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The basic goal of this paper is to provide a first variation formula for higher-order
Lagrangian densities. Let πr:Yr → Z be the r-jet bundle over Z of local sections of a
fibered manifold π:Y → Z with projections rπs:Ys→ Yr, r < s, and let Vr be the vertical
bundle of πr, with V0 = V . The basic results are as follows: (1) Given a Lagrangian λ of
order r on π, there exist semi-basic differential forms ε, κ, on Y2r, Y2r−1, of degrees p,
p−1, p= dimZ, with values in V ∗, V ∗

r−1, respectively, such that (rπ2r)
∗dπλ= (0πr)

#ε+
dtκ, where dπ, dt denote the fiber differential and the total differential, respectively,
and the superscript # means the embedding (with respect to the projection T (0πr))
of the corresponding modules of vector bundle-valued differential forms. Moreover, ε is
unique and κ may be determined, under some additional restrictions, up to a dt-exact
form. (2) The variational derivative of the action density λ̌(υ) = (jrυ)∗λ at a section
υ of π is a differential operator Dλ̌(υ) in the space of variations of υ. If G denotes
the Green operator for Dλ̌(υ), then for every variation y of υ one has: (Dλ̌)(υ)(y) =
〈jry, (jrυ)∗dπλ〉; t(Dλ̌)(υ)(1) = (j2rυ)∗ε; G(y)(1) = 〈jr−1y, (j2r−1υ)∗κ〉. The operator
G is known to be defined up to a d-closed term. The Euler-Lagrange equations arise
as a local expression for the integral sub-manifolds of the vector bundle-valued exterior
differential system (j2r(υ))∗ε= 0. Jaime Muñoz Masqué
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