A)


 (50)

By Theorem 16.1 we have det (αI + A∗A) = αn + d1α
n−1 + d2α

n−2 + . . . + dn, where
dk =

∑
β∈Jk, n

∣∣∣(A∗A) β
β

∣∣∣ is a sum of principal minors of A∗A of order k for all k = 1, n − 1

and dn = detA∗A. Since rankA∗A = rankA = r and dn = dn−1 = . . . = dr+1 = 0, it
follows that

det (αI + A∗A) = αn + d1α
n−1 + d2α

n−2 + . . . + drα
n−r.

Using (44) we get

cdeti (αI + A∗A).i

(
a∗

.j

)
= c

(ij)
1 αn−1 + c

(ij)
2 αn−2 + . . . + c(ij)

n ,

for all i = 1, n and j = 1, m, where c
(ij)
k =

∑
β∈Jk, n{i}

cdeti

(
(A∗A). i

(
a∗

.j

))
β
β for all

k = 1, n − 1 and c
(ij)
n = cdeti (A∗A).i

(
a∗

.j

)
.

Now we prove that c
(ij)
k = 0, when k ≥ r+1 for all i = 1, n, and j = 1, m. By Lemma

17.1 rank (A∗A). i

(
a∗

.j

)
≤ r, then the matrix (A∗A). i

(
a∗

.j

)
has no more r right-linearly

independent columns.
Consider

(
(A∗A) . i

(
a∗

.j

))
β
β , when β ∈ Jk,n{i}. It is a principal submatrix of

(A∗A). i

(
a∗

.j

)
of order k ≥ r + 1. Deleting both its ith row and column, we obtain a

principal submatrix of order k − 1 of A∗A. We denote it by M. The following cases are
possible.

1. If k = r + 1 and detM 6= 0. In this case all columns of M are right-
linearly independent. The addition of all of them on one coordinate to columns
of
(
(A∗A). i

(
a∗

.j

))
β
β keeps their right-linear independence. Hence, they are ba-

sis in a matrix
(
(A∗A) . i

(
a∗

.j

))
β
β , and by Theorem 9.4 the ith column is the

right linear combination of its basis columns. From this by Theorem 8.7, we get
cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β = 0, when β ∈ Jk,n{i} and k ≥ r + 1.

2. If k = r + 1 and detM = 0, than p, (p < k), columns are basis in
M and in

(
(A∗A). i

(
a∗

.j

))
β
β . Then by Theorems 9.4 and 8.7 we obtain

cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β = 0 as well.

3. If k > r + 1, then from Theorems 9.7 and 9.6 it follows that detM = 0 and p,
(p < k − 1), columns are basis in the both matrices M and

(
(A∗A) . i

(
a∗

.j

))
β
β .

Then by Theorems 9.4 and 8.7, we obtain that cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β = 0.
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Thus in all cases we have cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β = 0, when β ∈ Jk,n{i} and r + 1 ≤

k < n. From here if r + 1 ≤ k < n, then

c
(ij)
k =

∑

β∈Jk, n{i}

cdeti

(
(A∗A) . i

(
a∗

.j

)) β
β = 0,

and
c(ij)
n = cdeti (A∗A). i

(
a∗

.j

)
= 0

for all i = 1, n and j = 1, m. Hence,

cdeti (αI + A∗A). i

(
a∗

. j

)
= c

(ij)
1 αn−1 + c

(ij)
2 αn−2 + . . . + c(ij)

r αn−r

for all i = 1, n and j = 1, m. By substituting these values in the matrix from (50), we
obtain

A+ = lim
α→0




c
(11)

1
αn−1+...+c

(11)
r αn−r

αn+d1αn−1+...+drαn−r . . .
c
(1m)

1
αn−1+...+c

(1m)
r αn−r

αn+d1αn−1+...+drαn−r

. . . . . . . . .
c
(n1)

1
αn−1+...+c

(n1)
r αn−r

αn+d1αn−1+...+drαn−r . . .
c
(nm)

1
αn−1+...+c

(nm)
r αn−r

αn+d1αn−1+...+drαn−r


 =




c
(11)
r

dr
. . . c

(1m)
r

dr

. . . . . . . . .
c
(n1)
r

dr
. . . c

(nm)
r

dr


 .

Here c
(ij)
r =

∑
β∈Jr, n{i}

cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β and dr =

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣. Thus,

we have obtained the determinantal representation of A+ by (48).
By analogy can be proved the determinantal representation of A+ by (49). �

Remark 17.1. In (48) the indexi in cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β designatesith column of

(
(A∗A) . i

(
a∗

.j

))
, but in the submatrix

(
(A∗A) . i

(
a∗

.j

))
β
β the entries ofa∗

.j may be

placed in a column with the another index. In (49) we have equivalently.

Remark 17.2. If rankA = n, then by Corollary 16.1A+ = (A∗A)−1
A∗. Considering

(A∗A)−1 as a left inverse, we get the following representation ofA+:

A+ =
1

ddetA




cdet1(A
∗A). 1 (a∗

. 1) . . . cdet1(A
∗A). 1 (a∗

. m)
. . . . . . . . .

cdetn(A∗A). n (a∗

. 1) . . . cdetn(A∗A). n (a∗

. m).


 (51)

If m > n, then by Theorem 17.1 forA+ we have (49) as well.

Remark 17.3. If rankA = m, then by Corollary 16.1A+ = A∗ (AA∗)−1. Considering
(AA∗)−1 as a right inverse, we get the following representation ofA+:

A+ =
1

ddetA




rdet1(AA∗)1. (a
∗

1.) . . . rdetm(AA∗)m. (a
∗

1.)
. . . . . . . . .

rdet1(AA∗)1. (a
∗

n.) . . . rdetm(AA∗)m . (a
∗

n .)


 . (52)

If m < n, then by Theorem 17.1 forA+ we also have (48).
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Corollary 17.1. If A ∈ H
m×n
r , wherer < min {m, n} or r = m < n, then for a projection

matrixA+A =: P = (pij)n×n
we have its following determinantal representation

pij =

∑
β∈Jr, n{i}

cdeti ((A∗A). i (d.j))
β
β

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
,

whered.j is thej-th column ofA∗A ∈ H
n×n and for all i, j = 1, n.

Proof. Representing A+ by (48) and right-multiplying it by A, we obtain for an entry
pij of A+A =: P = (pij)n×n

.

pij =
m∑

p=1

cip · apj =
∑

k

∑
β∈Jr, n{i}

cdeti

(
(A∗A). i

(
a∗

. j

))
β
β

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
· akj

=

∑
β∈Jr, n{i}

∑
k

cdeti

(
(A∗A) . i

(
a∗

.j

))
β
β · akj

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
=

∑
β∈Jr, n{i}

cdeti ((A∗A). i (d. j))
β
β

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
,

where d.j is the j-th column of A∗A ∈ H
n×n and for all i, j = 1, n. �

By analogy can be proved the following corollary.

Corollary 17.2. If A ∈ H
m×n
r , wherer < min {m, n} or r = n < m, then for the projec-

tion matrixAA+ =: Q = (qij)m×m
we have its following determinantal representation

qij =

∑
α∈Ir, m{i}

|((AA∗)i . (gj . ))
α
α|

∑
α∈Ir, m

|(AA∗) α
α|

,

wheregj. is thej-th row of(AA∗) ∈ H
m×m and for all i, j = 1, m.

Remark 17.4. By definition of a classical adjoint matrix ofA ∈ C
n×n can be putAdj [A] ·

A = A · Adj [A] = detA · I. Let A ∈ H
m×n. If rankA = n, the by Corollary

16.1 we haveA+A = In. RepresentingA+ by (51) asA+ = L

det(A∗A) , where L =(
cdeti

(
(A∗A). i

(
a∗

.j

) ))
n×m

, we obtainLA = det (A∗A) · In. This means that the

matrixL =: Adj L [A] is the left classical adjoint matrix ofA ∈ H
m×n, i.e.

Adj L [A] =
(
cdeti

(
(A∗A). i

(
a∗

.j

) ))
n×m

.

If rankA = m, then by definition of a right classical adjoint matrix ofA ∈ H
m×n by

Corollary 16.1 and by (52) we can put

Adj R [A] := ((rdetj(AA∗)j.(a
∗

i.)) )
m×n

.
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Since in this caseA · Adj R [A] = det(AA∗) · I.
If rankA = r < min {m, n}, then an analog of a left classical adjoint matrix of

A ∈ H
m×n by (48) can accept

Adj L [A] :=


 ∑

α∈Jr, n{i}

cdeti

(
(A∗A). i a

∗

. j

)
α
α




n×m

.

Indeed, since eigenvalues of a projection matrix are only 1 and 0, then there exists such an
unitary matrixU ∈ H

n×n that

Adj L [A] · A =
∑

α∈Ir, n

|(A∗A) α
α| · P =

=
∑

α∈Ir, n

|(A∗A) α
α| · Udiag(1, . . . , 1, 0, . . . , 0)U∗.

If rankA = r < min {m, n}, then by an analogue of a right classical adjoint matrix
of A ∈ H

m×n by (49) we can put

Adj R [A] :=


 ∑

α∈Ir, m{j}

rdetj ((AA∗)j. (a
∗

i.) )α
α




n×m

.

Indeed, then there exists such unitary matrixV ∈ H
m×m that

A · Adj R [A] =
∑

α∈Jr, m

|(AA∗) α
α| · Q =

=
∑

α∈Jr, m

|(AA∗) α
α| · Vdiag(1, . . . , 1, 0, . . . , 0)V∗.

Remark 17.5. If A ∈ C
m×n is a matrix with complex entries, then we obtain the following

analogs of (48) and (49), respectively,

a+
ij =

∑
β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
a∗

.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
, a+

ij =

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j . (a

∗

i.)
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

for all i = 1, n andj = 1, m. These determinantal representations are original in this case
aswell. It is reflected in [20].

18. Cramer’s Rule for a Least Squares Solution of Quaternion
System Linear Equations

Def nition 18.1. Suppose
A · x = y, (53)

is a right system linear equations over the quaternion skew fieldH, whereA ∈ H
m×n is

the coefficient matrix,y ∈ H
m×1 is a column of constants, andx ∈ H

n×1 is a column of
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unknown. The least squares solution of (53) (with the least norm) is called thevectorx0

satisfying

‖ x0 ‖= min
x∈Hn

{
‖ x̃ ‖: ‖ A · x̃ − y ‖= min

x∈Hn
‖ A · x − y ‖

}
,

whereH
n is ann-dimension right quaternion vector space.

We recall that in the right quaternion vector space H
n by def nition of the inner product

of vectors we put 〈x,y〉 := y∗x = y1 · x1 · + . . . + yn · xn and ‖x‖ :=
√

〈x,x〉 is the
norm of a vector x ∈ H

n. By analogy to a complex case (see, e.g. [13]) we can prove the
following theorem.

Theorem 18.1. The vectorx = A+y is the least square solution of (53).

Def nition 18.2. Suppose
x · A = y, (54)

is a left system linear equations over the quaternion skew fieldH, whereA ∈ H
m×n is the

coefficient matrix,y ∈ H
1×n is a row of constants, andx ∈ H

1×m is a row of unknown.
The least squares solution of (54) (with the least norm) is called the vectorx0 satisfying

∥∥x0
∥∥ = min

x̃∈mH

{
‖x̃‖ : ‖x̃ · A − y‖ = min

x∈mH

‖x · A − y‖

}
,

wherem
H is anm-dimension left quaternion vector space.

We recall that in the left quaternion vector space m
H by def nition of the inner product

of vectors we can put 〈x,y〉 = xy∗ = x1 · y1 + . . . + xm · ym. Then ‖x‖ :=
√

〈x,x〉 is
the norm of x ∈ m

H.

Theorem 18.2. The vectorx = y · A+ is the least square solution of (54).

Theorem 18.3. (i) If rankA = n, then for the least square solutionx0 =
(x0

1, . . . , x
0
n)T of (53) we get for allj = 1, n

x0
j =

cdetj (A∗A).j (f)

ddetA
, (55)

where f = A∗y.

(ii) If rankA = k ≤ m < n, then for allj = 1, n wehave

x0
j =

∑
β∈Jr, n{j}

cdetj

(
(A∗A) . j (f)

)
β
β

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
. (56)

Proof. i) If rankA = n, then A+ can be represented by (51). Denote f := A∗y.
Representing A+y by coordinates we obtain (55).
ii) If rankA = k ≤ m < n, then by Theorem 17.1 we represent the matrix A+ by (48).
Representing A+y by coordinates we obtain (56). �
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Remark 18.1. In a complex case the following analogs of (55) and (56) are obtained re-
spectively in [20] for allj = 1, n,

x0
j =

det (A∗A).j (f)

det (A∗A)
, x0

j =

∑
β∈Jr, n{j}

∣∣∣
(
(A∗A). j (f)

)
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
.

Theorem 18.4. (i) If rankA = m, then forx0 = (x0
1, . . . , x

0
m) of (54) we obtain for

all i = 1, m

x0
i =

rdeti (AA∗)i. (z)

ddetA
, (57)

wherez = yA∗.

(ii) If rankA = k ≤ n < m, then for alli = 1, m wehave

x0
i =

∑
α∈Ir,m{i}

rdeti ((AA∗) i . (z)) α
α

∑
α∈Ir, m

|(AA∗) α
α|

. (58)

The proof of this theorem is analogous to that of Theorem 18.3.

Remark 18.2. In a complex case the following analogs of (57) and (58) respectively are
obtained in [20] for alli = 1, m,

x0
i =

det (AA∗) i. (z)

detAA∗
, x0

i =

∑
α∈Ir,m{i}

|((AA∗) i . (z)) α
α|

∑
α∈Ir, m

|(AA∗) α
α|

.

19. Example 2

Let us consider the left system of linear equations.




x1i + 2x2i − x3 = i,
−x1k + x2j + x3j = j,
x1j + x2 + x3k = k,
x1 + x2k + x3i = 1.

(59)

The coeff cient matrix of the system is the matrix A =




i −k j 1
2i j 1 k
−1 j k i


. The row of

unknown is x =
(

x1 x2 x3

)
and the row of constants is y =

(
i j k 1

)
. Then

for (59) we have x · A = y. We obtain

A∗ =




−i −2i −1
k −j −j
−j 1 −k
1 −k −i


 ,
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AA∗ =




4 2 − i + j − k −4i
2 + i − j + k 7 1 − 2i − j − k

4i 1 + 2i + j + k 4


 .

Since ddetA = detAA∗ = rdet1AA∗ = 0 and

det (AA∗)33 = rdet1

(
4 2 − i + j − k

2 + i − j + k 7

)
=

= 4 · 7 − (2 − i + j − k) · (2 + i − j + k) = 21 6= 0,

then by Theorem 9.7 rankA = 2. We shall represent A+ by (49).

∑
α∈I2, 3

|(AA∗) α
α| = det

(
4 2 − i + j − k

2 + i − j + k 7

)
+

+ det

(
7 1 − 2i − j − k

1 + 2i + j + k 4

)
+ det

(
4 −4i
4i 4

)
= 42.

Now we shall calculate ri j =
∑

α∈I2,3{j}

rdetj ((AA∗) j .(a
∗

i.))
α
α for all i = 1, 4 and j = 1, 3.

To obtain r11, we consider the matrix

(AA∗) 1 .(a
∗

1.) =




−i −2i −1
2 + i − j + k 7 1 − 2i − j − k

4i 1 + 2i + j + k 4


 .

Then we have

r11 = rdet1

(
−i −2i

2 + i − j + k 7

)
+ rdet1

(
−i −1
4i 4

)
=

= −i · 7 − (−2i) · (2 + i − j + k) − i · 4 − (−1 · 4i) = −2 − 3i − 2j − 2k,

and so forth. Continuing in the same way, we get

A+ =
1

42




−2 − 3i − 2j − 2k 2 − 12i + 2j + 2k −3 + 2i + 2j − 2k
1 + i + 2j + 6k −2 + 2i − 6j − 4k 1 − i − 6j + 2k
−2 − i − 6j − k 6 − 2i + 4j + 2k −1 + 2i + j − 6k
6 + i + j + 2k −4 + 2i − 2j − 6k 1 − 6i − 2j + k


 .

We f nd the least square solution by means of the matrix method by Theorem 18.2,

x0 = y · A+ =
1

42

(
8 + 11i + 3j − 3k, 12 − 4i − 8j, 11 − 8i + 3j + 3k

)
.

Now we shall f nd the least square solution of (59) by means of Cramer’s rule by (58).
We have z = y · A∗ =

(
2 + 2i, 3, 2 − 2i

)
. Since

(AA∗) 1 .(z) =




2 + 2i 3 2 − 2i
2 + i − j + k 7 1 − 2i − j − k

4i 1 + 2i + j + k 4


 ,
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then

x0
1 =

1∑
α∈I2, 3

|(AA∗) α
α|

(
rdet1

(
2 + 2i 3

2 + i − j + k 7

)
+ rdet1

(
2 + 2i 2 − 2i

4i 4

))

=
8 + 11i + 3j − 3k

42
.

Since

(AA∗) 2 .(z) =




4 2 − i + j − k −4i
2 + 2i 3 2 − 2i

4i 1 + 2i + j + k 4


 ,

then
x0

2 =
1∑

α∈I2, 3

|(AA∗) α
α|

(
rdet2

(
4 2 − i + j − k

2 + 2i 3

)

+rdet1

(
3 2 − 2i

1 + 2i + j + k 4

))
=

12 − 4i − 8j

42
.

Since

(AA∗) 3 .(z) =




4 2 − i + j − k −4i
2 + i − j + k 7 1 − 2i − j − k

2 + 2i 3 2 − 2i


 ,

then

x0
3 =

1∑
α∈I2, 3

|(AA∗) α
α|

(
rdet2

(
4 −4i

2 + 2i 2 − 2i

)
+ rdet1

(
7 1 − 2i − j − k
3 2 − 2i

))

=
11 − 8i + 3j + 3k

42
.

As you would expect, the solutions of (59) by matrix method and Cramer’s rule coincided.
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