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A FIRST ORDER PROLONGATION

OF THE CONVENTIONAL SPACE

R. Ya. Matsyuk

Abstract. A variational equation of the third order in three-dimensional space is
proposed which describes autoparallel curves of some connection

We shall focus on three-dimensional (pseudo-)Euclidean space and consider the
problem of finding a third-order variational-type equation which can be put down
in the form of the autoparallel tansport equation for some non-linear connection.
It is common to introduce the latter in the following form:

...
x ρ = fρ(xβ , ẋβ , ẍβ) . (1)

On the other side, an Euler-Poisson third-order equation is always of the affine
type,

Aρµ
...
x µ + kρ(xβ , ẋβ , ẍβ) = 0 , (2)

with a skew-symmetric matrixAAA = (Aρβ), and, consequently, in the case when the
number of equations equals three, can not be solved with respect to the derivatives
of the third order. What one can undertake in this situation is at most to look
for such a variational equation, which describes the geodesic curve only up to
reparametrization.

1991 Mathematics Subject Classification. 53B40 58E30 70H 49N45.
Key words and phrases. Higher-order connection, Inverse variational problem, Invariance.
This paper is in final form and no version of it will be submitted for publication elsewhere

Typeset by AMS-TEX

403

R
Text Box
Corrections in red color: pp. 404, 413,415



404 R. YA. MATSYUK

1. General setting

One algorithm for building up an attached connection to a third order dif-
ferential equation of a certain class was presented in [1], and we shall follow
it here. Although only (pseudo-) Euclidean space will be considered, to give
the Reader a sense of general setting, some constructions will be described as
developed over an n-dimensional manifold M . A differential equation of the
third order will be understood to be a cross-section of the third-order velocity
manifold T ′′M = J3(R0; M) = {x;u, u̇, ü}, fibred over the second order one,
T ′M = J2(R0; M) = {x; u, u̇, }. These fibred manifolds are associated, as fibre
bundles, to the principle fibre bundles of the third-order and second-order frames,
H ′′ = J̃3(Rn

0 ; M) = {xρ; rρ
β , rρ

βγ , rρ
βγδ, }, and H ′ = J̃2(Rn

0 ; M) = {xρ; rρ
β , rρ

βγ},
where the tilde means that only invertible jets count, and also we shall denote the
inverse to the matrix (rρ

β) by (
−1
r γ

δ ). The cotangent space to the manifold H ′ is
spanned by the following set of differential forms (with coefficients from above the
manifold H ′′)

ωρ + −1
r ρ

µdxµ

ωρ
β + −1

r ρ
µdrµ

β −
−1
r ρ

µrµ
βν

−1
r ν

λdxλ

ωρ
βγ + −1

r ρ
µdrµ

βγ −
−1
r ρ

µrµ
βν

−1
r ν

λdrλ
γ −

−1
r ρ

µrµ
γν

−1
r ν

λdrλ
β

+
−1
r ρ

µrµ
βν

−1
r ν

λrλ
γι

−1
r ι

σdxσ +
−1
r ρ

µrµ
γν

−1
r ν

λrλ
βι

−1
r ι

σdxσ − −1
r ρ

µrµ
νβγ

−1
r ν

λdxλ .

To span the cotangent space to the manifold H ′′ one more string of forms drops
in (we present their definition through a recurcive relation, which appears more
simple for any order as well),

rρ
δωδ

ιβγ = drρ
ιβγ − rρ

µιω
µ
βγ − rρ

µβωµ
ιγ − rρ

µγωµ
βι− rρ

µιβωµ
γ − rρ

µγβωµ
ι − rρ

µιγωµ
β − rρ

µιβγωµ .

These differential forms constitute a global object, intrinsically defined in [2].
Rather then to proceed with the cross-section f : T ′M → T ′′M , one could

wish to develop some calculus on the corresponding principle bundles. By the
commutative diagram

H ′′ × V′′ ρ′′−−−−→ T ′′M

Φ

x
xf

H ′ × V′ −−−−→
ρ′

T ′M

(3)

the mapping Φ has to be both an equivariant one and a cross-section. The typical
fibre V′′ = J3(R0; Rn

0 ) = {Uρ, U̇ρ, Üρ} undergoes such left action of the group
GL′′(n) = J̃3(Rn

0 ; Rn
0 ) = {sρ

β , sρ
βγ , sρ

βγδ}, that the quotient map ρ′′(r.s, s−1.U) =
ρ′′(r, U) is described explicitly by

uρ = rρ
µUµ

u̇ρ = rρ
µU̇µ + rρ

µνUµUν

üρ = rρ
µÜµ + 3rρ

µνU̇µUν + rρ
µνλUµUνUλ .
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A tangent vector to the product manifold H ′′ × V′′,
aaa = aρ ∂

∂xρ
+ aρ

µ

∂

∂rρ
µ

+ aρ
µν

∂

∂rρ
µν

+ aρ
µνλ

∂

∂rρ
µνλ

+ υρ ∂

∂Uρ
+ υ̇ρ ∂

∂U̇ρ
+ ϋρ ∂

∂Üρ
,

is vertical with respect to the projection ρ′′ if and only if

aρ = 0
rρ
µυµ + aρ

µUµ = 0

rρ
µυ̇µ + aρ

µU̇µ + aρ
µνUµUν − 2rρ

µν

−1
r µ

λaλ
ι UνU ι = 0

rρ
µϋµ + aρ

µÜµ + 3aρ
µνU̇µUν + aρ

µνλUµUνUλ

−3rρ
µν

−1
r µ

λUν(aλ
ι U̇ ι + aλ

ισU ιUσ − 2rλ
ισ

−1
r ι

βaβ
δ UσU δ)

−3rρ
µν

−1
r ν

λaλ
ι U̇µU ι − 3rρ

µνλ

−1
r λ

ι aι
σUµUνUσ = 0 .

If the map Φ is equivariant, then its Lie derivative with respect to an arbitrary
pair of vertical vector fields aaa′′ and aaa′ on the manifolds H ′′ × V′′ and H ′ × V′ is
zero (i.e. vector fields aaa′′ and aaa′ are Φ-related):

TΦ ◦ aaa′′ = aaa′ ◦ Φ .

The map η−1Φ: H ′′ × V′ → H ′′ × V′′, induced by the projection η : H ′′ → H ′,

η−1Φ(r, U) = Φ(ηr, U) ,

is not fibred over the identity in H ′′. Nevertheless, there can always be found an
element (δρ

µ, 0, sρ
µνλ) ∈ GL′′(n) such that

rρ
σsσ

µνλ + rρ
µνλ = Φρ

µνλ(xβ ; rβ
ι , rβ

ιγ , Uβ , U̇β) . (4)

We define the fibred morphism F over the identity in H ′′ as a family of cross-
sections F (r) of the fibration π : V′′ → V′ by means of

F ρ(xβ ; rβ
µ, rβ

µν , rβ
µνλ, Uβ , U̇β) = Φ̈ρ + sρ

ισγU ιUσUγ ,

with sρ
ισγ defined from (4). Then, by virtue of Φ equivariant, for every vertical

vector field aaa on the manifold H ′′ × V′′ we have

TF ◦ (T (id)× Tπ) ◦ aaa = aaa ◦ F ◦ (id× π) , (5)

as can be seen from the next diagram by the appropriate chose of paths

TH ′′ × TV′′ TF←−−−− TH ′′ × TV′
∥∥∥

∥∥∥

TH ′′ × TV′′ T (id)×Tπ−−−−−−→ TH ′′ × TV′

aaa

x
x(T (id)×Tπ) ◦aaa

H ′′ × V′′ id×π−−−−→ H ′′ × V′
∥∥∥

∥∥∥
H ′′ × V′′ F←−−−− H ′′ × V′
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The kernel of Tρ′′ annuls the following one-forms:

ωρ ;
4Uρ + dUρ + Uµωρ

µ ;

4U̇ρ + dU̇ρ + U̇µωρ
µ + UµUνωρ

µν ;

4Üρ + dÜρ + Üµωρ
µ + 3UµU̇νωρ

µν + UµUνUλωρ
µνλ .

(6)

By calculating the Lie derivative of the differential forms (6) along a vertical vector
field it turns out that the exterior differential system, generated by (6) is invariant
under the action of the group GL′′(n) upon the manifold H ′′ × V′′.

If the functions F ρ satisfy (5), then the differential forms

4F ρ + dF ρ + Üµωρ
µ + 3UµU̇νωρ

µν + UµUνUλωρ
µνλ

expand into the differential forms (6) alone:

4F ρ = F ρ2
µ4U̇µ + F ρ1

µ4Uµ + F ρ0
µωµ . (7)

The concept of second order connection involves the quotient manifold ΓH ′ =
TH ′/GL′(n) with respect to the standard action of the group GL′(n):

aρ ∂

∂xρ
+ aρ

µ

∂

∂rρ
µ

+ aρ
µν

∂

∂rρ
µν
7→ aρ ∂

∂xρ
+ sν

µaρ
ν

∂

∂rρ
µ

+ (sλ
µνaρ

λ + sλ
µsι

νaρ
λι)

∂

∂rρ
µν

.

The manifold ΓH ′ projects onto the manifold T ′′M by means of the following
mapping of TH ′, compatible with this action:

(aρ, aρ
µ, aρ

µν) 7→ (aρ, aρ
µ

−1
r µ

νaν , aρ
λι

−1
r λ

µ

−1
r ι

νaµaν−aρ
δ

−1
r δ

σrσ
λι

−1
r λ

µ

−1
r ι

νaµaν+aρ
ι

−1
r ι

λaλ
µ

−1
r µ

νaν) .

Definition[3]. A second order connection is given by a map γ : T ′M → ΓH ′,
which is identity in TM

By means of the commutative diagram

ΓH ′ −−−−→ T ′′M

γ

x
xγ̂

T ′M T ′M

every connection γ defines a morphism of manifolds γ̂. The very similar way to
(7) this map γ may be described through the structure equations,

4Γρ
β = Γρ

β
2
µ4U̇µ + Γρ

β
1
µ4Uµ + Γρ

β
0
µωµ ,

4Γρ
βγ = Γρ

βγ
2
µ4U̇µ + Γρ

βγ
1
µ4Uµ + Γρ

βγ
0
µωµ ,
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where the differential forms 4Γρ
β , 4Γρ

βγ are build up from the differentials of the
functions (Γρ

β , Γρ
βγ), which represent the map γ, as follows:

4Γρ
β + dΓρ

β + Γµ
βωρ

µ − Γρ
µωµ

β + Uµωρ
βµ ,

4Γρ
βγ + dΓρ

βγ + Γµ
βγωρ

µ − Γρ
βµωµ

γ − Γρ
µγωµ

β + Γµ
βωρ

µγ + Γµ
γωρ

µβ − Γρ
µωµ

βγ + Uµωρ
βγµ .

Connection γ is called stable if it projects onto the identity in T ′M . In this
case the morphism γ̂ is a cross-section and thus defines a third-order differential
equation of the type (1).

To discuss a weaker condition of a quasi-stable connection, we recall that the
group GL′(1) acts on the right upon the space T ′M by parameter transformations.
The generators are:

ppp1 = uρ ∂

∂uρ
+ 2u̇ρ ∂

∂u̇ρ
,

ppp2 = uρ ∂

∂u̇ρ
.

The quotient space with respect to this action is the manifold C ′M of contact
elements, locally arranged as R× T ′Rn−1. Connection γ is said to be quasi-stable
if it projects onto the identity in C ′M .

In case of quasi-stable connection it is possible to introduce[1,3] the notion of
parallel transport in such a way, that the autoparallel curves of this connection
will be described in the typical fibre V′′ of the fibre bundle T ′′M by means of the
equation

Üρ = Γρ
µU̇µ + Γρ

µνUµUν + λ(2)U̇ρ + λ(1)Uρ . (9)

If the quasi-stable connection γ is stable, the functions λ(1) and λ(2) both vanish.
Not every equation (1) can be rearranged in the form (9). The crucial idea

consists in applying a somewhat technical trick of reparametrization. If the map f
in (1) or (3) defines in the consistent manner some equation on the manifold C ′M ,
and if we think of f as of a vector field fff on the manifold T ′M by the inclusion
T ′′M ↪→ TT ′M , then the Lie brackets [ppp1, fff] and [ppp2, fff] differ from a multiply of fff
by some vertical field with respect to the projection

℘ : T ′M → C ′M . (10)

In fact, a stronger condition holds:
{

(T℘) [ppp1, fff] = (T℘) fff

(T℘) [ppp2, fff] = 0

In terms of the representation (7) the above condition amounts to the following
two equations with Lagrange multiplies µ and λ,

3F ρ − F ρ1
ιU

ι − 2F ρ2
ιU̇

ι = 3µUρ (11)

3U̇ρ − F ρ2
ιU

ι = 3λUρ . (12)
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The multipliers µ and λ are functions on the manifold H ′×V′, and in order them
to represent some well-defined functions on the manifold T ′M , they both have to
satisfy the condition of GL′(n)-invariance of the type 〈aaa, dµ〉 = 0 for any ρ′-vertical
vector aaa, which amounts to the following system of partial differential equations:

∂µ

∂U̇ρ
UβUγ = rν

ρ

∂µ

∂rν
βγ

∂µ

∂Uρ
Uβ − ∂µ

∂U̇ρ
U̇β = 2rδ

ρν

∂µ

∂rδ
βν

+ rδ
ρ

∂µ

∂rδ
β

.

(13)

Definition[3]. The equation (1) is reducible if (11,12) holds for the representation
(7). It will be called strictly reducible if both µ = 0 and λ = 0.

Consider now a (second order nonlinear) connection, the coefficients Γρ
β , Γρ

βγ of
which are constructed from the coefficients of the first-order prolongation of the
differential system (7),

dF ρ2
β + Fµ2

βωρ
µ − F ρ2

µωµ
β + 3Uµωρ

βµ = F ρ2
β

0
µωµ + F ρ2

β
1
µ4Uµ + F ρ2

β
2
µ4U̇µ ,

according to the following prescription:

Γρ
β = 1

3F ρ2
β ;

Γρ
βγ = 1

2 (Πρ
βγ + Πρ

γβ) , where

Πρ
βγ = 1

3F ρ2
β

0
γ + 1

9 (F ρ2
β

2
µFµ1

γ + F ρ2
β

1
µFµ2

γ) + 2
27F ρ2

β
2
µFµ2

νF ν2
γ .

(14)

Let us agree to call the connection, constructed accordingly to the formulae
(14), be attached to the differential equation (1)

Proposition[1]. The connection, attached to a reducible differential equation, is
quasi-stable. The equation (9) of the autoparallel curves of the connection, attached
to a reducible differential equation, coincides with the initial equation (1). If (1)
is strictly reducible, then the attached connection is stable.

The functions λ(1) and λ(2) in (9) are expressed through the functions µ from
(11) and λ from (12) in terms of the coefficients of the differential dλ,

dλ = λ0
µωµ + λ1

µ4Uµ + λ2
µ4U̇µ ,

according to the formulae below:

λ(1) = λ0
νUν + λ1

νU̇νλ2
νÜν + µ(1− λ2

νUν)− λ(λ1
νUν + 2

3λ2
νF ν2

ιU
ι)− 2λ2 ,

λ(2) = 2λ .

In view of (13),

λ1
ρ =

∂λ

∂Uρ
, λ2

ρ =
∂λ

∂U̇ρ
.
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2. Euclidean space. Variational equation.

As declared, we look for a third order differential equation in (pseudo-)Euclidean
space E3

i , which would be derivable from a Lagrangian. The dimension of the space
is three. As mentioned at the very beginning of the present contribution, we cannot
expect such equation to exist in the form, solved with respect to the highest (i.e
of the third order) derivatives. So we shall first settle down on the manifold

R× T ′E2
k

and afterwards go all the way back to the manifold T ′E3
i along the projection of

(10), which in the canonical coordinates is so expressed:

t ◦ ℘ = x0

xa ◦ ℘ = xa

va ◦ ℘ =
ua

u0

v′a ◦ ℘ =
u̇a

u0
2
− u̇0

u0
3
ua .

Let us concentrate on a system of two third-order ordinary differential equations

Ea = 0 . (15)

We introduce a vector valued differential one-form

ε = Ea dxa ⊗ dt , (16)

where the expressions Ea are called the Euler-Poisson expressions.1 Applying
the general criterion of [5] for an arbitrary system of differential equations to
be a system of Euler-Poisson equations, it was established in [6] that the vector
expression E = {Ea} in (15) must have the shape

E = A . v′′ +(v′. ∂vvv)A . v′ +B . v′ + c , (17)

where the skew-symmetric matrix A, the matrix B, and the column vector c de-
pend on the variables t, x, v = dx/dt, and satisfy the following system of partial
differential equations in t, xa, and va [6, 7]

∂
v[aAbc] = 0

2 B[ab] − 3D1Aab = 0

2 ∂
v[aBb]c − 4 ∂

x[aAb]c + ∂
xc Aab + 2D1∂vc Aab = 0

∂
v(acb) −D1B(ab) = 0

2 ∂
vc ∂

v[acb] − 4 ∂
x[aBb]c + D1

2 ∂
vc Aab + 6D1∂x[aAbc] = 0

4 ∂
x[acb] − 2D1∂v[acb] −D1

3 Aab = 0 .

(18)

1This is an alternative way to interpret the notion of the Euler morphism, the latter having
been considered by Kolář in [4].
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In (18) D1 and farther below D2 denote the generators of the Cartan distribution,

D2 = v′. ∂vvv +D1 ,

D1 = ∂t + v . ∂xxx .

Let θ2, θ3 denote the canonical contact forms

θ3 =
∂

∂v′a
⊗ (dv′a − v′′adt)+ θ2 ,

θ2 =
∂

∂va
⊗ (dva − v′adt)+

∂

∂xa
⊗ (dxa − vadt) .

Along with the differential form ε we introduce another one, εεε,

εεε = Aab dxa ⊗ dv′b + ka dxa ⊗ dt ,

k = (v′. ∂vvv)A . v′ +B . v′ + c .

Exterior differential systems, generated by the forms ε and εεε, are equivalent:

εεε− ε = (Aab dxa ⊗ dv′b) Z θ3 .

Now it is time to put in the concept of symmetry. Let

xxx = τ
∂

∂t
+ xa ∂

∂xa
(19)

denote the generator of some local group of transformations of the manifold R×E2
k,

its successive prolongations to the space Js(R;E2
k) ≈ R× T sE2

k denoted by xsxsxs:

x2x2x2 = va ∂

∂v′a
+ x1x1x1 .

The demand that the exterior differential system, generated by the vector valued
differential form εεε, be invariant under the infinitesimal transformation xxx incarnates
into the following equation2

L(x2x2x2)(εεε) = Ξ . εεε +β Z θ2 , (20)

where the elements of the matrix Ξ and the coefficients of the semi-basic T ∗E2
k-

valued one-form β depend upon the variables t, x, v, and v′. Both Ξ and β
play the role of Lagrange multipliers. Splitting of equation (20) with respect to
independent differentials dt, dxa, dva, and dv′a, results in the following system of
partial differential equations

L(x1x1x1)Aab = Ξa
c Acb − Aac

∂

∂v′b
vc

L(x2x2x2)ka = Ξa
b kb − AabD2v

b − kaD1τ .

(21)

2The notion of vector bundle valued exterior differential systems invariance was introduced
in [8], see also [9].
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Variational problem in parametric form. Consider for a moment an rth-order
variational problem in parametric form, set by a Lagrangian

`(ζ, xρ, uρ, . . . ,
r−1
u ρ)dζ

on the space Jr(R; M). As long as we limit ourselves only to the case of au-
tonomous Euler-Poisson equations,

Eρ = 0 , see (2), (22)

the differential form
ε = Eρ dxρ ⊗ dζ (23)

may globally be deprived of the factor dζ, constituting thus a globally defined
T ∗M -valued density

e = Eρdxρ . (24)

Now the projection ℘ : T rM → CrM can be employed to generate an au-
tonomous variational problem set over T rM from every one variational problem
over CrM .

Lemma. In terms of a local chart, if in (16) the local semi-basic differential form
ε corresponds to the Lagrangian

Ldt ,

then the vector valued density

e = ua(Ea ◦ ℘)dx0 + u0(Ea ◦ ℘)dxa (25)

corresponds to the Lagrangian

`(ζ, xρ, uρ, . . . ,
r−1
u ρ)dζ = L(xρ, uρ, . . . ,

r−1
u ρ)dζ

with the Lagrange function
L = u0L ◦℘ . (26)

Let us return to the third-order case. The relations between quantities, al-
located on the space of contact elements C ′M def= C2M and the correspond-
ing quantities on the second-order velocity space T ′M def= T 2M , expressed by
(22, 24, and 25), say that in (2) we have

k = ( u̇ . ∂u )AAA . u̇ + BBB . u̇ + c

with

Aab = (u0)−2 · (Aab ◦ ℘), Bab = (u0)−1(Bab ◦ ℘), ca = u0(ca ◦ ℘) , (27)

and that the Weierstrass constraint holds:

AAA . u ≡ 0, k . u ≡ 0 .

R
Text Box

R
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Circles and hyperbolae. Let in (19) generator xxx correspond to the (pseudo-)
orthogonal transformations of a three-dimensional (pseudo-)Euclidean plain. Solv-
ing (18) together with (21), we establish the expressions (17) for this case:

E = − ∗v′′

(1 + v · v)3/2
+ 3

∗v′

(1 + v · v)5/2
(v′·v) +

m

(1 + v · v)3/2

[
(1+v·v)v′ − (v′·v)v] .

(28)
(The dual to some vector w is known to be defined with the help of the skew-
symmetric Levi-Civita symbol eab by means of (∗w)a = ebawb.) To convert (28)
into a “homogeneous” three-dimensional form one applies (27) and obtains the final
Euler-Poisson equations, which are naturally connected to the second prolongation
of the transformation group [E(3, i),E3

i ]:

EEE =
ü× u

‖u‖3 − 3
u̇× u

‖u‖5 (u̇ · u) + m
u̇ (u · u) − u (u̇ · u)

‖u‖3 = 0 (29)

Furthermore, we can indicate a general formula for the family of the Lagrange
functions which produce the expression (29):

L(ρ) =
uρ[u̇, u, e(ρ)]
‖u‖ ‖u× e(ρ)‖2

− m ‖u‖ + u̇ . ∂u φ + a . u ,

where an arbitrary row vector a is constant and a function φ depending on the
variable u is subject to the constraint u . ∂u φ = 0. (Recall the notation [ , , ]
for the parallelepipedal product of three vectors.) The vector eρ denotes the ρ-th
component of the (pseudo-) Euclidean frame. Each L(ρ) fits in.

Although there does not exist an invariant (even in extended sense) Lagrange
function, the equations (29) are invariant with respect to the group under consid-
eration. Namely, let

x′′x′′x′′ = [$, x, ∂x] + [$, u, ∂u] + [$, u̇, ∂u̇] + [$, ü,∂ü] (30)

stand for the third-order prolongation of the infinitesimal (pseudo-) Euclidean
transformations to the manifold T ′′M with $ for the group parameter. Then

L(x′′x′′x′′)(EEE) = $ ×EEE .

Remark. Assuming m = 0 in (29), we recover geodesic circles as integral curves,
and in the case the index i in E(3, i) equals 2 this amounts to uniformly accelerated
motion in three-dimensional special relativity.

2. Euclidean space. Connection

In a (pseudo-) orthonormal frame of reference, the corresponding third-order
frame takes on the shape

rρ
β = δρ

β , rρ
βγ = 0, rρ

βγν = 0 , (31)



A FIRST ORDER PROLONGATION OF THE CONVENTIONAL SPACE 413

so the structure forms ωρ
β , ωρ

βγ , and ωρ
βγν vanish and we can identify u, u̇, and ü

with the “invariant coordinates” U , U̇ , and Ü respectively.
In order to construct a connection, consistent with the equation (29), we first

supplement the two independent expressions, entering in (29), with an arbitrary
additional one. Without loss of generality we can search for the latter in the form

ü . u = ‖u‖2 ·Ψ(u, u̇) . (32)

The system of equations (29) and (32) can now be solved with respect to the
third-order derivatives to produce:

ü = 3
u̇ · u

‖u‖2 u̇ − 3
(u̇ · u)2

‖u‖4 u − m u× u̇ + Ψ · u . (33)

Now we proceed further to define more precisely the arbitrary function Ψ. With
(11 and 12) we calculate µ and λ for the equation (33):

µ =
1
3

(
2Ψ − 2u̇

∂Ψ
∂u̇

− u
∂Ψ
∂u

)
; (34)

λ =
u · u̇

‖u‖2 − 1
3

u
∂Ψ
∂u̇

. (35)

In the reference frame (31) by virtue of (13) we conclude that µ and λ are constant.
Then the compatibility conditions for the system of partial differential equations
(34) and (35) show, that λ must be equal to zero,

λ = 0 . (36)

Set

Ψ =
3

‖u‖2
(

ψ +
1
2
‖u̇‖2

)
.

For the function ψ we now get
(

u · ∂

∂u̇

)
ψ = 0 . (37)

Introducing the intermediate variable z = u× u̇ we see by (37) that the function
ψ depends on u and u̇ via the variable z only. Now we express the equation (34)
in terms of z to get

3 z · ∂ψ

∂z
= 4ψ − ‖u‖2µ . (38)

Again, the compatibility conditions for (38) turn µ to zero,

µ = 0 . (39)
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To settle the matter definitely, we call upon the demand of (pseudo-)Euclidean
symmetry (with the generator (30)) for the equation (33), which gives

z × ∂

∂z
ψ = 0 . (40)

Altogether (38, 39, and 40) produce for the determination of the function ψ the
equation

∂ψ

∂z
= =

4
3

z

‖z‖2 ψ

with the solution ψ = ‖z‖4/3. Thus the function Ψ has been found,

Ψ =
3
2
‖u̇‖2
‖u‖2 + 3A

‖u̇× u‖4/3

‖u‖2 , A is a real number.

Let us introduce the following obvious definition:

Definition. For any smooth transformation group G acting upon a manifold M
let a curve σ : I → M, I ⊂ R be called an autogeodesic path if

(1) the image σ(I) is an extremal submanifold of some parameter-independent
variation problem;

(2) the curve σ is autoparallel with respect to some (nonlinear, higher-order)
connection on M ;

(3) the corresponding autoparallel transport equation is G-invariant.

In view of the preceding considerations we now are capable of calculating the
coefficients (Γρ

β , Γρ
βγ) of the connection, given by (14). Rather then make this, it

appears more economic to accomplish only with the presentation of the explicit
expression for the corresponding autogeodesic path equation.

Proposition.

(1) The third-order autogeodesic paths of the three-dimensional (pseudo-)Euclidean
space are the solutions of the next differential equation:

ü = 3
u̇ · u

‖u‖2 u̇− 3
[
(u̇ · u)2

‖u‖4 − ‖u̇‖2
2‖u‖2 −A

‖u̇× u‖4/3

‖u‖2
]

u−mu× u̇ (41)

(2) The corresponding connection is stable.

Proof. It is necessary to calculate Γρ
β and Γρ

βγ from (14) and to show that the right-
hand side of (9) coincides with the right-hand side of (41). The second statement
follows from (36 and 39) ¥
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