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INTRODUCTION

Thesis is devoted to development of methods for modeling of evolution of strong

nonrelativistic shocks in nonuniform media and fields, kinetics of charged relativistic

particles in its vicinity, applications of the methods to calculation of nonthermal

emission of the shell-type supernova remnants and comparison with observations.

Actuality of the work. Do SNRs are main sources of Galactic CRs? This

question remains to be one of most intriguing in high-energy astrophysics.

Almost 100 years ago, on August 7, 1912, V. Hess has conducted most successful

experiment revealing increase of radioactivity with height and explained it by the

assumption about “a radiation of very great penetrating power” which enters the

atmosphere from space. Hess was awarded the Nobel Prize in 1936 for this discovery.

It was long thought that the phenomenon is of the electromagnetic origin (pho-

tons) and therefore was given the name “Cosmic Radiation”, which later evolved to

“Cosmic Rays”. During the decade from 1927 (geomagnetic effect) to 1937 (east-west

effect), a wide variety of experimental investigations demonstrated that cosmic rays

are affected by the Earth’s magnetic field, thus they are charged particles.

From the 1930s to the 1950s, before the man-made particle accelerators reached

very high energies, CRs served as a source of particles for high energy physics, and

led to discovery of subatomic particles including the positron and muon. Although

these applications continue, the main focus of CR research has been directed towards

astrophysical investigations of where cosmic rays originate, how they get accelerated

to such high velocities, what role they play in the dynamics of the Galaxy, and what

their composition tells us about matter from outside the solar system.

It is common belief that CRs with energies smaller than the knee, or even up to

1017 eV, are produced in our Galaxy. Though CRs are accelerated in different types

of sources (OB stars, pulsars etc.), common belief is that no other objects in Galaxy
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can be responsible for the most of galactic CRs except of SNRs.

CRs with energies ≤ 3 × 1015 eV in ISMF of order 3µG, considerably affects

propagation of such charged particles deviating them from directions to the sources.

Therefore, one cannot observe CRs from SNRs directly. The only possibility to study

them is to consider different kind of emission resulted from interactions of accelerated

particles with magnetic and photon fields or other particles.

Studies of CRs is closely related to radio-astronomy. Since 1950, radio-observations

give important evidences about electronic component of CRs throughout of the Uni-

verse. Over the last decade, methods for space observations of high-energy radiation

(X-rays and γ-rays) have achieved considerable development. Present data from

satellites and ground-based experiments in high-energy astrophysics allows us to

test theories of particle acceleration by the strong shock waves. Therefore, sources

of nonthermal radiation, in particular supernova remnants, are intensively studied.

Their emission carries information about physics of strong shocks, motion and emis-

sion of cosmic rays (high-energy charged particles), properties of magnetic field.

They are an important and unique experimental “platform” for studies of the in-

teraction of plasma and relativistic particles. SNRs are one of the main objects for

observations of modern space- and ground-based telescopes in many parts of the

electromagnetic spectrum, from radio to hard gamma-ray bands (see, for example

the Roadmap for Astroparticle Physics in Europe [339]).

X-ray observations of SNRs are of particular importance for understanding the

microphysics occurring in the vicinity of the shocks. Maximum of the thermal radi-

ation of SNRs are in the X-ray range. However, high spatial and spectral resolution

of modern X-ray telescopes allows us to detect and analyze nonthermal X-ray com-

ponent, which is a consequence of synchrotron radiation of relativistic electrons.

Discovery of the nonthermal component in X-ray spectrum of supernova remnant

in 1995 [215] grow new interest to study these objects. This nonthermal component

give evidence about acceleration of electronic components of CRs on the fronts of

shock waves of SNRs to energies ∼ 30 ÷ 300 TeV [184, 312]. Electrons with such

energies should also radiate in the γ-ray range (through inverse-Compton effect and
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nonthermal bremsstrahlung). Conclusions about the proton component of CRs can

be inferred only through the observation of γ-photons that arise from decay of pions,

generated by collisions of protons accelerated to relativistic velocities with the target

protons. Thus, tools for observations are developed actively. Most prominent success

is reached in the very-high energy γ-ray band. The first γ-ray map of SNR, obtained

in 2004 with the system of Cherenkov telescopes HESS, open an era of the visual

gamma astronomy. Since then, the observations gave maps of a number of SNRs.

These results, along with X-ray and radio observations, provide direct evidence that

cosmic rays are really accelerated in SNRs to energies of order of 100 TeV. How-

ever, while the spectral properties of radiation of relativistic particles in SNRs are

studied enough, the rest of observational data, namely the properties of the surface

brightness distributions, remains almost unused because of the complexity of the

theoretical and numerical modeling.

Observations and theoretical analysis of nonthermal emission from SNRs allows

one to explore physical processes which may not be experimentally studied on Earth;

it helps in understanding the problem of origin of galactic CRs. SNRs are among

priority targets for observations with space X-ray and γ-ray observatories Chandra,

XMM-Newton, Integral, Fermi, as well as ground-based experiments with obser-

vations of Cherenkov light from atmosphere after impact with very-high energy

γ-photons (with energies in range 0.1 − 100 TeV): HESS, MAGIC, VERITAS and

other. At present, nonthermal X-ray emission is detected in few dozens of shell-like

SNRs, out of 274 known [172]. Since 2004, TeV γ-rays is observed from about twenty

SNRs [158]. Gamma-observatory Fermi launched in 2008 has detected γ-rays from

many sources, in particular from SNRs [24].

Every year, few hundred papers dealing with different aspects of galactic CR

origin and SNRs appear. Theoretical results, obtained mainly in the last 10 years,

are reviewed in [79, 98, 131, 136, 226, 306, 348]. Development of theoretical studies

and observations of SNRs reveals new phenomena which happens around strong

nonrelativistic shocks propagating in ISM. These phenomena are related to motion in

ISM with gradients of density and magnetic field, with injection of thermal particles
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and their further acceleration till highly relativistic energies by strong shocks and

their interaction with ISMF.

These are the reasons for rapidly developing field of exploration of nonthermal

emission from SNRs.

Relations to the scientific programs, plans and projects. The work was

carried out in the Institute for Applied Problems in Mechanics and Mathematics

NAS of Ukraine in the frames of the scientific projects “Розвиток диференцiально-

геометричних методiв дослiдження рiвнянь математичної i теоретичної фiзики”

(state registration number 0102U000451), “Диференцiально-топологiчнi та геомет-

ричнi аспекти теорiї динамiчних систем, рiвнянь математичної фiзики, теорiї

фундаментальних взаємодiй” (state registration number 0106U000593), “Дослi-

дження некласичних крайових задач для рiвнянь iз частинними похiдними та

руху часток у неоднорiдних середовищах i полях” (0105U000929), “Розробка

моделей Всесвiту з космологiчними полями, моделей темної енергiї, дослiдження

впливу темної енергiї на еволюцiю Всесвiту” (0109U003207), “Дослiдження при-

роди джерел космiчних променiв надвисоких енергiй” (0103U006381), as well as

in projects carried out in the Astronomical Observatory of Lviv National Univer-

sity: “Визначення фiзичних параметрiв змiнних зiр, газопилових туманностей,

зоряних скупчень, галактик та квазарiв” (0105U002240), “Спостереження, ста-

тистичний аналiз та моделювання фiзичних процесiв галактичних та позага-

лактичних джерел випромiнювання” (0107U002061), “Дослiдження змiнних зiр,

залишкiв наднових та галактичних зоряних скупчень на основi наземних та

космiчних телескопiв” (0110U001384).

The purpose and objectives of the study. The purpose of the study is devel-

opment of magneto-hydrodynamical models of SNRs evolving in ISM with different

types on nununiformities of density and magnetic field, development of new ana-

lytical methods of solution of systems of nonlinear differential equations in partial

derivatives which describe evolution of the strong shocks, motion and radiation of

relativistic charged particles around these shocks, calculation of nonthermal emission
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of SNRs in different energy ranges, comparison of models with modern observations.

The main objectives of the study are:

1. to investigate evolution of SNR from time when condition of adiabaticity becomes

to be invalid;

2. to develop an approximate analytical methods for dynamics of shock and flow in

the spatially nonuniform plasma after the end of adiabatic era;

3. to develop an analytical method for description of electron injection which allow

us to obtain the momentum distribution of injected electrons;

4. to describe evolution of the energy spectrum of accelerated electrons downstream

of the shock which evolve in nonuniform ISM and nonuniform ISMF;

5. to construct an analytical approximation for calculation of the γ-ray emissivity

of electrons due to inverse-Compton process;

6. to model and investigate properties of the surface brightness distribution of adia-

batic SNRs in uniform ISM and uniform ISMF due to leptonic emission in radio,

X-ray and γ-ray bands; reveal the main factors determining the morphology of

SNRs;

7. to reveal reasons for assymetries in surface brightness distribution of SNRs

through modeling their evolution in nonuniform ISM and nonuniform ISMF;

8. to develop methods for analysis of observed maps of SNRs in radio, X-ray and

γ-ray ranges on example of a certain SNR, with the use of data from modern

space- and ground-based experiments.

9. to make statistical analysis of characteristics and radio emission of SNRs in our

Galaxy and neighboring galaxies with goal in mind to test models of acceleration

of charged particles in strong shocks.

Object of research – cosmic rays and shock waves in the shell-like supernova

remnants.

Subject of investigation – MHD properties of the strong nonrelativistic shocks in

nonuniform media and fields, properties of acceleration of charged particles in these

shocks, nonthermal emission of accelerated particles.
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Methods of research. Development of approximate analytical and numerical meth-

ods of solution of systems of differential equations in partial derivatives which de-

scribes dynamics of strong nonrelativistic shocks in nonuniform media and fields

and kinetics of charged particles in its vicinity. Application of methods to theoreti-

cal modeling of the nonthermal emission of SNRs, in particular to synthesis of their

surface brightness distributions. Observations and analysis of integral and spatially

resolved characteristics of nonthermal emission of SNRs, comparison with models.

Scientific novelty of results.

1. A model-independent method to synthesize the inverse Compton gamma-ray

image of SNR starting from its the radio (or hard X-ray) map and using results

of the spatially resolved X-ray spectral analysis is developed for the first time.

The method is applied to SN 1006. Synthesized IC gamma-ray images of SN 1006

is in a agreement with observations that may be considered as an evidence that

the γ-ray emission of SN 1006 is leptonic in origin.

2. A new method for determination of the three-dimensional orientation of ISMF

around SNR from its radio map is developed for the first time. Method is applied

to SN 1006 that allows us to determine orientation of ambient MF around this

SNR.

3. Maps of surface brightness of spherical SNR in the γ-ray band are modeled for

the first time, as well as radio, X-ray and γ-ray maps of SNRs in nonuniform

ISM or nonuniform ISMF. Properties of the γ-ray maps are analyzed for the first

time and influence of ISM and ISMF nonuniformities on the leptonic images of

SNRs in different bands are revealed.

4. A new model of morphological class of SNRs - thermal X-ray composites – are

proposed. It bases on the idea about the SNR evolution in ISM the a nonuniform

density distribution with the length-scale smaller than 10 parsec. Model suggests

that thermal X-ray composites might be prospective sources of hadronic γ-rays.

5. Approximate analytical formulae for the azimuthal and radial profiles of the

synchrotron radio and X-ray as well as the inverse-Compton γ-ray brightness
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of adiabatic SNRs in uniform ISM/ISMF are derived for the first time. Factors

which determine patterns of surface brightness distribution are revealed.

6. It is shown, for the first time, that, in the common scenario of SNR evolution,

it is necessary to consider an additional phase between the end of adiabatic and

the beginning of radiative stages with duration comparable with duration of the

adiabatic stage. Approximate analytical methods for hydrodynamic description

of post-adiabatic and radiative shocks and flow are developed.

7. A new analysis of radio and X-ray observations of SN 1006 is presented. The

experimental data (the broadband spectrum surface brightness distributions in

different bands, spatially-resolved spectral analysis), are used to put constraints

on SNR and properties of leptonic component of CRs and MF in this SNR, to

determine its three-dimensional orientation and other properties.

8. It is shown for the first time that Σ−D relationship cannot represent evolution-

ary track of a “typical” SNR but reflects evolution of many SNRs in very different

ambient conditions; that models prescribing constant efficiencies for both mag-

netic field amplification and electron acceleration are rejected by the data; that

cumulative distribution of SNRs with size is not related to law of shock motion

but to densities of ISM where SNRs are evolved.

Practical significance of results. Model of thermal X-ray composites suggests

to consider them as prospective sources of hadronic γ-rays.

Hydrodynamic models of the post-adiabatic and radiative SNRs allow for sim-

ulations of old SNRs and their emission, in particular for study of decrease of the

radio emission that is important for understanding the Σ−D relationship.

Methodology to track changes in energy spectrum of accelerated electrons, down-

stream of the shock in nonuniform ISM and ISMF, and approximation for their

inverse-Compton emission opens the possibility to synthesize maps of SNRs in

nonuniform ISM and/or nonuniform IMSF.

Synthesized maps provide understanding of the reasons which determine patterns

of surface brightness and their assymetries of different types. This facilitates devel-
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opment of methods for analysis of observed SNR maps in oder to put constraints on

properties of CRs and MF in these objects.

Proposed methods for determinations of properties of CRs and MF in SNRs are

theoretical basis for analysis of observations. In the present work, they are applied

to SN 1006, but may be used in other SNRs as well. It is primarily about a method

to predict IC γ-ray maps of SNRs, a method to determine aspect angle of ISMF

from radio map, a method to obtain “pure” thermal image of SNR from X-ray data.

Results may be used for development of theory of charged particles interactions

with magnetic field and plasma, they may be extended to relativistic shocks, may be

used in studies of other astrophysical objects with strong shocks (solar flares, active

galactic nuclei, gamma-ray bursts).
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without coauthors. In papers, published in co-authorship, author of the thesis has:
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opment of models, conducted numerical modeling, participated in analysis of

results and writing the papers;
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writing the paper;

– in [17, 18, 279]: set up the objectives, developed the method, provided general

advising;

– in [66]: set up the objectives, prepared samples, participated in discussion on

statistical methods;

– in [250,281,283,284]: participated in analysis of results and writing the papers as

well as set up the objectives and developed the methods in [281,283,284], set up

the principle for spatially-resolved spectroscopy in [250], conducted calculations

in [281, 283, 284];

– in [264, 265, 282, 285]: set up the objectives, developed the model in the part

related to behavior of relativistic electrons and their emission, participated in

testing the methods, participated in analysis of results and writing the papers.
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CHAPTER 1

COSMIC RAYS AND SUPERNOVA REMNANTS

1.1. Cosmic rays: history and general insight

Cosmic rays are relativistic charged particles of the cosmic origin. The history of

its discovery and investigations is described in a number of sources, e.g. [4,118,135].

After the discovery of radioactivity by H. Becquerel in 1896, it was generally

believed that atmospheric electricity (ionization of the air) was caused only by ra-

diation from radioactive elements in the ground or the radioactive gases (isotopes

of radon) they produce. Almost 100 years ago, on August 7, 1912, V. Hess has con-

ducted most successful experiment revealing increase of radioactivity with height,

up to 5350 m above the sea level. He has concluded in his paper from 1912 that “the

results of my observation are best explained by the assumption that a radiation of

very great penetrating power enters our atmosphere from above”. In fact, V.Hess

was not the first1 who stated such idea and there were objections against it even

after a number of his experiments in 1911-1913. Nevertheless, 1912 is now accepted

as the date of discovery of cosmic rays (CRs). Hess was awarded the Nobel Prize in

1936 for this discovery.

It was long thought that the phenomenon is of the electromagnetic origin (pho-

tons) and therefore was given the name “Cosmic Radiation”, which later evolved to

“Cosmic Rays”. During the decade from 1927 (geomagnetic effect) to 1937 (east-west

effect), a wide variety of experimental investigations demonstrated that cosmic rays

are affected by the Earth’s magnetic field, thus they are charged particles.

In the following decade, a number of experiments carried by balloons to near the

top of the atmosphere showed the composition of CRs, namely, that the primary

1C. Wilson has suggested such hypothesis in 1901, however, he rejected it later.
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cosmic particles are mostly protons with some (∼ 10%) helium nuclei (alpha par-

ticles) and a small fractions of heavier nuclei (∼ 1%), electrons (∼ 1%), positrons

and antiprotons. These are general numbers; the exact composition of cosmic rays

depends on the energy of particles. At present, it is known that the common heavier

elements (such as carbon, oxygen, magnesium, silicon, and iron) are present in CRs

in about the same relative abundances as in the solar system; there are, however,

some important differences in elemental and isotopic composition that provide in-

formation on the origin and history of galactic cosmic rays. For example there is a

significant overabundance of the rare elements Li, Be and B produced when heavier

cosmic rays such as C, N, and O fragment into lighter nuclei during collisions with

the interstellar gas.

From the 1930s to the 1950s, before the man-made particle accelerators reached

very high energies, CRs served as a source of particles for high energy physics, and

led to discovery of subatomic particles including the positron and muon. Although

these applications continue, the main focus of CR research has been directed towards

astrophysical investigations of where cosmic rays originate, how they get accelerated

to such high velocities, what role they play in the dynamics of the Galaxy, and what

their composition tells us about matter from outside the solar system. There are a

number of monographs devoted to astrophysics of cosmic rays, e.g. [1,2,161,233,326].

CR studies are closely related to radio astronomy and high-energy astrophysics.

In the beginning of 1950, the radio-astronomy provided important evidences about

electronic component of CRs throughout of the Universe. Since then, the synchrotron

radiation from relativistic electrons is also observed in other parts of electromagnetic

spectrum, up to X-rays and γ-rays. Development of γ-ray astronomy is also of the

great importance for CR studies. In particular, there is a hope that γ-radiation from

cosmic sources will give firm evidences about acceleration of the proton component

of CRs in various astrophysical environments. Relativistic protons and electrons

are reason of diffuse γ-ray background; the former as consequence of the neutral

pion decays [182], the later due to inverse-Compton process [149] or non-thermal

bremsstrahlung [198].
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Figure 1.1. Energy spectrum of cosmic rays: left [163], right [179]. The “knee” and the “ankle”
are clearly visible on the right where the spectrum has been multiplied by a power E2.7 in order
to visually enhance the structure in the spectrum.

The energy spectrum of CRs extends from few hundred MeV to 300 EeV; it has

in general the power-law shape with some features related to change of the slope

(Fig. 1.1). Solar system affects the CR spectrum below energy E = 10MeV; solar

wind prevent us from knowing anything about interstellar CRs with energies lower

than 300MeV. Differential proton energy spectrum in the energy range 1010 eV ≤
E ≤ 3× 1015 eV is [88]

N(E) = 8.7× 10−2

(

E

1TeV

)−2.73
particles

m2 s st TeV
.

Integral intensity of CRs in the same energy range is well represented by [4]

I(> E) = 1

(

E

1GeV

)−1.7
particles

cm2 s st
= 300

(

E

1TeV

)−1.7
particles

m2 hour st
,

while in 3× 1015 eV ≤ E ≤ 1018 eV it is

I(> E) = 3× 10−10

(

E

1PeV

)−2.0
particles

cm2 s st
= 100

(

E

1PeV

)−2.0
particles

m2 year st
.

Spectrum above E = 1018 eV represents ultra-high energy CRs (UHECRs); they

should be extragalactic in origin since magnetic field of the Galaxy is small to

allow for confinement of such particles. The highest energy cosmic rays measured

to date have had more than 1020 eV, that is equivalent to the kinetic energy of a
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baseball traveling at approximately 150 km/s. It was expected that the CR spectrum

should suffer from GZK cut-off (around 5× 1019 eV for protons [176, 374]) resulted

from interactions of CRs with CMB radiation (e.g. [1, 262]); a feature is confirmed

recently by the Pierre Auger Observatory [25]. Ultra-high energy CRs are quite

rare. Intensities for particles with E ≥ 1018 eV is 60 particles per km2 per year per

steradian; while it is just about 1 particle per km2 per century per steradian for

E ≃ 1020 eV.

Around the “knee” at E = 3 × 1015 eV, the spectral index of the differential

spectrum E−s changes from s = 2.7 to s = 3.1; the last value is valid up to the

“ankle” at E = 3×1018 eV where it turns to s = 2.7 again. Electrons have a spectrum

similar to that of protons below 10 GeV, and steeper, s = 3.3, above (Fig. 1.1). The

observed slope of the CR spectrum s = 2.7 generally agrees with the index s = 2

predicted by the acceleration theory (e.g. [294]). Source spectrum (s ≃ 2) steepens

(to s ≃ 2.7) due to dependence of the diffusion coefficient on energy D ∝ Eδ,

so that if the produced spectrum was N ∝ E−s, the observed spectrum becomes

Nobs ∝ E−s−δ; the particle escape from Galaxy (most energetical particles escapes

easier) also makes contribution to change of the spectrum slope from a source to

the observer; also, the chemical abundance, in some energy range, varies with E.

In addition, one of the effects predicted by the non-linear acceleration theory, may

also affect the general slope of the observed CR spectrum. Namely, the the theory

predicts concave shape of CRs, i.e. with index s variable with energy: s = s+δs(E),

where δs decreases monotonically from δs ≤ 0.2 for very low energies to δs ≥ −0.5

for energies close to Emax (e.g. [74]). There are some observational hints about such

behavior [309]; however, there is still no definitive evidence of such a general upturn

in the cosmic-ray spectrum.

It is common belief that CRs with energies smaller than the knee, or even up to

1017 eV, are produced in our Galaxy. Heavy elements are progressively dominating

one another in the energy range 3 × 1015 eV ≤ E ≤ 1017 eV (Fig. 1.2 [81]; see

also [163, 190]). Similar situation may happen in the UHECR range [26].

There is no significant anisotropy of cosmic rays at any energy, even at the highest
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Figure 1.2. Mean logarithm of the CR nucleus atomic number as a function of particle kinetic
energy [81].

energies, beyond the GZK cutoff, where galactic and intergalactic MF is almost

inefficient in deviation of UHECRs from direction to sources. However, it seems

that observational data reveal some correlations of UHECRs with AGNs (e.g. [27]).

Under equilibrium condition, one can expect that energy density of CRs have to

be of the order of the energy density of interstellar magnetic field, namely,

ωcr ∼ ωmf = B2/8π ∼ 10−12 erg/cm3,

for typical strength B = 5µG. The energy density of interstellar gas is of the same

order, ωg = 3nkT/2 ∼ 10−12 erg/cm3, for n = 1 cm−3 and T = 104K. Thus, CRs

(having very small number density, ncr ∼ 10−10 cm−3) are important dynamical and

energetical factor for ISM. They also cause prominent kinetic and MHD effects; in

particular, streaming instability of CRs leads to increase of MF strength in ISM

and, to higher extent, in the CR sources (see e.g. [19] and references therein).

Let us assume that CRs are everywhere in our Galaxy including halo with char-

acteristic scale h ∼ 10 kpc [4]. Then CRs occupy volume Vcr ∼ 4πh3/3 = 1068 cm3.

The total energy in CRs is therefore Wcr ∼ ωcrVcr ∼ 1056 erg. The characteris-

tic time-scale for CR propagation in the Galaxy is Tcr ∼ 3 × 108 years [4]. Thus,

luminosity of CR sources in our Galaxy should be Lcr ∼Wcr/Tcr ∼ 3× 1040 erg/s.

In 1934, Baade and Zwicky suggested that the main sources of CRs in the Galaxy

are supernovae [58,59]; Shklovskii wrote that “ionized interstellar atoms are acceler-
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ated in the moving magnetic fields connected with an expanding [supernova remnant]

nebula” [332]. Really, an energy Esn ∼ 1050−1051 erg is deposited in each supernova

explosion which happens every tsn ∼ 30 years. An average power from supernovae

is thus Lsn ∼ Esn/tsn ∼ 1041 − 1042 erg/s. If CRs take up to ∼ 10% of SN kinetic

energy then supernovae can provide necessary power Lcr of CR in Galaxy ( [4], see

also [2, 88, 189]).

Of course, the above estimates are rather general and even firm confirmations

about acceleration of CRs in certain SNR may not be directly extended to all SNRs.

In particular, the particle acceleration process is strongly dependent on the envi-

ronment in which the supernova explodes [88]. For instance, we can expect that the

blast wave of a SN-type Ia has a larger Mach number than that of a type II SN,

mainly because of the lower temperature of the ordinary ISM compared with that

of the material around a massive star with powerful winds. For the same reason we

can expect the gas density to be lower for type-II SNe. While type-II SNe are more

frequent than type Ia, it is probably more difficult to observe hadronic emission in

γ-rays from these objects because of the lower gas density.

Nevertheless, though CRs are accelerated in other sources as well (OB stars or

pulsars, the latter are probably responsible for CR positrons [31]), common belief is

that no other objects in Galaxy can be responsible for the most of galactic CRs [130].

1.2. Supernova remnants as sources of cosmic rays

Strong collisionless shocks are present in various astrophysical objects, and under

a wide range of conditions. These shocks effectively ionize and heat the gas and are

also believed to accelerate a fraction of particles up to very high energies. Really,

shock waves running through a magnetic and ionized gas accelerate charged particles,

as we know from theory and in situ observations in the solar wind, and this forms

the basis of almost all theories of CRs; in particular, of production of galactic CRs

by forward shocks in SNRs. However, except of the electronic component of CRs,
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Figure 1.3. Spectral index for SNRs in our Galaxy (data are taken from Green’s catalogue [172]).

we still have no unambiguous proof for that.

The mechanism believed to be responsible for acceleration of charged particles in

SNR is diffusive shock acceleration (for review see, e.g. [86,128,202]): such particles

are repeatedly scattered off by magnetic turbulence on both sides of an SNR shock

front, gaining speed as a result of the difference in the plasma velocities on either

side of the shock. The greater the velocity difference, the greater the energy gained

by the particle per shock crossing; the larger the magnetic field (and turbulence),

the higher the particle crossing frequency; the larger time allowed for such cycles,

the higher the energy attained.

A well-known result of this process, for the test particles (i.e. those which do not

make any influence on the system), is its power-law energy distribution with index

s dependent only on the shock compression ratio: N(E) ∝ E−s, s = (σ+2)/(σ−1)

where σ = ρs/ρo is the shock compression ratio (equal to 4 for strong shocks and

γ = 5/3). The prediction is thus s = 2 which, for electrons, implies a synchrotron

spectral index α = (s − 1)/2 = 0.5; that is generally in agreement with observed

spectra in Galactic SNRs (Fig. 1.3).

With the diffusive shock acceleration mechanism, SNRs provide not only the

spectral index s close to the expected one, not only enough energy budget (Sect. 1.1),

but also necessary elemental composition of CRs. The elemental composition of the

accelerated particles should be that of the gas swept up by the outer shock. Different
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ions enter the shock at the same speed, and the Fermi acceleration forms a power-

law momentum spectrum starting from this initial velocity: the result is that the

different types of accelerated particle should have the same proportions as in the

gas if measured at the same velocity or Lorentz factor. This is almost as observed,

— a reasonable indirect evidence about the shock injection and acceleration [190].

Some further, in the context of the non-linear theory of acceleration, considerations

for the contribution of nuclei to the all-particle spectrum observed at Earth have

recently been carried out in [81, 101, 296].

SNRs is also able to provide Emax at about the knee region, as observed, for

different species. Initially, Lagage and Cesarsky [220] demonstrated that the diffusive

shock acceleration can give maximum energies near E = Z × 1013 eV where Z is a

charge. Hillas [189], based on the Bell & Lucek [70] theory of MF amplification, found

with a “toy model” for spectrum generation, that SNRs is able to generate spectra

with sharp cut-off at E = Z × 2 × 1015 eV. Much more detailed studies [242, 293]

put the maximum energies of CRs from SNRs near the observed knee, as well.

CRs with energies ≤ 3 × 1015 eV in ISMF of order 3µG, considerably affects

propagation of such charged particles deviating them from directions to the sources.

Therefore, one cannot observe CRs from SNRs directly. The only possibility to study

them is to consider different kind of emission resulted from interactions of accelerated

particles with magnetic and photon fields or other particles.

The first radio source to be identified as a previously unknown SNR was Cassio-

pea A; an idea of Shklovskii from 1953 [332], who also suggested that synchrotron

radiation was the mechanism for producing radio emission, based on the observed

power-law spectrum Sν ∝ ν−α, with α ≈ 0.8 for Cas A. Since then, radio telescopes

have drawn attention to SNRs as principal sources of GeV electrons, through their

synchrotron radiation.

It was found that synchrotron emission in SNRs may also be responsible for some

of X-rays. An idea dated back to 1981 [308], was confirmed by ASCA observations

of SN 1006 in 1995 [215]. Hard X-ray images of supernova remnants, by XMM and

especially Chandra, have also revealed many details about electrons accelerated to
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Figure 1.4. Chandra X-ray image of SN 1006 (taken from [190]). Hard X-ray band shows emission
of electrons accelerated to E ∼ Emax.

energies 10 – 100 TeV. Fig. 1.4 shows an extremely narrow smooth shell of syn-

chrotron X-ray radiation at the outer edge of SN 1006. Such radiation were detected

in other SNRs, including Cas A, Tycho, Kepler etc.

If nonthermal X-ray emission is, like radio, synchrotron in nature then one would

expect that synchrotron radiation should reveal itself in the intermediate photon

ranges, too. Such a proof was derived on example of Cas A. Namely, observations

show that, in this SNR, the image [164] and polarization [204] of the infrared emission

is the same as in radio.

γ-ray emission from SNRs is one of the key components in investigation of the pro-

cesses around strong nonrelativistic shocks, namely, dynamics and structure of the

shock itself, magnetic field behavior, and microphysics of charged particles includ-

ing their injection and acceleration. Observations in this energy domain demonstrate

that charged particles are really accelerated in SNRs up to the highest energies ob-

served in galactic cosmic rays. Quite important evidence about CR acceleration in

SNRs has been presented in 2004 when the first map of SNR (RX J1713.7-3946) in

γ-rays was published (Fig. 1.5 [44]). In the recent years, there are dozens of SNRs
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Figure 1.5. HESS TeV γ-ray image of RX J1713.7–3946 [44]. The linear colour scale is in units
of counts. The superimposed (linearly spaced) contours show the X-ray surface brightness as seen
by ASCA in the 1–3 keV range for comparison (the angular resolution of ASCA is comparable to
that of HESS which enables direct comparison of the two images).

observed in γ-rays.

With energy spectrum of CRs, predicted by the diffusive shock acceleration the-

ory, the broad-band (from radio to TeV γ-rays) nonthermal spectrum of SNRs (i.e.

radiation of CRs) may well be explained.

1.3. Observations of SNRs in modern astrophysical missions

Populations of relativistic ions and electrons can produce observable continuum

radiation through four mechanisms, one hadronic and three leptonic (Fig. 1.6; see e.g.

review [306] or monographs [2, 3, 32, 326]). The hadronic mechanism is the inelastic

scattering of CR protons on thermal nuclei, producing pions. The charged pions

decay to electrons and positrons, making a (probably) negligible contribution to

the relativistic lepton pool, but the neutral pions decay to γ-rays of comparable

energy. The spectrum slope of emitted photons should be that of the ions that

produce them. The three leptonic processes are synchrotron emission, as well as

nonthermal bremsstrahlung, with the same spectrum as that of the nonthermal

electrons, and inverse-Compton (IC) upscattering of photons from any significant
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Figure 1.6. Emission process in SNR on example of some model of SN 1006 [53] (S - synchrotron,
IC - inverse-Compton, NB - nonthermal bremsstrahlung, πo - neutral pion decays from pp inter-
actions). Photon bands where modern X-ray and γ-ray missions work are shown at the top.

ambient radiation. In practice, this is likely to be primarily the CMB, though in

some cases, IC from UV/optical/IR photons may be competitive. The slope of the

spectrum will be the same as that of the synchrotron emission. While the synchrotron

process is clearly operating, it is not clear which of the other processes might be

responsible for emission from any particular object.

It is important that γ-rays from the decay of secondary pions is the only “win-

dow” to “see” protons accelerated by shock in SNRs. Present experimental technics

(systems of Cherenkov telescopes: HESS, MAGIC, VERITAS and others) are able

to detect fluxes from such a process in a number of sources. However, even though

protons are by a factor of about 100 more abundant than electrons in CRs at energies

near 1 GeV, we cannot yet prove directly that supernova shocks provide the accel-

eration of protons. Really, in TeV photon band, γ-rays of the hadronic origin are in

competition with γ-ray from inverse-Compton process (and probably with nonther-

mal bremsstrahlung) which is leptonic in origin, that leaves inconclusive hypothesis

about SNRs as sources of CR protons.
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Figure 1.7. Region of the galactic center, as from data of HESS (in γ-rays with energy > 0.3
TeV, galactic coordinates). Most of sources are SNRs.

The best evidence for ion acceleration is the spectral feature resulting from the

minimum photon energy from a created pion nearly at rest, about 70 MeV. However,

detailed calculations (e.g. [67]) show that this feature may not be highly distinct in

a real object.

Detecting the neutrinos accompanying proton-proton interactions would provide

incontrovertible evidence for CR acceleration in the sources.

History of γ-ray observations of SNRs may be found in [33, 102, 158, 306]. Since

many years, the only γ-ray fluxes were known for a number of cosmic sources.

Essential step in γ-ray astrophysics was done in 2003-2004 when the system of

Cherenkov telescopes HESS has done first observations. HESS sky survey [37] reveals

most sources which are bright in TeV γ-rays (Fig. 1.7).

Ground-based experiments HESS [185], MAGIC, VERITAS as well as the space

observatory Fermi [151] allow one, for the first time, to analyze images of cosmic

objects in γ-rays. SNRs are always between priority targets in such experiments. At

present, there are less than 20 SNRs with known TeV γ-ray images; they include

SN 1006 [28] (Fig. 1.8), RX J1713.7-3946 [45, 46], Vela Jr. [36, 38], RCW86 [42],

G12.8-0.0, Kepler, Tycho, IC443 [50], W28 [39], CTB 37B [41], G0.9+0.1 [34], MSH

15-52 [35], Kes 75, HESS J1731-347, HESS J1813-178 [95], CTB 37A [40]. Pulsar-

wind nebulae could be the origin of γ-rays in G0.9+0.1 and MSH 15-52 while the

particles accelerated at the forward shock of SNRs are likely to be responsible for

emission in the other SNRs. It is interesting that some SNRs were discovered in TeV

γ-rays and only after that were confirmed in radio and other bands (HESS J1813-

178, HESS J1731-347).
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Figure 1.8. HESS image of SN 1006 [28].

GeV γ-rays, the last electro-magnetic window, are observed since 2008 when the

Fermi γ-ray space telescope was launched. Till now, Fermi observatory has detected

7 SNRs, namely, young and historical SNRs: Cas A, RXJ 1713.7-3946; intermediate

age (∼ 104 yr) SNRs: IC443; middle-aged (≥ 3× 104 yr) SNRs: W51C, W44, W28,

G349.7+0.2 (these likely interact with molecular clouds).

There are 274 Galactic SNRs [172] known from their radio emission. Thus, there

are less than 10% of SNRs detected in γ-rays. For comparison, 60-70% of SNRs

are visible in X-rays; mostly through thermal X-ray emission of the plasma heated

to T ∼ 107K on the shock. About 20 SNRs has non-negligible nonthermal X-ray

emission.

The featureless X-ray spectrum of the remnant of SN 1006 above 1 keV was first

attributed in 1981 to synchrotron radiation from the shock-accelerated electrons

[308]. X-ray synchrotron radiation arises from electrons with energies ∼ 10−100TeV

[184, 312]; it represents the rolling off of the spectrum due to some process limiting

the maximum energy of electrons [302]. The extreme thinness of the hard X-ray

rims is consistent with the very short radiative cooling lifetime of such extremely

relativistic electrons in magnetic fields with strength ∼ 10− 100µG.

There are now four known Galactic remnants whose soft X-ray spectrum is dom-
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inated by synchrotron X-rays: in addition to SN 1006, G1.9+0.3 [313]; G347.3-

0.5 (also known as GX J1713.7-3946) [335]; and G266.2-1.2, “Vela Jr.” [56, 336].

Synchrotron X-ray emission contributes to the spectrum of several more Galactic

remnants (reviewed in [306]). In historical (or quasi-historical) remnants RCW 86

(probably SN of 185 year), Tycho (SN 1572), Kepler (SN 1604), and Cas A (SN

∼1680), “thin rims” of featureless X-ray emission lie at the edges of the remnants,

and are presumed to indicate the outer blast wave. It appears that synchrotron X-

ray emission from the blast wave is a common feature in young SNRs, less than a

few thousand years old.

Spatial and spectral resolution of modern X-ray missions (XMM [372] and Chan-

dra [111]) allow for very detailed information on SNRs, including spectra, images

and even spatially resolved spectroscopy, that gives big advantage for studies of CR

acceleration in these objects.

One of the recent achievements in SNR studies is discovery of the youngest SNR,

G1.9+0.3, with synchrotron emission dominating in X-rays. It is a remnant of about

100 years old, as it follows from expansion between radio observations made in 1985

and X-ray Chandra observations in 2007 [313]. This SNR is the only object which

cover gap in evolution from radio supernovae (few years) [366] to young historical

SNRs (few hundred years) [340]. This discovery opens a new possibility to under-

stand the very early development of a SNR from supernova and the physics of the

very fast shock.

It is necessary to emphasize that the broad-band analysis of the spectra from

SNRs is useful to set constraints on model parameters but it still leaves open the

nature of VHE γ-ray flux either as leptonic or as hadronic in origin. An example

is presented on Fig. 1.9 where the observed spectrum of SN 1006 is shown fitted

either with the inverse-Compton emission or with γ-rays from the pp collisions, or

in the mixed model [28]. Since analysis of the spectrum may not give preference to

a certain emission mechanism, it is necessary to make wider use of observational

data. In particular, the spatial distribution of radio, X-ray and γ-ray emission is an

additional important channel of experimental information.
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Figure 1.9. Broad-band spectra of SN 1006 for three alternative models of TeV γ-ray emis-
sion: leptonic (top), hadronic (middle) and mixed (bottom) [28]. The Fermi/LAT sensitivity for
one year is shown for Galactic (upper) and extragalactic (lower) background. The latter is more
representative given that SN 1006 is 14o north of the Galactic plane.

Main achievements of observers in the field of emission of CRs in SNRs are

presented in reviews [49, 57, 60, 92, 100, 125, 192,306,324,357–359, 364, 367].
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1.4. Progress and problems in studies of cosmic rays in SNRs

1.4.1. Maximum energy. The maximum energy to which particles can be

accelerated depends on the limiting mechanism: Emax may be limited by the geo-

metrical size of the object (if gyro-radius of a particle is larger then it may leave

the region of acceleration), by the age of acceleration engine, by escape due to ab-

sence of the MHD waves of the lengths required for further acceleration and by the

radiative losses [73,303]. Some of these mechanisms are similar for different kinds of

CRs, some other operates with only a given species (e.g. synchrotron and inverse-

Compton radiative losses limit energy of electrons only). Observed X-ray spectrum

allows one to suggest a method to put limitation on Emax for electrons from X-

ray spectrum [184, 312]. Respective algorithm is implemented in the code XSPEC

developed for the X-ray spectrum analysis. The basic ideas are the following [307].

Let a diffusion coefficient κ scale with particle energy. Then the particle mean free

path is a multiple η of its gyroradius rg: λmfp = ηrg = ηE/eB for ultra-relativistic

particles, since rg = γmc2/eB (cgs units). Then the “Bohm limit” in which the mean

free path is a gyroradius is η = 1. For weak turbulence, one expects η ≥ 1. For a

remnant of age t with shock speed V , with surroundings containing MHD scattering

waves only up to a wavelength λmax, the maximum energies scale as

Emax(age) ∝ t V 2B η−1 (1.1)

Emax(escape) ∝ λmaxB (1.2)

Emax(loss) ∝ V B−1/2 η−1/2 (1.3)

In all cases, for V ≥ 1000 km s−1 and ages above a few hundred years, maximum

energies of 10 – 100 TeV are easily obtainable.

The diffusion coefficient may be anisotropic; in particular, diffusion along and

across magnetic-field lines is likely to take place at different rates, with effects on the

acceleration time τ to some energy. If the shock velocity makes an angle Θo with the

mean upstream magnetic field, one can parameterize this effect with RJ(Θo, η, r) =

τ(Θo)/τ(Θo = 0). Let values be scaled to typical values for young SNRs: V8.5 =
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V/3000 km s−1; t3 = t/1000 yr; B10 = B/10 µG; and λ17 = λmax/10
17 cm. The

frequencies at which electrons with energy Emax emit their peak power for each

limiting mechanism are then

hνroll(age) ∼ 0.4 V 4
8.5 t

2
3B

3
10 (ηRJ)

−2 keV (1.4)

hνroll(esc) ∼ 2B3
10 λ

2
17 keV (1.5)

hνroll(loss) ∼ 2 V 2
8.5 (ηRJ)

−1 keV. (1.6)

In a given object, and in a given location, the lowest value of Emax will be the

operative value. Thus if one can determine the mechanism causing the spectral

cutoff, its value constrains considerably more physical parameters than the simple

observation of a radio power-law spectrum.

We adopt such an approach in Sect. 5.4.

1.4.2. Injection. Even if “acceleration efficiency”, i.e. fraction of kinetic energy

of the flow transmitted to CRs, is prominent, the accelerated particles represent only

< 10−3 of all particles. The fraction of number density of particles participating in

the acceleration process is called “injection efficiency”; it is unknown a priori, neither

from theoretical nor observational considerations. The injection problem consists in

understanding of how particles are “injected”, i.e. how they become involved into the

acceleration process.

A self-consistent treatment of injection and acceleration must include a model

of particle-wave interactions in the plasma. A few physical models proposed for the

proton and electron injection are reviewed in [146, 240].

As to electrons, their scattering is suggested to be due to some ion-generated

instabilities [96], whistler waves [228] or lower-hybrid waves from ions [227]. These

models mainly address the plasma microphysics; while only Bykov & Uvarov [96], to

our knowledge, are able to model the formation of the post-shock electron distribu-

tion. Both injection and thermalisation of electrons happen in vicinity of the shock

front, presumably by the same scattering centers; thus, they may affect one another.

In Sect. 3.1 we suggest a simplified approach for electron injection, which allows us

to relate the injection efficiency to the level of electron-proton equilibration.
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Another important effect is eventual dependence of the injection on the shock

obliquity (an angle between the ambient MF and the shock normal). Simple consid-

erations demonstrate ambiguity of expectations. At large angles, the injection would

be suppressed allowing the of acceleration at the quasi-parallel shocks only: particles

guided by the field will be constrained to move along the front and the re-crossing

process could never start. However, the acceleration efficiency is typically larger at

the quasi-perpendicular shocks (particles with large enough gyro-radius may re-cross

the shock during gyration); such effect might help also injection - an opposite be-

havior. Thus, in the absence of a theory for oblique shocks, we can only assume

some eventual dependences for injection efficiency, e.g. const for isotropic injection,

∝ cos2Θo for quasi-parallel and ∝ sin2Θo for quasi-perpendicular one [157].

The problem of injection, hard enough for protons and electrons, is even harder

for nuclei especially for those that may result from sputtering of dust grains [139].

1.4.3. Efficient acceleration. There are a number of effects which may also

be considered as indirect evidences about acceleration of protons and ions by SNR

shocks. Namely, if the acceleration is rather effective (i.e. when CR protons takes

considerable fraction of kinetic energy from the system), one would expect some

deviation of the processes from the test-particle theory of acceleration. That results

in a number of effects, namely,

– the temperature at the forward shock should be depressed [197],

– efficient CR acceleration changes the structure of the shock front,

– and makes plasma more compressible that leads to lower adiabatic index and to

increased shock compression factor,

– the physical separation between the forward shock and the “contact discontinuity”

(or reverse shock) should be reduced [371],

– the pressure gradient of CR should lead to concave shape of the energy spectrum

(steeper at small energies and flatter, up to E−3/2 at very-high energies), instead

of the power-law one predicted by the test-particle theory [87, 309],
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– the instability originated from the CR flow should lead to grow of some turbulence

modes, i.e. to MF amplification in the pre-shock region [71],

– such grow of MF should cause the “blinking” X-ray spots (rapid rise and fall of

the spots indicate that electrons are being accelerated to near-light speed in the

presence of strong magnetic fields) [270,353] (though another explanation exists:

such “twinkling” may be due to fluctuations of highly turbulent MF even if the

strength of the mean magnetic field is lower [99]),

– such grow of MF should be reason for quite thin X-ray rims [76] (an alternative

explanation of the thin rims: disappearance of MF downstream due to wave

damping [289]),

– larger MF and turbulence should result in higher Emax [268],

– charge exchange with neutrals in the shock precursor may lead to broader narrow

Balmer line than in the absence of CR induced precursor [183] (so called Balmer

dominated shocks; see Sect. 3.2 in review [88] and references therein),

– radial structure of the shock front upstream (observed in X-rays) seems to con-

firm back-reaction of particles and MF amplification, at least locally in SN 1006

[258] (however an alternative explanation, involving acceleration at perpendicu-

lar shocks and magnetic field amplification due to turbulent eddies downstream

of the shock [165], may still be possible).

Such effects of non-linear acceleration (i.e. when back-reaction of accelerated par-

ticles on the system is included into consideration; see review [240]) are intensively

studied both theoretically and experimentally.

Actually, even the test-particle diffusive shock acceleration theory supposes that

accelerated particles are responsible for the production of the magnetic field struc-

tures on which they may scatter [69, 220].

At present, the non-linear theory has a number of difficulties. Let us note just

two of them.

It is not clear which role the amplified field can play in terms of scattering particles

up to the knee energy since the unstable waves are produced at wavelengths much
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shorter than the Larmor radius of the particles generating them [88]. Non linear

effects in wave evolution can lead however to transporting energy towards longer

wavelengths, though it is not clear whether this process is fast enough to occur

within the precursor and thereby lead to efficient particle scattering, essence of the

acceleration process.

One of another difficulty is related to particle diffusion. The concavity of the

CR energy spectrum (steeper at small energies and flatter, up to E−3/2 at very-

high energies) yields an effective s ≤ 2 at high-energies. CR spectrum generated

at the source N ∝ E−s transforms to the observed spectrum Nobs ∝ E−s−δ for

energy-dependent diffusion coefficient D(E) ∝ E−δ. In the two main models [294],

δ = 0.6 (clear diffusion) or δ = 0.34 (diffusion with re-acceleration). The first

one almost agrees with the production spectrum in SNRs (s ≃ 2) though it should

result in excessive observed anisotropy [295]. A possible solution of this contradiction

may consist in relatively large velocities of scattering centers responsible for particle

acceleration, that may be a consequence of MF amplification [101,295]; this leads to

steepening of the particle spectrum (s ≥ 2) as needed. However, if so, the non-linear

theory predicts smaller MF and lower acceleration efficiency [101].

1.4.4. Magnetic field. Emission of the accelerated charged particles in SNRs

keeps information about magnetic field.

MF strength. Since the intensity of synchrotron radiation from a power-law dis-

tribution of electrons N(E) = KE−s scales as ν−αKBα+1, radio synchrotron fluxes

only give roughly the product of the energy densities in magnetic field and electrons.

The ratio of synchrotron and γ-ray fluxes may be used to put limitations on

MF strength [117,362], under assumption that γ-ray flux is due to inverse-Compton

process (in fact, such estimate yields lower limit on the strength because at least a

part of the γ-flux may be of different origin).

Very thin X-ray rims in a number of young SNRs are used to estimate the strength

of the post-shock magnetic field (e.g. [76]). Locally, in the thinnest filaments, the

strength derived is of order hundred micro Gauss, much above the value of a typical
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interstellar field compressed by the forward shock. Such strong field is believed to be

driven by effective amplification of the initial interstellar field in the shock cosmic-

ray precursor. However, there are other suggestions explaining so thin rims. Namely,

synchrotron emission may quickly disappear downstream due to disappearance of

radiating electrons (large radiative losses due to large MF, scenario described above)

or due to MF disappearance as a consequence of some wave damping [289].

MF orientation within SNRs. Magnetic-field orientations can be derived from

radio polarization directions. A uniform synchrotron source with spectral index 0.5

has a polarized fraction of about 70%, but very few remnants show values above

40% [307]. Young SNRs have much lower values, typically of order 10% – 15%

( [311] and references therein), implying that their magnetic fields are primarily

disordered. The ordered components, however, tend to be radial. In older remnants,

magnetic-field orientations are typically confused, but it is fairly common to see a

tangential orientation, which one would expect if a high-compression radiative shock

compresses upstream magnetic field, increasing the tangential component by a factor

of the large compression ratio [307].

MF orientation around SNRs. It is generally unknown how MF is oriented in

places of SNR locations, though, it could be expected that, typically, MF have to

be oriented along the Galactic plane. In fact, Gaensler [159] has measured an angle

between the symmetry axis in 17 ‘clearly’ bilateral SNRs and the Galactic plane.

Axes are more or less aligned with the Galactic plane in 12 SNRs (angle < 30o), 2

SNRs have angle ≈ 45o and 3 SNRs are almost perpendicular (> 60o). In Sect. 5.3,

a method to determine the MF orientation around an SNR is proposed.

1.4.5. Radiative shocks, ISM/ISMF nonuniformities. The role of ra-

diative losses, which is negligible till the end of adiabatic phase of SNR evolution,

becomes more and more prominent with time. They are so important in old SNRs,

that they essentially modify the dynamics of such SNRs. One of the consequence of

radiative channel of the shock energy dissipation is the increased compression factor

of the shock that results in creation of the thin radiative shell. Such compression
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affects also MF. Being almost unimportant in the shock dynamics till the end of

adiabatic stage, the energy density of MF increases further on, with increasing the

compression of the plasma on the shock. Thus, MF becomes to be an important

factor in the shock dynamics. All these factors should affect the injection and accel-

eration of CRs as well. Such picture is of the special importance in the case of SNR-

cloud interaction: the shock front moving into dense medium cools rather quickly.

There are a number of old SNRs with observed γ-ray emission (W28, W49B, W51C

etc.) which reveal also signs of interaction with clouds. Interpretation of such ob-

servations requires understanding of magneto-hydrodynamics of such post-adiabatic

and radiative shock as well as CR acceleration process in its vicinity.

Such task is closely related to the shock motion in the non-uniform media. In

addition, most of SNRs reveal assymetries in surface brightness distribution, devi-

ation from sphericity; these effects being different in different photon bands in the

same object. Thus large-scale (the scale larger than the SNR radius) nonuniformities

of ISM and/or ISMF naturally happen. Effects of non-uniform media and fields on

CRs and MF in SNRs should be studied [203].

1.5. Conclusions and outline of the present work

SNRs are one of important class of objects for astroparticle physics. Outline of

modern problems and tasks in studies of CRs in SNRs are given in [68,130,203,304,

339, 360]. Main questions in such studies may be summarized as follows.

– How efficiently is shock kinetic energy converted to CR energy? What is the

maximum particle energy?

– Do SNRs accelerate protons (p/e ratio; similar to that observed at Earth or not)?

Can we find direct evidence for the acceleration of protons/ions in SNRs?

– What is the nature of γ-ray emission in SNRs (electrons/protons)?

– How effective are non-linear effects in diffusive shock acceleration? How can we

observe them? Do they affect thermal emission?
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– Is the magnetic field amplified in SNRs? What does it depend on? Is it widely-

present or rather rare and local effect?

– How do particles start acceleration? Injection problem.

– How do injection, acceleration, MF compression/amplification depend on the

shock obliquity and strength?

– What is the role of ISMF/ISM nonuniformities?

– Can and how old (post-adiabatic and radiative) shocks inject and accelerate

charged particles, what is the behavior of MF around them?

Results of the present thesis give some answers to the above questions. We de-

termine the process responsible for limitation of the electron maximum energy in

SN 1006. We suggest a model-independent test (γ-ray image from radio and X-ray

data) as an argument for leptonic origin of TeV γ-ray emission of this SNR. Though

our work are devoted greatly to investigation of the formation of SNR images in dif-

ferent bands and, therefore, we are bounded by the test-particle theory (at present,

the non-linear approaches operate with initially quasi-parallel shocks), we pay at-

tention to some of nonlinear effects. Namely, we found high MF in SN 1006, but only

locally, in the thinnest filament at the rim; our approximate analytical formulae for

azimuthal and radial profiles of surface brightness are ready to account for the non-

linear effects if necessary; possible effects from the back reaction of particles on our

results are analyzed where appropriate. We show how statistical analysis of SNR

samples allows to discard a model of non-linear acceleration which predicts con-

stant efficiencies in MF amplification and acceleration. A new approach to describe

electron injection is proposed. Hydrodynamic descriptions of the post-adiabatic and

radiative stages of SNR evolution are developed. It is determined how nonthermal

images of SNRs may be used to put constraints on physics of CR and MF. In par-

ticular, it is shown how the dependences on the shock obliquity and velocity modify

maps of SNRs. The influence of the large-scale nonuniformities of ISM/ISMF on the

appearance of SNRs is studied.



43

CHAPTER 2

DYNAMICS OF THE SHELL-TYPE SNRS IN NON-UNIFORM

MEDIUM

There are three phases in a common scenario of SNR evolution: free expansion

(when the ambient medium does not affect the shock motion), adiabatic (when the

shell decelerates in the medium but the energy of thermal emission of the shocked

plasma is negligible comparing to the kinetic energy of the shock) and radiative

(when radiative losses of plasma become prominent factor in modification of the

shock dynamics).

There are analytical and numerical solutions which describe to model the shock

and the flow during free expansion and adiabatic stages: [21,110]. Influence of radia-

tive losses on the flow dynamics in the further evolution of SNR were studied only

numerically [90,109,114,147,148,241]. Analytical solutions for motion of the radia-

tive shock front [89,247,263,266], as it is shown in Sect. 2.4 (see also [269]), cannot

be used for description of real SNRs because SNRs do not reach these theoretical

approximants, dissipating in ISM well in advance.

Another important factor influencing SNRs is nonuniformity of media (e.g. [203]);

most of SNRs are not spherical in shape and have assymetries in surface brightness

distribution.

One of our previous works was devoted to a new analytical method for hydro-

dynamical modeling of adiabatic SNR in nonuniform ISM [195]. The method allows

us to suggest a new interpretation for thermal X-ray composites, a morphological

class of SNRs. In the present chapter, the approach developed in [195] is extended

to description of SNR after the end of adiabatic era.

Thus, in Sect 2.1, we consider model of TXC as adiabatic SNR in a medium with

nonuniform density distribution; such SNRs may be prominent sources of gamma-
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ray emission from protons accelerated by the shock (this is considered in more details

in Sect 3.4). Then we present methods for hydrodynamic description of SNR evo-

lution from the time when deviation from condition of adiabaticity becomes to be

prominent. Namely, Sect 2.2 considers evolution of SNR in details and the need is

demonstrated to introduce a new transition phase after the end of the adiabatic and

before beginning of the radiative one. It is shown that the duration of this phase is

comparable to the duration of the adiabatic stage. Approximate analytical method

for hydrodynamic modeling the shock and the flow during this new stage is presented

in Sect 2.3, for the case of uniform ISM. Analytical solutions for motion of radiative

shock in uniform ISM are presented in Sect 2.4; they are extended to nonuniform

ISM with the power-low density variation in our work [15] and to motion of shock

under a force from gas with non-zero mass in [16]. Sect 2.5 presents an approxi-

mate analytical method for hydrodynamic description of the flow downstream of

the radiative shock, in case of nonuniform ISM. These methods allow one to study

nonthermal emission from cosmic rays in SNRs after the end of adiabatic era.

Results presented in this chapter are published in [8, 9, 15, 16, 65, 272, 273, 277].

2.1. Thermal X-ray composites as adiabatic SNRs in nonuniform

ISM

2.1.1. Thermal X-ray composites as morphological class of SNRs.

Observations show that supernova remnants (SNRs) have anisotropic distributions of

surface brightness [330,368]. There are four morphological classes of SNRs: shell-like,

Crab-like (or plerionic), composite and thermal X-ray composites (or mixed-morpho-

logy, or centrally-influenced) [203,316]. In the past decade interest to TXCs has risen

(e.g. [122, 203, 331, 344]). TXCs are SNRs with the centrally concentrated thermal

X-ray and the limb brightened radio morphologies. Remnants W44, W28, 3C 400.2,

Kes 27, 3C 391, CTB 1, MSH 11-61A and others represent a mixed-morphology

class [316].
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Two physical models have been presented so far to explain TXC (see [316] for

review). One of them is an enhanced interior X-ray emission from the evaporated

material of numerous swept-up clouds which increases density in the central region

of SNR. This model is frequently used; sometimes its application is intrinsically

inconsistent, e.g., as in MSH 11-61A where evaporation timescales exceed the age

of SNR 50-100 times [203]. In the second model, shock temperature is small due to

essential cooling; very soft emission of the shell is absorbed by ISM and only the

interior region remains visible; thermal conduction may level temperature profiles

and increase the central density altering the interior structure [122].

The mentioned models are used to obtain the centrally-filled morphology within

the framework of one-dimensional (1-D) hydrodynamic approaches. When we pro-

ceed to 2-D or 3-D models, we note that a simple projection effect may cause the

shell-like SNR to fall into another morphology class, namely, centrally-influenced

[195]. The main feature of such SNR is the thermal X-rays emitted from swept-up

gas and peaked in the internal part of the projection. Therefore, getting beyond

one dimension, we obtain a new possibility to explain the nature of TXC. Such a

possibility is considered in this section.

2.1.2. Observed properties of thermal X-ray composites. It is proved

[316] that mixed-morphology SNRs create a separate morphological class because

their properties distinguish these remnants from others. Having analysed X-ray data

on a number of such SNRs, the authors found their two prominent morphological

distinctions: a) the X-ray emission is thermal, the distribution of X-ray surface

brightness is centrally-peaked or amorphous and fills the area within the radio shell

and may reveal weak evidence of an X-ray shell, b) the emission arises primarily

from the swept-up ISM material, not from the ejecta.

It is emphasized [316] that, besides similar morphology, the sample of SNRs also

has similar physical properties. Namely, a) the same or higher central density com-

paring with the edge, b) complex interior optical nebulosity, as in W28 and probably

in 3C 400.2 [231]; c) higher emission measure
∫

n2edl (ne is the electron number den-
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sity, l is the length inside SNR) in the central region, as e.g. in 3C 391 [315]; d) X-ray

surface brightness in the central region (with radial coordinate r < 0.2Rp, Rp is the

average radius of the projection), in general, exceeds the brightness near the edge

(r > 0.6Rp) in 2-5 times, e) temperature profiles are close to uniform. As to the

latter property, it should be noted that the temperature may decrease towards the

centre, as in 3C 391 [315]; no strong evidence of increasing the temperature towards

the centre has been found for all TXCs, but [122] note that spectral hardness in W44

is greater in the centre, so the temperature might be higher in this region. A possible

variation of temperature may be within factor 2, as in the case of W44 [122, 317])

or in W28 [231].

7 objects from the list of 11 TXCs reveal observational evidence of an interaction

with molecular clouds [316]. Thus, ambient media in the regions of their localization

are nonuniform and cause nonspherisity of SNRs. Observational evidence of cloud

localization just on the line of sight for some of these SNRs also exists (e.g., [317]).

2.1.3. Modelling a thermal X-ray composite. The Sedov [21] model does

not give a centrally-concentrated morphology due to geometrical properties of self-

similar solutions. The solutions are 1-D and give a specific internal profile of the flow

gas density: most of the mass is concentrated near the shock front. These factors and

cumulation of the emission along the line of sight cause a shell-like morphology. If

we consider a more complicated nonuniform ISM, we get beyond one dimension and

need to consider additional parameters responsible for nonuniformity of the medium

and orientation of a 3-D object.

Projection effects may essentially change the morphology of SNRs [195]. Densities

over the surface of a nonspherical SNR may essentially differ in various regions. If

the ambient density distribution provides a high density in one of the regions across

the shell of SNR and is high enough to exceed the internal column density near the

edge of the projection, we will see a centrally-filled projection of a really shell-like

SNR. Such density distribution may be ensured e.g. by a molecular cloud located

near the object.
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What is a really shell-like 3-D SNR? We suggest that such a remnant has internal

density profiles similar to those in the Sedov solutions. Thus, we separate a shell-like

SNR (as an intrinsic property of a 3-D object) from its limb brightened projection

(as a morphological property of the projection). Let us call shell-like SNRs with

centrally-filled projections "projected composites".

Hydrodynamic models. For simplicity, let us consider the case of a 2-D SNR

and the characteristics of SNR and the surrounding medium which could be possible

on smoothed boundaries of molecular clouds. Thus, SNR evolves in the ambient

medium with hydrogen number density n distributed according to

n(r̃) = nic + nc exp(−r̃/h), (2.1)

where nic is the density of the intercloud medium, the second term represents the

density distribution into the boundary region and the cloud, h is the scale-hight, r̃

is the distance. Let us take the explosion site to be at point r̃o where n(r̃o) = 2nic.

Other parameters are assumed to be nic = 0.1 cm−3, nc = 100 cm−3. The energy of

the supernova explosion is Eo = 1 · 1051 erg. We consider three basic evolutionary

cases of SNR models which cover practically the whole adiabatic phase (models a-c,

Table 2.11) and then we vary parameter h in intermediate model b (models d-f ,

Table 2.1), in order to see how the gradient of the ambient density affects X-ray

characteristics of objects.

Emission models. The gas density n and temperature T distributions inside

the volume of a nonspherical SNR are obtained with the approximate analytic

method of Hnatyk & Petruk [195]. The equilibrium thermal X-ray emissivities are

taken from the Raymond & Smit [301] model. The model for radio emission of non-

spherical SNR is described later in our work. In short, it generalizes the model of

Reynolds [303] developed for uniform ISM. Namely, the distribution of magnetic

field over the shock depends on the shock obliquity: the radial component B‖ is not

modified by the shock: B‖,s/B
o
‖,s = 1; the tangential component B⊥ rises at the

1The denser part of the shell in model c just enters the radiative phase since this part has lg(Ts,K) = 5.6 and

the transition temperature for the Sedov blast wave is lg(Ts,K) = 5.8 [90].
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Table 2.1
Parameters of SNR models. t is the age of the SNR, R and V are the radius and velocity of the
shock front, Ts and ns are the temperature and number density of the swept-up gas right behind
the shock. Rmax, Rmin (Vmax, Vmin) are the maximum and minimum shock radii (shock velocities)

of nonspherical SNR. Analogously, Ts, max, Ts, min (ns, max, ns, min) are maximum and minimum
temperatures (number densities) of the gas flow right behind the shock. L>0.1 keV

x is the thermal
X-ray luminosity (for photon energy > 0.1 keV) and α is the spectral index (at photon energy
5 keV) of the thermal X-ray emission from the whole SNR. Tef is the effective temperature of a
nonspherical SNR defined in [195] as Tef ∝M−1, where M is the swept-up mass. The contrasts

in the distribution of X-ray surface brightness lg(Sc/Smax, 2) and spectral index α0.95/αc are
presented for the case of δ = 90o. Subscript "c" corresponds to the center of the projection, α0.95

is the value of the index at 0.95Rp, Rp is the radius of the projection.

Parameter Model

a b c d e f

h, pc 2.5 2.5 2.5 5 10 40

t, 103 yrs 1.0 6.8 17.7 6.8 6.8 6.8

lg Tef , K 8 7 6.5 7 7 7

M, M
⊙

9.5 94 280 98 95 94

Rmax/Rmin 1.4 1.8 2.1 1.4 1.2 1.1

Vmax/Vmin 1.9 2.8 3.1 1.9 1.5 1.1

Ts, max/Ts, min 3.5 7.9 9.8 3.7 2.2 1.2

ns, max/ns, min 9.5 45 84 11 3.9 1.4

lgL>0.1 keV
x 34.1 36.7 37.3 36.4 36.2 36.1

α5 keV 0.98 3.2 3.1 3.9 4.1 4.2

lg(Sc/Smax, 2) 0.43 2.1 2.3 0.72 -0.10 -0.54

α0.95/αc 1.6 1.8 3.6 1.3 1.2 1.3

shock by the factor of ρs/ρ
o
s = σ; no turbulent amplification of the magnetic field is

assumed. Inside the non-spherical SNR, MF strength is found from Eqs. (D.4)-(D.5)

in Appendix D, with known distribution of n. The ISMF is assumed to be uniform.

Evolution of energy distribution of relativistic electrons is described in Sect. 3.2.

Maximum energy of electrons and efficiency of injection, for simplicity, are assumed

to be constant over the surface of SNR.

Radio morphology depends on aspect angle φo between the line of sight and the

ambient magnetic field [303], also on the inclination angle δ between the density

gradient and the plane of the sky and, in a complex 3-D case, on the third angle

between the density gradient and the magnetic field.
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Figure 2.1. a-d. Logarithmic distributions of thermal X-ray surface brightness S in
erg s−1 cm−2 st−1 for photon energy ε > 0.1 keV (a, b), and radio surface brightness Sν at
some frequency in relative units (c, d). The SNR model is b, power s = 2. Angles δ and φo are
shown in the figure. a, b: lg Smax = −3.1, ∆ lg S = 0.3. c: ∆ lg Sν = 0.3. d: ∆ lg Sν = 0.15. The
darker colour represents a higher intensity. The arrow indicates a magnetic field orientation.

2.1.4. Theoretical properties of "projected composites". Fig. 2.1a-b

demonstrates the influence of the projection on a thermal X-ray morphology of

SNR. The X-ray brightness maximum which located near the shock front in the

projection with δ = 0o (Fig. 2.1a) moves towards the centre of the projection with

the increase of δ from 0o to 90o (Fig. 2.1b). Radio images (Fig. 2.1c-d) show that

the radio limb-brightened morphology clearly appears at φ = 0o, i. e. if both the

density gradient and the magnetic field are nearly aligned.

Variation of the magnetic field orientation changes the radio morphology from

shell-like to barrel-like [159, 212]. Contrast lg(Sν,max/Sν,min) in the radio surface

brightness decreases with increasing φo, from 2.7 (φo = 0o) to 1.8 (φo = 90o).

Such behaviour of the radio morphology may be used for testing orientation of the

magnetic field.

Thus, we found that the morphological properties of the projected composites

match the basic features of the TXC class: centrally-peaked distribution of the ther-

mal X-ray surface brightness is within the area of the radio shell; emission arises
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Figure 2.2. Distribution of density (solid curves) and temperature (dashed curves) along the line
of sight inside SNR (model b, δ = 90o): 1 – at the center of the projection, 2 – at 0.95Rp. Emission
measure

∫

n2
edl = 74 cm−6pc at the center and

∫

n2
edl = 1.1 cm−6pc at 0.95Rp.

from the swept-up ISM material.

Let us consider physical properties of TXCs. a) The column number density

increases from the edge towards the centre of the projection (e.g., for model b from

1018.9 cm−2 to 1019.4 cm−2). b) The diffuse optical nebulosity over the internal region

of the projection may naturally take place in such a model. c) Emission measure
∫

n2edl (ne is the electron number density, l is the length within SNR) is the highest

in the X-ray peak because both ne and l are maximum there (Fig. 2.2).

As Fig. 2.3 demonstrates, the distribution of X-ray surface brightness has strong

maximum Sc around the centre and a weaker shell with second maximum Smax, 2

just behind the forward shock. It is essential that such a morphology takes place

in different X-ray bands (lines b, 1, 2). The contrasts Sc/Smax, 2 in X-ray surface

brightness depend on the photon energy band and may lie within a wide range: in

our models from 3 to 200 for ε > 0.1 keV (Table 2.1). The ratios of X-ray luminosity
∫

S(r)2πrdr of central region R < 0.2Rp to the luminosity beyond R > 0.6Rp are

0.16, 5.2 and 16 in models a, b and c, respectively. Thus, observational property d

of TXCs takes place just at the adiabatic stage.

Surface distribution of spectral index α = ∂ lnPc/∂ ln ε, of the thermal X-ray

emission where Pc is the continuum emissivity and ε is the photon energy, gives us

profiles of effective temperature T of the column of emitting gas (α ∝ T−1, if the
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Figure 2.3. a and b. Evolution of the distribution of thermal X-ray surface brightness (a) and
spectral index (b). Solid curves are labelled with the model codes according to Table 2.1; they
represent lgS in band ε > 0.1 keV and α at 5 keV. Dashed lines represent model b in other bands:
1 – S in ε = 0.1 − 2.4 keV, 2 – S in ε > 4.5 keV (multiplied by 102), 3 – α at 10 keV. Radii are
normalized to unity.

Gaunt factor is assumed to be constant). Fig. 2.3 shows that the temperature may

either increase or decrease towards the centre. Decreasing takes place early in the

adiabatic phase. Variation of the spectral index lies within factors 1.6 to 3.6 at the

adiabatic stage (Table 2.1); the contrast in the spectral index distribution increases

with age. Such values correspond to the possible range of temperature variation over

the projection of thermal X-ray composites.

In order to reveal the dependence of the distributions of S and α on the ISM

density gradient, a number of models with different h were calculated (Fig. 2.4 and

Table 2.1). The surface brightness distribution has a stronger peak for a stronger

gradient. With increasing h, the outer shell becomes more prominent in the pro-

jection. Only a scale-height of order h < 10 pc can cause projected composites.

A less strong gradient of the ambient density makes effective temperature T more

uniformly distributed in the internal part of the projection.

Projection model versus other models. Distinctions of the previous physical

models for TXC from the projection model are noted below. 1) The model with

strong cooling can be used within the frame of the radiative model of SNR; the

presented model describes TXCs as SNRs in the adiabatic phase of their evolution.
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Figure 2.4. a and b. Influence of h on the distribution of thermal X-ray surface brightness
(lgS>0.1 keV) (a) and spectral index (α5 keV) (b). Curves are labelled with the model codes ac-
cording to Table 2.1. Radii are normalized to unity.

2) In comparison with the projection model, the spectrum of the central region in

the model with thermal conduction is softer due to reducing the temperature [203].

3) The models with thermal conduction or evaporation increase the density in the

internal part of SNR. The projection model does not require such modification

of internal density distribution; the density profiles in this model are similar to

those in the Sedov [21] solution. 4) A small-scale inhomogeneous ISM is required

for the model with evaporation. Projected composites are a consequence of large-

scale nonuniformity of the ISM with the scale-height of order < 10 pc. 5) Other

possibilities of creating a centrally-filled morphology, such as differential absorption

or emission from ejecta, modify the spectra of the object and may be determined

from observations.

2.2. Post-adibatic stage in evolution of SNRs

Physical processes accompanying the evolution of SNRs is a complex system. It

is almost impossible to account for all of them in a single model of SNR. Therefore,

the whole evolution of SNR from a supernova explosion until the mixing of a very

old object with the interstellar matter is divided on a number of the model phases
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(e.g. [14,22,370]): the free-expansion, adiabatic and radiative stages. There are some

physical processes important during a given stage, some others could be neglected.

Such an approach allows for simplification of description of SNR evolution during

each phase.

The role of radiative losses, which is negligible in the adiabatic phase of SNR

evolution, becomes more and more promiment with time. They are so important

in old SNRs, that they essentially modify the dynamics of such SNRs. Theoretical

systematization of timescales and the role of different physical process in cooling of

adiabatic SNR was first reviewed by Cox [121]. The transition to the radiative stage

was studied numerically, by following the history of the shocked flow, in [90, 109,

114, 148, 154, 241]. The analytical treatments for dynamics of the shock front are of

great importance as well, it is treated in [65, 89, 247, 263, 266, 269].

The physical processes in the radiative blast wave, namely, quick cooling of an

incoming flow and formation of the thin dense cold shell which moves due to the

pressure of internal gas makes the so called “pressure-driven snowplow” (PDS) model

within the “thin-layer” approximation to be adequate for description of this stage of

SNR evolution [10, 85, 266].

The PDS model was introduced by McKee & Ostriker; their analytical solution

[247,266], widely used for the description of evolution of the radiative shell, gives a

power-law dependence for the shock radius R ∝ tm with constant m (which equals

to 2/7 for the uniform medium). However, numerical studies cited above give a

bit different value of the deceleration parameter m (defined as m = d lnR/d ln t),

namely ≈ 0.33 [90,109]. We shall show analytically in Sect. 2.4 that the evolution of

the radiative shell is, in fact, given by variable m and that the discrepancy between

the analytical and numerical results is only apparent. Namely, the usage of McKee &

Ostriker analytical solution assumes that SNR has already reached the asymptotic

power-law regime with constant value of m = 2/7. The time needed to reach this

asymptotic regime is however long compared to the SNR age.

It is common for an approximate theoretical description of SNR evolution to

simply switch from the adiabatic solution to the PDS radiative one at some moment
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of time. However, we point out below the result visible also in previous calculations,

namely, the need for an intermediate transition phase between the adiabatic and

radiative stages, with duration comparable to SNR age it has at the time when

radiative losses of gas begin to be prominent. Thus, the radiative era which begins

after the end of the adiabatic one, have to be divided on two phases: the transition

(or post-adiabatic) phase, when the radiative losses become to modify dynamics and

to lead to the formation of the thin radiative shell, and the radiative PDS stage when

the shell is already created and one can apply the PDS analytic solution [65, 269].

2.2.1. Transition of the adiabatic SNR to the radiative phase.

Definitions of different reference times. Let us consider the spherical shock

motion in the medium with the power-law density variation ρo(R) = AR−ω, where A

and ω are constant. The dynamics of the adiabatic shock in such a medium is given

by Sedov solutions [21] where the shock velocity V ∝ R−(3−ω)/2 and R ∝ t2/(5−ω).

Moving through medium, the shock decelerates if the ambient density distribution

increases or does not quickly decrease (ω < 3). The shock temperature Ts ∝ V 2

decreases with time as well. Starting from some age tlow when Ts = Tlow ∼ 3×107K,

which corresponds to the minimum of the cooling function Λ(T ), the radiative losses

of shocked plasma are more and more prominent with falling of T (Fig. 2.5). The

maximum in the energy losses is when the shock temperature Ts = Thi ∼ 2× 105K,

the corresponding Sedov time (i.e. calculated under the assumption that the shock

is adiabatic up to this time) is thi.

There is a number of reference times in between tlow and thi [90, 119, 121]. Once

a parcel of gas is shocked its temperature changes due to expansion and cooling

Ṫa = Ṫa,exp + Ṫa,rad, where the dot marks the time derivative. One may define the

“dynamics-affected” time tdyn by the equation

Ṫa,exp(tdyn) = Ṫa,rad(tdyn). (2.2)

If a fluid element is shocked after this time, its temperature decreases faster due

to radiation than as a consequence of expansion. At other time tsag, the radiative
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cooling begins to affect the temperature distribution inside the shock. When the rate

of change of the shock temperature Ṫs begin to be less than Ṫa, the temperature

downstream of the shock will sag rather than rise. Thus the equation for tsag is

Ṫs(tsag) = Ṫa(tsag). (2.3)

Radiative losses cause the faster – comparing to the adiabatic phase – decelera-

tion of the forward shock. This faster deceleration begins to be prominent around the

“transition age” ttr when the shock pressure decrease due to the radiative losses be-

comes to be effective. Then, the shocked gas radiates away its energy rather quickly,

cools till the temperature T ∼ 104 K and forms a dense shell. The formation of the

shell is completed around the “time of shell formation” tsf which is larger than ttr;

the latter which marks the end of adiabatic era. After tsf the thermal energy of all

swept-up gas is rapidly radiated and the thin dense shell expansion is caused by the

thermal pressure of the interior.

The time tlow is given by the equation

Ts(tlow) = Tlow. (2.4)

A similar equation defines the time thi

Ts(thi) = Thi, (2.5)

which was suggested to be a measure of ttr [89,269]. However, as we shall demonstrate

later, the post-shock temperature of plasma at ttr is of order 106K > Thi and thi

is larger than ttr in about 3.5 times (Sect. 2.2.2). Therefore, it is not correct to

calculate the “highest-losses” SNR age with the shock motion law valid during the

adiabatic era.

A simple approach to locate ttr bases on the comparison of the radiative losses

with the initial thermal energy of the shocked fluid [90]. A shocked fluid element cools

during the cooling time ∆tcool ∝ ǫ(Ts, ρs)/Λ(Ts, ρs), where ǫ = (γ− 1)−1ρskTs/µmp

is its initial thermal energy density, γ is the adiabatic index, µ the mean mass

per particle in terms of mp. During the adiabatic phase the cooling time is larger
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than SNR age t. The radiative losses may be expected to modify dynamics when

the cooling time ∆tcool ≤ t. In such approach the transition time is a solution of

equation

ttr = ∆tcool(ttr). (2.6)

Let us assume that the cooling function Λ ∝ n2T−β with β > 0 and n is the hydrogen

number density, then ∆tcool ∝ n−1
o T 1+β

s ∝ t−6(1+β)/5 with the use of Sedov solutions

for uniform medium. For the shock running in the power-law density distribution,

the upstream hydrogen number density and the post-shock temperature at time t is

no ∝ t−2ω/(5−ω), Ts ∝ t−2(3−ω)/(5−ω). (2.7)

Therefore ∆tcool ∝ t−η with η = (2(3− ω)(1 + β)− 2ω)/(5− ω)) for such density

distribution. For β = 1/2 the index η is the same as found in [154].

The way to estimate the time of the shell formation tsf was suggested in [119,120].

If an element of gas was shocked at time ts then the age of SNR will be tc =

ts + ∆tcool(ts) when it cools down. The minimum of the function tc(ts) has the

meaning of SNR age when the first element of gas cools and is called “SNR cooling

time” tcool. Let t1 be the time when the shock encountered the fluid element which

cools first. If so, tc = t1(ts/t1) + ∆tcool(t1)(ts/t1)
−η. Setting dtc/dts|ts=t1 = 0 one

obtain that

tcool = (1 + η)∆tcool(t1), (2.8)

tcool
t1

=
1 + η

η
, (2.9)

The cooling time tcool > t1 by the definition, therefore it must be that η > 0. This

is the case for

ω < 3(1 + β)/(2 + β); (2.10)

that is ω < 2 (9/5) for β = 1 (1/2). The equation

t1 = η∆tcool(t1) (2.11)

is more suitable for practical use than (2.8). If the medium is uniform then tcool =

17t1/12 for β = 1 and tcool = 14t1/9 for β = 1/2.
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The “SNR cooling time” tcool = min(tc) was initially suggested to be taken as the

time of the shell formation. Numerical experiments for shock in the uniform medium

suggest that tsf is a bit higher (of order 10%) than tcool [122] and the reason of this

could be that the compression of the shell is also effective after cooling of the first

element and takes additional time.

Another point is that the solution for adiabatic shock used in (2.7) might not

formally be applicable there because t1 > ttr (see Eq. (2.40)). We believe however

that the level of accuracy in estimation of ttr, the small difference between ttr and

t1 (about 30% in the case of uniform medium, Sect. 2.2.2) as well as close values of

tcool and tsf allow one to use the Sedov solution in (2.7) and to assume tsf ≈ tcool.

We would like to note once more that the transition time ttr is an approximate

estimation on the end of the adiabatic stage and beginning of the radiative era,

while the time of the shell formation tsf marks the time when one can start to use

the PDS model where hot gas pushes the cold dense shell. The structure of the

flow re-structurises and the shell forms during the transition phase given by the

time interval (ttr, tsf). We shall demonstrate later that the ratio tsf/ttr with ttr given

by (2.6) and tsf by (2.9) is always larger than unity (see Eq. (2.39)) and that the

transition phase is not short as it is generally assumed.

One more time, namely the “intersection time” ti ∈ (ttr, tsf) was introduced in [65],

as a time when two functions – the adiabatic dependence R = R(t) (valid before ttr)

and the PDS dependence Rsh = Rsh(t) (valid after tsf) – intersect being extrapolated

into the transition phase. This intersection time could be useful in some tasks when

the level of accuracy is such that one may sharply switch from the adiabatic solution

to the radiative one without consideration of the transition phase.

Cooling time. The expression

∆tcool =
ǫ(Ts, ρs)

Λ(Ts, ρs)
(2.12)

used in [90] to calculate the cooling time, equates the energy losses Λ∆tcool with

initial thermal energy density ǫs of a fluid element under condition that the density

and temperature of this element are constant. More detailed model should account
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for the density and temperature history during ∆tcool. Namely the above equation

should be replaced with a differential one:

dǫ/dt = −Λ(T, ρ). (2.13)

The total internal energy U = ǫV of gas within the volume V changes as dU =

TdS − PdV where S is entropy and P is pressure. The evolution of the thermal

energy per unit mass E = ǫ/ρ is therefore

∂E

∂t
− P

ρ2

(

∂ρ

∂t

)

= T
∂s

∂t
(2.14)

where s = (3k/2mpµ) ln (P/ρ
γ) is the entropy per unit mass. So, Eq. (2.13) becomes

T
∂s

∂t
= −Λ(T, ρ)

ρ
, (2.15)

here the temperature T , density ρ, pressure P , energy E are functions of Lagrangian

coordinate a and time t.

As it follows from (2.15) and the definition of s, the time ∆tcool may be also

defined as a time taken for the adiabat P/ργ to fall to zero. Kahn [206] have found

an interesting result. Namely, if

β =
2− γ

γ − 1
(2.16)

(that is β = 1/2 for γ = 5/3) then one can derive ∆tcool from (2.15) independently

of the density and temperature history:

∆tKahn
cool =

ǫ(Ts, ρs)

(β + 1)Λ(Ts, ρs)
. (2.17)

It can be checked that the same solution may be obtained from (2.14)-(2.15) for

any β if one assume that the gas is not doing work during ∆tcool that is equivalent

to putting ∂ρ/∂t = 0 in (2.14). However, the density of fluid is not expected to

be constant. In such situation one should solve the full set of the hydrodynamic

equations which can be performed only numerically, while we are interested in a

rather simple analytical estimation on cooling time for a general β. Therefore it is

more suitable to use the estimation (2.12) for the cooling time which follows just

from comparison of the radiative losses with the initial energy. We shall see later

that such approach describe the shock dynamics rather well.
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Equations for the reference times. Let us write equations for ttr and tsf for

shock in nonuniform medium. We assume hereafter β = 1. Note that all the rest

formulae can easily be modified if one uses β which coincides with a value given by

(2.16); namely, as it follows from comparison of (2.17) and (2.12), T in (2.18) have

to be simply divided by β + 1.

If the cooling function for a fluid is approximately Λ = CT−βnenH , where C is

a constant, then (2.12) yields

∆tcool = T T 1+β
s

no(R)
where T =

kµe
Cµ(γ + 1)

, (2.18)

µe is the mean mass of particle per one electron in terms of the proton mass (i.e.

ρ = µenemp = µnmp). The transition time ttr is a solution of equation (2.6):

ttr = T Ts(ttr)
1+β

no(R(ttr))
, (2.19)

where the dependencies Ts(t), R(t) are those valid on the adiabatic phase. The time

t1 can be estimated from (2.11):

t1 = ηT Ts (t1)
1+β

no (R(t1))
. (2.20)

Now the SNR cooling time tcool and the time of the shell formation tsf ≈ tcool is

given by (2.9). The estimations for the transition and the shell formation times are

somewhat different in the literature because of different ways used to find the cooling

time ∆tcool and to approximate the cooling function Λ(T ).

For the adiabatic shock the rate of change of the shock temperature is

Ṫs = −2(3− ω)

5− ω

Ts
t
. (2.21)

Close to the shock, the fluid temperature in Sedov solution [21] is approximately

T (a)

Ts
≈
( a

R

)−κ(γ,ω)
, (2.22)

where a is Lagrangian coordinate. The value of κ is given by

κ =

(

− a

T (a)

∂T (a)

∂a

)

a=R

. (2.23)
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where T (a) is the profile from Sedov solutions. It is κ = 1− 3ω/4 for γ = 5/3 (see

Appendix A). Now we may find that the temperature in a given fluid element a

changes due to expansion as

Ṫa,exp ≈ −2(3− ω − κ)

5− ω

T (a)

t
. (2.24)

The rate Ṫa,rad due to cooling follows from dE/dt = −Λ/ρ:

Ṫa,rad = −γ − 1

γ + 1
T −1nH(a)T (a)

−β. (2.25)

Now we have to compare the above rates at the time ts, i.e. at the time when

the parcel of fluid was shocked. The coordinate a = R(ts) by the definition. Thus

Eq. (2.2) rewrites:

tdyn =
2(3− ω − κ)

5− ω
∆tcool(tdyn). (2.26)

Similarly, the equation for tsag follows from (2.3):

tsag =
2κ

5− ω
∆tcool(tsag). (2.27)

As one can see, the most of reference times are given by the equations of the form

t∗ = K∆tcool(t∗), (2.28)

where t∗ is a given reference time and K is corresponding constant. It may be shown

that the solution of such equation may be found as

t∗ = K1/(1+η)ttr. (2.29)

The Sedov radius of the shock at this time is R∗ = K2/((5−ω)(1+η))Rtr.

The cooling function. There are two choices of β in the literature, namely 1

and 1/2. The first case is used for nonequilibrium cooling model [345] where the

cooling function for plasma with solar abundance may be approximated as [90]

Λ = 10−16nenHT
−1 erg cm−3 s−1. (2.30)

This approximation is valid for range of temperatures T = (0.2−5)×106K which is

important for description of transition into the radiative phase. Another possibility



61

T, K

Λ
/n

en
H

, e
rg

 c
m

3  
s- 1

1
2
3
4
5

10-22

10-23

104 105 106

10-21

107 108

Figure 2.5. Equilibrium (line 1) [300] and nonequilibrium (line 2) [345] cooling functions, used
in the literature to study the transition of SNRs into the radiative phase, and approximations
(2.31) (line 3) and (2.30) (line 4). The equilibrium cooling function from [345] is also shown for
comparison (line 5).

is to use the equilibrium cooling model as it was done in [119, 122, 154, 206, 235]. In

this case the approximate proportionality Λ ∝ T−1/2 is a reasonable one, e.g. for

results on the cooling of the collisional equilibrium plasma from [300,338]; the actual

approximation

Λ = 1.3× 10−19nenHT
−1/2 erg cm−3 s−1 (2.31)

is written for plasma with almost the same abundance as above and is valid for

T = (0.05− 50)× 106K [206].

Different cooling functions are compared with their approximations on Fig. 2.5.

At lower temperatures, the nonequilibrium cooling is less effective in energy losses

than the equilibrium one (compare lines 2 and 5). This is because the cooling rate

for temperatures higher than ∼ 3× 107K is mostly due to free-free emission while

below this temperature the cooling is mostly due to the line emission from heavy

elements (most heavy elements are completely ionized above ∼ 3 × 107K). Under

nonequilibrium ionization conditions the ions are underionized because electrons are

much colder than ions and thus there is less emission from ions [154, 180] (see also

Fig. 18 in [345]).
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2.2.2. Reference times and properties of the transition phase.

Shock in a uniform ISM. Let us compare the sequence of different reference

times with numerical calculations [90] of transition of the adiabatic shock into the

radiative era, on example of the shock motion in the uniform ambient medium. Let

us consider the same parameters as in [90], namely γ = 5/3, β = 1, the same

abundance (µ = 0.619, µe = 1.18, µH = 1.43) as well as assume tsf = tcool and use

(2.12) for calculation of ∆tcool.

If shock wave moves in the uniform medium, then – with the use of Eq. (2.19) –

the transition time is

ttr = 2.84× 104E
4/17
51 n−9/17

o yr (2.32)

where E51 = ESN/(10
51 erg). The gas element which first cools (at tcool) was shocked

at t1 which follows from Eq. (2.20):

t1 = 3.67× 104E
4/17
51 n−9/17

o yr. (2.33)

The time of the shell formation is given by Eq. (2.9):

tsf = 5.20× 104E
4/17
51 n−9/17

o yr, (2.34)

so that tsf/ttr = 1.83. The time when the radiative losses of the shocked gas reach

their minimum is (2.4):

tlow = 1.60× 103T
−5/6
3e7 E

1/3
51 n

−1/3
o yr (2.35)

where T3e7 = Tlow/(3 × 107K). Under assumption that radiative losses does not

change the shock dynamics till thi, with the use of Sedov solutions for the shock

motion, one has from Eq. (2.5) that

thi = 1.04× 105T
−5/6
2e5 E

1/3
51 n

−1/3
o yr (2.36)

where T2e5 = Thi/(2 × 105K). The fluid temperature drops faster due to cooling

than due to expansion from time

tdyn = 2.66× 104E
4/17
51 n−9/17

o yr. (2.37)
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Figure 2.6. The evolution of the deceleration parameter m and different reference times for the
shock motion in the uniform medium. Solid line – numerical calculations [90], thick dashed lines
– Sedov solution (till τtr) and analytical solution from Sect. 2.4 (after τsf). The dimensionless
reference times are τsag = 0.654, τdyn = 0.802, τtr = 0.855, τi = 1.01, τ1 = 1.10, τsf = 1.57,
τlow = 0.047, τhi = 3.03. The function m(τ) reaches his maximum at the radiative phase at
τmax = 6.18 (Sect. 2.4).

The time when one may expect to have the temperature decrease downstream close

to the shock is

tsag = 2.17× 104E
4/17
51 n−9/17

o yr. (2.38)

The Sedov solutions give at time ttr the shock radius Rtr = 19E
5/17
51 n

−7/17
o pc,

the shock velocity Vtr = 260 E
1/17
51 n

2/17
o km/s, the post-shock temperature Ttr =

0.95 · 106 E2/17
51 n

4/17
o K and the swept up mass Mtot(ttr) = 103 E

15/17
51 n

−4/17
o M⊙.

The above reference times are shown on Fig. 2.6 together with evolution of the

deceleration parameter m(τ) calculated numerically [90]. The analytical solutions

for the adiabatic [21] and the radiative shock (Sect. 2.4) are also shown. Numerical

result is found for supernova energy ESN = 1051 erg and interstellar hydrogen num-

ber density no = 0.84 cm−3. With these values, the times are tsag = 2.4 × 104 yr,

tdyn = 2.9 × 104 yr, ttr = 3.1 × 104 yr, t1 = 4.0 × 104 yr, tsf = 5.7 × 104 yr,

tlow = 1.7×103 yr, thi = 1.1×105 yr; the intersection time is ti = 3.6×104 yr [65]. The

function m(τ) reaches his maximum during the radiative stage at tmax = 2.3×105 yr

(Sect. 2.4). Results on Fig. 2.6 are presented in terms of the dimensionless time

τ = t/t̃ because the analytical solutions allow for scaling (numerical results for var-

ious input parameters differs by oscillation transient only; see e.g. Fig. 8 in [90]).
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The dimensional scale for time determined from fitting of analytical and numerical

results is t̃ = 3.6× 104 yr (Sect. 2.4).

It is apparent from Fig. 2.6 that the transition time ttr is a reasonable estimation

for the end of the adiabatic stage while tsf could be the time when one can start to use

the radiative solutions (Sect. 2.4) coming from the PDS model of McKee & Ostriker

[247]. The duration of the intermediate transition phase is (τsf−τtr)/τtr = 0.83 times

the age of SNR at the end of the adiabatic stage, i.e. almost the same as duration

of the adiabatic stage itself. This means that there is a strong need for a theoretical

model which describe evolution of SNR in this phase.

For estimation of reference times, a number of authors [114,119,120,122,154] keep

a bit different approach from that used above, namely they use the approximation

of the equilibrium cooling function with β = 1/2 and the Kahn solution for cooling

time (2.17). Let us compare the results of this approach with those obtained above.

The evolution of the deceleration parameter in the refereed approach is presented

in [114]. There is also the same definition of the time of the shell formation tsf = tcool.

The estimation is tsf,C = 4.31×104E
3/14
51 n

−4/7
o yr for their abundance and the cooling

function (2.31). For the parameters used in the numerical calculations E51 = 0.931

and no = 0.1 cm−3 the time is tsf,C = 1.58 × 105 yr while with the use of our

Eq. (2.34) we obtain tsf = 1.73× 105 yr. The both estimations are close. Analytical

solutions shows that, before ttr and after tsf , the evolution of dynamic parameters

of the shock can be expressed in a dimensionless form, i.e. independently of E51

and no. The behavior of the shock velocity depends however on these parameters

during the transition phase; the difference is in the frequency of oscillations (Fig. 8

in [90]). Nevertheless, as one can see from this figure, the strong deceleration of

the shock right after ttr up to the first minimum is almost the same for different

parameters, i.e. can also be scaled. We use this property in order to find the scale

factor t̃ for calculations being done in [114]. Namely, the fit of curve m(τ) from

[114] to that of [90] (within the time interval from ttr to the first minimum) gives

t̃C = 1.05 × 105 yr. The both calculations of the transition to the radiative stage

agree rather well as it may be seen on Fig. 2.7. The dimensionless times for results
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Figure 2.7. Numerical calculation of evolution of the deceleration parameter m from [90] (thin
black line) and from [114] (thick gray line). The transition and shell formation times from [114]
are marked by “C”.

in [114] are: the shell formation time τsf,C = tsf,C/t̃C = 1.51 and the transition time

(as it is follows from (2.39)) τtr,C = τsf,C/1.92 = 0.785. Fig. 2.7 shows that the both

approaches for localization of the limits of the transition phase – with the use of

the nonequilibrium-ionization cooling function (2.30) and the simple estimation for

∆tcool (2.12) [90] or with the equilibrium cooling function (2.31) together with Kahn

solution for ∆tcool (2.17) [114] – give almost the same estimations.

Shock in a medium with a power-law density variation. Let us now

consider the shock motion in the ambient medium with the power-law density vari-

ation ρo(R) = AR−ω. With the use of (2.19), (2.20), (2.9), (2.7) and the definition

tsf = tcool one can show that the duration of the transition phase is given by

tsf
ttr

=
tcool
ttr

=
1 + η

ηη/(1+η)
. (2.39)

The shell formation time is always larger than the transition time ttr, provided by

the fact that η > 0. The ratio
t1
ttr

= η1/(1+η) (2.40)

is also always larger than unity. Note that these relations do not depend on abun-

dance and γ. The ratios between all other times may be found from (2.29).

The consequence of times is tdyn < ttr < t1 < tsf (Fig. 2.8) in nonuniform

medium with increasing density. The time t1 may be smaller than ttr and tdyn for

the decreasing density medium. The sag time tsag < ttr for ω > −6 only.
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Figure 2.8. The ratios of times for β = 1 (thick lines) and β = 1/2 (thin lines) as it is obtained
from (2.39) and (2.40).

Fig. 2.8 shows the two ratios (2.39) and (2.40) as a functions of ω for two values

of β. Namely, the ratios t1/ttr ≈ 1.3 and tsf/ttr ≈ 1.6÷ 1.8 are almost the same for

shock in the medium with increasing density (ω ≤ 0). Therefore, in case of a uniform

medium and a medium with increasing density, there is a need of introduction of

transition phase with duration more than a half of SNR age at the beginning of this

phase, ttr. The transition time ttr and therefore the transition phase tsf − ttr ∝ ttr

are less for higher density and lower initial energy:

ttr ∝ E
(2+2β+ω)/δ
51 A−(7+2β)/δ (2.41)

where δ = 11+6β−ω(5+2β). Such dependence on density is also visible in numerical

calculations (Fig. 8 in [90]). The dependence of ttr on density an explosion energy is

stronger for higher ω because the powers in (2.41) increase with ω.

Medium with decreasing density. It seems that the formulae (2.39) and

(2.40) suggest for the case of decreasing density that the PDS radiative stage can

even begin right after the end of adiabatic stage: tsf/ttr → 0 with ω → 3(1+β)/(2+

β). Another result, already stated in [154], also follows: there will be no radiative

shell formation for ω ≥ 3(1+β)/(2+β). In order to understand the reasons of such

behavior let us consider more details.

What is the coordinate a1 of the element which cools first? This element was

shocked at t1 = η1/(1+η)ttr. The Sedov radius at this time is

R(t1) = a1 = η2/((5−ω)(1+η))Rtr, (2.42)
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thus the coordinate a1 > Rtr if ω < 1.4 (β = 1) as it is shown on Fig. 2.9. The

ratio a1/Rtr is close to unity and is almost the same for such ω, i.e. the fluid we are

interested in will be shocked soon after ttr. However, if ω > 1.4 then a1 → 0 quickly

with increasing of ω from 1.4 to 2, i.e. the element which cools first is already inside

the shock and may be in a very deep interior. The situation looks like that there

could not be any “radiative shell” in a common sense.

It is clear that the trend tsf/ttr → 0 does not mean that radiative processes in

the shock develop quickly for ω > 1.4. The transition and the shell formation times

correspond to different processes: ttr comes from comparison of the initial thermal

energy density of the shocked fluid with radiative losses though tsf = tcool is a time

when the first cooled element appears. The two mentioned processes have place

in vicinity of the shock if ambient medium is uniform or with increasing density.

Numerical results suggest that they may be used for approximate estimates of the

limits of the transition phase in such media. However these two process are separated

in space for media with decreasing density. It could be, that one (or both) of the times

ttr and tsf may not be suitable to mark stages of SNR in medium with decreasing

density.

The hydrodynamical properties of the shock in media with ω > 0 seem to cause

a trend to absence of the radiative phase in a common sense. The cooling of shock

moving in the medium with decreasing density differs from a commonly accepted

scenario of the “thin dense shell” formation and should be studied in more details in

the future.
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2.3. Approximate analytical method for full hydrodynamical de-

scription of the post-adiabatic shock

In this subsection, an analytical approach to the description of the post-adiabatic

stage in the SNR evolution is developed. We start from Sedov solutions for the

adiabatic stage and conclude with the formation of a cool shell when the next,

radiative PDS, stage begins. We consider the propagation of the shock, formation

of the shell and distribution of hydrodynamical parameters of hot gas flows inside

this shell.

2.3.1. Flow parameters at the end of the adiabatic stage. The hydrody-

namical parameters of adiabatic SNRs in uniform media (or in the media where the

matter is distributed according to power law) are determined by Sedov solutions [21].

The approximate analytical method for the description of the adiabatic stage in the

media with a large-scale density gradient was developed in our study [195]. The

method is based on the sector approximation and on the simultaneous use of the

Lagrangian and Eulerian variables for the description of the plasma flow. Here we

use the same method to describe the transition stage, with the flow parameters at

the end of the adiabatic stage taken as initial data. Let us restrict ourselves to the

uniform density distribution in the interstellar medium ρISM = ρo = const. Accord-

ing to Sedov solutions [21], the radius R and velocity V of the shock generated by

the supernova with energy Esn are the following functions of time t:

R(t) =

(

Esn

αAρo

)1/5

t2/5 (2.43)

V (t) = 2/5

(

Esn

αAρo

)1/5

t−3/5 (2.44)

where αA is the self-similar constant. Based on our approximation [195] for the

relationship between the Eulerian coordinate r(a, t) and the Lagrangian coordinate

a (0 ≤ r(a, t) ≤ R), we derive the following expressions for the gas velocity v(a, t),



69

pressure P (a, t), density ρ(a, t), and temperature T (a, t) in the SNR interior:

v(a, t) =
∂r(a, t)

∂t
, (2.45)

P (a, t) = P (R, t)

[

ρ0(a)

ρ0(R)

]1−γ [
V (a)

V (R)

]2 [
ρ(a, t)

ρ(R, t)

]γ

, (2.46)

ρ(a, t) = ρ0(a)

(

a

r(a, t)

)N (
∂r(a, t)

∂a

)−1

, (2.47)

T (a, t) =
µP (a, t)

Rgρ(a, t)
. (2.48)

Eqs. (2.43)-(2.48) describe the evolution of the adiabatic SNR until some moment

ttr when the role of radiative losses become efficient for the flow dynamics.

2.3.2. The thin shell formation and dynamics during the post-adia-

batic stage. Numerical simulations [90, 114] and analytical estimates (Sect. 2.2)

demonstrate that deviations from self-similarity appears around time ttr.

Radiation losses cause the thermal energy of gas elements to decrease as the gas

continues to radiate. A high pressure of adjacent elements and the interaction of the

system of shocks moving in opposite directions result in an increase in the density of

radiative layers, and thus they intensify the radiation from the gas. Such a positive

feedback leads to the rapid formation of a cool dense shell in the neighborhood of the

shock front. The velocity of this shell is somewhat smaller than the hot-gas velocity

at the inner boundary of the shell. The shell mass grows due to the hot SNR gas

which is cooled down by the reverse shock after hitting the inner boundary of the

shell as well as due to swept up gas of ISM. The transition stage ends at time tsf .

Then the hot gas inside the volume limited by the cooled shell forces the shell to

expand. The shell isothermally swept the interstellar gas up during this expansion.

The classical radiative stage begins.

We describe the transition process as follows. In time of the beginning of the

transition phase ttr, the first cold fluid element appears with temperature of ISM

Tsh = TISM = 104K. The pressure of gas in the cold shell Psh is equal to dynamical

pressure of ISM Pdyn = ρISMV
2
sh at its outer boundary and dynamical pressure of
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hot gas at its internal boundary ρsw(vsw − Vsh)
2, therefore, we obtain for the shell

velocity

V 2
sh =

γ + 1

γ − 1

(

2

γ + 1
V (ttr)− Vsh

)2

(2.49)

or

Vsh =
1

2
V (ttr) = const (2.50)

for γ = 5/3. Since the external dynamic pressure and the internal dynamic pressure

almost does not change, the shell velocity remains almost constant (2.50) all over

the transition stage.

The transition stage comes to an end when the typical time of the hot-gas cooling

by the reverse shock at the shell’s inner boundary becomes greater than the SNR age.

Since then, hot gas is no longer transferred to the shell. The numerical simulations

[90] show that, at the beginning of the transition stage, the width ∆r of the gas layer

to be cooled can constitute up to 5 percent of the shock radius at ttr: ∆r = αRtr,

α = 0.05.

Parameter α is the only free parameter in our model. The corresponding width

of the cool layer in the Lagrangian coordinates is ∆a = ((γ + 1)/(γ − 1))∆r. The

duration of the transition stage is taken equal to the time ∆t required for the farthest

hot gas element to overtake the shell (this element is initially located at the distance

∆r from the shock front), moving with the typical gas velocity vsw = 2/(γ + 1)V

(gas velocity with respect to the shock is vsw − Vsh):

∆t = tsf − ttr = αR/(vsw − Vsh) ∼ 10αttr. (2.51)

When the formation of the shell is finished (at the beginning of the radiative stage),

its radius is

Rsf = Rtr + Vsh∆t = Rtr(1 + 2α). (2.52)

The dimensionless deceleration parameter m = Vsht/Rsh, which equals to mad = 0.4

during adiabatic phase, at ttr drops to mtr = Vshttr/Rtr = 0.5mad = 0.2; then

it increases almost linearly during the post-adiabatic stage and equals to msf =

mtr(1 + 0.4(α/0.05)) at the end of this stage.
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2.3.3. The hot gas inside the shell. We have already noted that the dis-

tinctive feature of the transition stage is the transfer of appreciable amounts of hot

gas to the cool gas of the shell. At the beginning of the transition stage, the hot

gas is described by Sedov solutions (2.46)-(2.48) in which the velocity of each gas

element decreases after this element passes through the shock front. The radiative

cooling of the layers adjacent to the shock front and the corresponding pressure drop

lead to the reorganization of the hot gas flow, which attains additional acceleration.

Hence we can assume, to a quite good approximation, that the velocity of every

hot gas element is constant all over the transition stage: v(a, t) = v(a, ttr). Those

gas elements which had time to overtake the shell during the transition stage are

expected to join the shell. Therefore, for the transition stage we have

v(a, t) = v(a, ttr), 0 < a < ac(t)

v(a, t) = Vsh, ac(t) < a < Rtr

(2.53)

where Lagrangian coordinate ac(t) of the cooling fluid element, is determined from

the condition that this element overtakes the shell at the moment t:

Rtr − r(ac, ttr) = (v(ac, ttr)− Vsh)(t− ttr). (2.54)

At the end of the transition stage, the coordinate ac(tsf) = ac,min is found from the

relation r(ac,min, ttr) = rmin = (1− α)Rtr. By using equation (2.54) for the farthest

cool gas element with the Eulerian coordinate rmin, we can estimate more accurately

the duration of the transition stage:

∆t = tsf − ttr =
αRtr

(v(rmin, ttr)− Vsh)
. (2.55)

Let us calculate some parameters of the hot gas inside the shell. For some moment

t, ttr < t < tsf , the velocity of the hot gas with 0 < a < ac(t) is determined by

formula (2.54). So, for the Eulerian coordinate r(a, t) we obtain

r(a, t) = r(a, ttr) + v(a, ttr)(t− ttr), 0 < a < ac(t)

r(a, t) = Rsh, ac(t) < a < Rtr.
(2.56)

The density distribution ρ(a, t) is found from the continuity condition:

ρ(a, ttr)r(a, ttr)
2dr(a, ttr) = ρ(a, t)r(a, t)2dr(a, t). (2.57)
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It can be rewritten as

ρ(a, t) = ρ(a, ttr)

(

r(a, ttr)

r(a, t)

)2
dr(a, ttr)

dr(a, t)
. (2.58)

By taking into account that

dr(a, t) = dr(a, ttr) +

(

∂v

∂r

)

t=ttr

dr(a, ttr)(t− ttr), (2.59)

Eq. (2.58) may be re-written as

ρ(a, t) = ρ(a, ttr)

(

r(a, ttr)

r(a, t)

)2
(

1 +

(

∂v

∂r

)

t=ttr

(t− ttr)

)−1

. (2.60)

For the distributions of the pressure and temperature of the hot gas, we obtain the

relations

P (a, t) = P (a, ttr)

(

ρ(a, t)

ρ(a, ttr)

)γ

, (2.61)

T (a, t) =
µP (a, t)

Rgρ(a, t)
. (2.62)

Equations (2.53), (2.56), (2.60-2.62) provide a complete description of distribution

of the hot gas inside the shell.

Thus, we suppose that, during the transition stage, every hot gas element moves

with the velocity it had at the moment ttr. If there were no cool shell, the hot

gas would occupy 0 < a < Rtr in the Lagrangian and 0 < r < Rout(t) = Rtr +

vsw(ttr)(t− ttr) in Eulerian coordinates, where vsw(t) = (3/4)V (t) is the gas velocity

immediately behind the shock. The cool shell, whose velocity Vsh is smaller than the

hot-gas velocity, entrains those hot gas elements (layers) which overtake it during

the transition stage. These are the layers with the Lagrangian coordinate lying in the

range ac(tsf) < a < Rtr. At the same time, the layers with 0 < a < ac(t) experience

no influence of the shell at any moment from the range ttr < t < tsf . Sedov hot-gas

velocity depends almost linearly on the Eulerian coordinate:

v(r, t)

vsw(t)
=

r

R(t)
(2.63)

Let us take into account the relation ∂v/∂r(t=ttr) = vsw(ttr)/Rtr in the equation

(2.60) for the gas density. In the framework of this approximation, the hot-gas
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parameters at the transition stage are described as

v(r, t) = vsw(ttr)

(

r

Rout(t)

)

(2.64)

r(a, t) = r(a, ttr)

(

Rout(t)

Rtr

)

(2.65)

ρ(a, t) = ρ(a, ttr)

(

Rtr

Rout(t)

)3

(2.66)

P (a, t) = P (a, ttr)

(

Rtr

Rout(t)

)3γ

(2.67)

T (a, t) = T (a, ttr)

(

Rtr

Rout(t)

)3(γ−1)

(2.68)

Thus, we adopted the approximation in which the hot gas freely expands during

the transition stage and in which the gas velocity distribution is almost linear at the

beginning. It allowed us to construct a simple analytical model for the homologic

expansion of the hot gas. The resulting flow parameters are the power-law functions

of time.

2.3.4. The cold gas of the shell. The shell mass Msh(t) = Msh,in(t) +

Msh,out(t) grows starting from the moment ttr when the first cold element appears

at the distance Rtr. The mass of the interstellar gas swept up by the shell is

Msh,out(t) = 4π

∫ Rsh

Rtr

ρoa
2da (2.69)

and the mass of the cooled hot gas which was transferred to the shell is

Msh,in(t) = 4π

∫ Rtr

ac(t)

ρoa
2da (2.70)

The temperature of the cool gas in the shell is equal to the initial temperature of

the interstellar gas:

Tsh(t) = Tism = 104K (2.71)

The cool-gas pressure is determined by the dynamic pressure of the interstellar gas:

Psh = Pdyn = ρISMV
2
sh, (2.72)
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Next, we use the equation of state

Psh =

(

Rgas

µ

)

ρshTsh = c2isoρsh (2.73)

to calculate the cool-gas density:

ρsh = ρISM

(

Vsh
ciso

)2

= ρISMM2
iso (2.74)

Here ciso = TshRg/µ is the isothermal sound velocity in ISM and Miso is the isother-

mal Mach number of the cool shell. The gas compression in the shell is

ρsh/ρISM = 170V 2
sh,2T

−1
ISM,4, (2.75)

where Vsh,2 is the shell velocity in units 100 km/s and TISM,4 is the shell temperature

in 104 K. The shell thickness is

∆sh(t) =
Msh(t)

4πR2
shρsh

∼ Rsh

3Miso
(2.76)

It is much smaller than the shell radius.

2.3.5. Flow parameters at the end of the transition stage. The transi-

tion stage ends at the moment tsf when the hot gas inside the shell ceases to cool

down and to enrich the shell. It is the moment when the radiative stage begins. The

corresponding mass of the shell and the corresponding thermal energy and kinetic

energy of the hot gas are

Mhot =
4

3
πRtr

3ρISM −Msh,in(tsf) (2.77)

Wth,hot =
4π

γ − 1

∫ ac(tsf)

0

P (a, tsf)a
2da (2.78)

Wkin,hot = 2π

∫ ac(tsf)

0

ρ(a, tsf)v
2(a, tsf)a

2da (2.79)

The hydrodynamical model of the transition stage becomes inadequate when the

hot gas ceases to cool down. In this case the traditional thin-layer model is more

appropriate. The rest of the hot gas inside the shell expands adiabatically and push

the shell, whose mass grows due to ambient gas which is swept up by the shell

[85, 266]. High temperature and large velocity of sound in the hot gas are believed
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Figure 2.10. Evolution of the (a) deceleration parameter m = V t/R and (b) shock front velocity
V for SNR (the explosion energy is 1051 erg) during the adiabatic, transition and radiative stages:
dashed lines – our method, solid lines – numerical simulations from [90]. Numbers near the lines
show ISM number densities.

to be the factors which are responsible for making the pressure uniform over the

whole volume of the hot gas and for the gas expansion with a minor role of kinetic

energy. The thin-layer condition is satisfied when the majority of the kinetic energy

is transformed into thermal energy.

For simplicity we assume that these processes are instantaneous and that they

take place at the moment tsf of the transition to the radiative stage. In other words,

we postulate that at the beginning of the radiative stage the thermal energy of the

hot gas is equal to the sum of the thermal energy and kinetic energy of the hot gas

at the end of the transition stage:

Whot(t = tsf) =Wth,hot +Wkin,hot (2.80)

Then the average hot-gas pressure is

Pin(tsf) =
3(γ − 1)Whot(tsf)

4πRsh
3(tsf)

(2.81)

The method to describe the shell and the flow dynamics during the radiative

stage is described in Sects. 2.4 and 2.5.

2.3.6. Accuracy of the method. We compared our model with the numer-

ical simulations from [90, 114, 331]. Our approximate analytical treatment fits the

results of numerical simulations with a sufficiently high accuracy (Figs. 2.10-2.12).

So, our approach may be used to model the evolution of point explosion during the

post-adiabatic stage.
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Figure 2.11. Radial distributions of (a) density, (b) pressure and (c) temperature inside SNR at
the transition stage (Esn = 1051 erg, nH = 5.6 cm−3, t = 20000 yr): dashed lines – our method,
dotted lines – numerical simulations from [331], solid lines – numerical simulations from [331] for
the case of a significant heat conduction.

Figure 2.12. Radial distributions of (a) velocity, (b) density, (c) pressure and (d) temperature
for SNR at the end of the transition stage (Esn = 0.931 · 1051 erg, nH = 0.1 cm−3, t = 170000 yr):
dashed lines – our method, solid lines – numerical simulations from [114].

2.4. Analytical solutions for dynamics of the radiative shock front

The adiabatic phase of SNR evolution (in a uniform and homogeneous medium)

is well described by the Sedov [21] analytic solution, which reproduces both the SNR

radial evolution and its inner structure. This exact solution has been made possible

by the fact that during this phase the SNR evolution is self-similar. This is no longer

the case when radiative losses become important, and therefore no exact analytic

solution is known for the late SNR evolution.
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Approximated solutions in the adiabatic regime and beyond may be also obtained

using a “thin-shell” model (see e.g. [10,266]). This approach assumes that the whole

mass (and therefore kinetic energy) of SNR is located in a rather thin shell just

behind the outer shock; while the inner region is filled with a very hot and rarefied

gas, of negligible total mass, but containing most of the SNR internal energy.

For the adiabatic phase this approximation is only moderately accurate (see e.g.

[10]). In fact, according to the Sedov solution the gas density vanishes in the inner

regions while its pressure keeps finite; however, the outer layer containing most

of the mass is geometrically rather thick. On the other hand, numerical works (e.g.

[90,147]) trace the formation of a much thinner shell in the radiative phase, therefore

indicating that a thin-shell approximation should be far more accurate in describing

the late evolution.

Oort [263] presented a first thin-shell approach to a radiative SNR expansion.

By assuming momentum conservation in the shell, he found the SNR radius to

evolve as R ∝ t1/4. This solution, also known as “momentum-conserving snowplow”,

assumes that cooling is extremely efficient everywhere (and therefore that the interior

pressure vanishes). However, numerical models (e.g. [109]) show that, even in the

radiative phase, the gas in the central regions becomes so rarefied that its cooling

time still keeps considerably longer than the SNR age. This led McKee & Ostriker

[247] to introduce a “pressure-driven snowplow” model, in which a fossil pressure in

the hot interior has a substantial dynamical effect on the outer shell: in this case

the radial evolution is R ∝ t2/7 (for adiabatic index γ = 5/3).

Even though the “pressure-driven snowplow” formula gets closer than the “mo-

mentum-conserving snowplow” one to the numerical results, some discrepancy still

remains. For instance, by defining the “deceleration parameter” asm = d logR/d log t,

numerical models obtain an asymptotic value ranging from 0.31 [109] to 0.33 [90].

These values are significantly different from the analytic value, 2/7 (namely 0.286),

and various authors have discussed the origin of such discrepancy. Cioffi et al. [114]

ascribe it to a “memory” of the previous Sedov phase, leading to an actual internal

pressure larger than that derived from the analytic model. Blondin et al. [90], in-



78

stead, attribute this discrepancy to the influence of the reverse shock, which moves

towards the center raising the thermal energy, thus leading to a milder deceleration.

Other authors have estimated analytically the radial evolution under more general

conditions than those given above.

Ostriker & McKee [266] have shown that, for a general γ as well as a power-law

ambient density profile (ρa(r) ∝ r−ω), m = 1/(4− ω) for a “momentum-conserving

snowplow”, while m = 2/(2 + 3γ − ω) for a “pressure-driven snowplow”.

Liang & Keilty [229] have considered the case in which only a (constant) fraction

ǫ of the kinetic energy of the incoming flow is radiated in the outer shock. For

γ = 5/3, m is found to decrease quasi-linearly with ǫ, from 2/5 for the adiabatic

case (ǫ = 0) to 2/7 for the fully radiative case (ǫ = 1); and a value of ǫ of about 0.8

(0.6) is required in order to obtain m = 0.31 (0.33), as indicated by the numerical

models. However, while ǫ < 1 may be appropriate to describe gamma-ray burst

afterglows [116], SNR radiative shocks should be described as fully radiative ones

(namely with ǫ very close to unity).

The effect of cooling in the hot interior on the deceleration parameter has been

studied by Gaffet [160], with the following results. Adiabaticity holds throughout

most of the volume occupied by the hot gas, while cooling occurs only near the

boundary with the radiative shell, giving as effect a net mass transfer from the hot

interior to the shell. Assuming that the gas in the hot interior follows a cooling law

Λ ∝ T−c, this section discusses different regimes for different choices of γ and c,

showing that the asymptotic value of m must be in the range between the values

1/4 (Oort limit) and 2/(2 + 3γ) (McKee and Ostriker limit).

When c > (2/3)(5γ − 8)/(3− 2γ) (c > −2/3 for γ = 5/3) the asymptotic value

of m is 1/4. This is the case for cooling functions typical of the SNR regime, where

c > 0 and is usually taken in the range from 0.5 (e.g. [114]) to 1.0 [90]. Therefore,

according to this result, after the commonly known radiative phase there could be

a very late evolutive phase, in which radiative losses of hot interior become to be

prominent and the SNR evolves as “momentum-conserving snowplow”. However, as

it may be derived from numerical results, in a typical SNR, radiative cooling of the
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hot interior is negligible until very late times. Therefore the onset of the “momentum-

conserving snowplow” regime should occur only near the end of a SNR lifetime, or

not to occur at all.

A common limitation of all above-mentioned analytical models is that the radial

evolution of the radiative shock has been approximated by a power-law behaviour

R ∝ tm (with constant m). This allows a simplified treatment of radiative SNR

evolution; however, it is natural to expect that a power-law expansion occurs only

at late times (i.e. at large R values), after the transition from adiabatic to radiative

expansion has been completed.

In this subsection we show: 1) that the quoted difference between the numerical

and asymptotic analytic value is just a consequence of the fact that the time needed

to reach the asymptotic power-law regime is long compared with the age of the

SNR; 2) that the SNR radial evolution during that phase is adequately described

by a thin-shell model; 3) that a general analytic solution of this problem exists.

2.4.1. Equations and solutions for a general adiabatic index. Let us

consider a fully radiative shock expanding into a uniform medium and neglect the

cooling of the hot interior. In the thin-shell approximation, mass, momentum, and

central pressure evolution are described by the following set of equations:

dM

dt
= 4πρaR

2Ṙ, (2.82)

d(MṘ)

dt
= 4πPR2, (2.83)

dP

dt
= −3γP

Ṙ

R
, (2.84)

where R and Ṙ are respectively shock radius and velocity, M is the mass of the

radiative shell, P is the pressure of the (adiabatically evolving) inner region, γ is

the adiabatic coefficient, and ρa is the (constant) density of the ambient medium.

The above equations can be reduced to a single one:

R̈+
3Ṙ2

R
=

3PoR
3γ
o

ρa
R−3γ−1, (2.85)

where the quantitiesRo and Po indicate respectively the SNR radius and the pressure
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of the hot cavity at a reference time (to), that can be arbitrarily chosen.

In order to solve analytically Eq. (2.85) for a general value of γ (with the condition

1 < γ < 2) let us first define the quantity:

K =
2

2− γ

PR3γ

ρa
. (2.86)

K is constant in time, and therefore it can be evaluated in terms of quantities at

the time to. By using the substitution w(R) = Ṙ2, Eq. (2.85) trasforms into:

dw

dR
+ 6

w

R
= 3(2− γ)KR−3γ−1, (2.87)

that is a linear differential equation and can then be easily integrated. Its general

solution is:

w = K(R−3γ −HR−6), (2.88)

where the constant H is, at any time, equal to:

H = R3(2−γ)
(

1− (2− γ)ρa
2P

Ṙ2

)

. (2.89)

In particular, it may be expressed in terms of quantities at the time to. Depending on

the sign of H, there are two different branches of solutions. By evaluating the kinetic

energy of the shell and the thermal energy of the inner hot bubble respectively as:

Ekin =
4πR3

3

ρaṘ
2

2
, (2.90)

Eth =
4πR3

3

P

γ − 1
, (2.91)

Eq. (2.89) shows that, in the two branches, the energy ratio κ = Ekin/Eth = (γ −
1)ρaṘ

2/2P is respectively less (H-positive case) and greater (H-negative case) than

(γ− 1)/(2− γ), and that time evolution does not change the sign of this inequality.

Let us label these two branches of solutions as “slow” and “fast”, depending

whether the kinetic energy is respectively less (H positive case) or greater (H nega-

tive case) than (γ − 1)Eth/(2− γ); or, equivalently, less or greater than (γ − 1)Etot

(where Etot = Ekin + Eth). The choice of the appropriate branch of solutions only

depends on the initial conditions.
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Although in the next subsection we shall see that the slow case is that physically

relevant for the SNR evolution, let us discuss here both branches. When double signs

are shown, in some of the following equations, the convention used is that the upper

sign refers to the slow branch, while the lower sign to the fast branch. Once defined

space and time scale units as

R̃ = (±H)1/3(2−γ); (2.92)

t̃ = (±H)(2+3γ)/6(2−γ)K−1/2, (2.93)

and introduced the dimensionless space and time coordinates r = R/R̃, τ = t/t̃,

the evolution in size follows the equation:

dr

dτ
=
√

r−3γ ∓ r−6, (2.94)

that can be integrated to give τ(r). The dimensional velocity is obtained multiplying

dr/dτ by the velocity scale Ṽ = R̃/t̃. It is evident that, while fast solutions extend

to all positive values of r, solutions in the slow branch are real only for r ≥ 1.

For a general value of γ, the solution involves hypergeometric functions (F ), and

can be written as:

τF(r) =
r4

4
F

(

1

2
,

4

3(2− γ)
, 1 +

4

3(2− γ)
;−r3(2−γ)

)

−1

4
F

(

1

2
,

4

3(2− γ)
, 1 +

4

3(2− γ)
;−1

)

+ C (2.95)

for the fast branch, and as:

τS(r) =
ir4

4
F

(

1

2
,

4

3(2− γ)
, 1 +

4

3(2− γ)
; r3(2−γ)

)

− i

4
F

(

1

2
,

4

3(2− γ)
, 1 +

4

3(2− γ)
; 1

)

+ C (2.96)

for the slow branch. The time evolution of the SNR radius is obtained by inverting

the above equations. Note that individual terms in Eq. (2.96) are complex, but when

r ≥ 1 their imaginary parts cancel out. Eqs. (2.95) and (2.96) contain an arbitrary

constant, C; both equations have been written here in such a way that C = τ(1).

A quantity useful to describe the evolution is the deceleration parameter m. The

general formula for this quantity is rather complex, but its asymptotic behaviour at
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large values of r may be evaluated as:

m(r) =
2

2 + 3γ
± 6(2− γ)

(9γ − 10)(2 + 3γ)
r−3(2−γ) +O

(

r−6(2−γ)
)

. (2.97)

This power expansion is valid in the range 10/9 < γ < 2. Note that the limit

2/(2 + 3γ) is the same found by Ostriker and McKee [266].

In terms of the dimensionless quantity r, the ratio of kinetic and thermal energies

is:

κ =
γ − 1

2− γ

(

1∓ r−3(2−γ)
)

. (2.98)

Therefore at late times the asymptotic value of this ratio is κas = (γ − 1)/(2− γ)

for both branches.

The ratio between internal and shock pressure is:

P

Ps
=

(γ − 1)(γ + 1)

4κ
=

(2− γ)(γ + 1)

4(1∓ r−3(2−γ))
, (2.99)

then leading to the asymptotic value (2− γ)(γ + 1)/4.

The total energy follows the evolutive law:

Etot = Ẽr3
(

r−3γ

γ − 1
∓ r−6

)

. (2.100)

where Ẽ = 2πρaṼ
2R̃3/3. It is easy to show that, in the range of validity of the

solutions, dEtot/dr is always negative, as expected for a radiative solution.

Finally, it can be shown that the original Oort [263] solution, R ∝ t1/4, is just a

special case of the fast-branch solution. Neglecting the pressure effect leads the right

side of Eq. (2.85) to vanish. Since P = 0 implies the energy ratio κ to diverge (and

therefore to be larger than (γ − 1)/(2 − γ)), the solution must belong to the fast

branch. From Eq. (2.88) it is apparent that K is required to vanish, while H → −∞,

in such a way that the product −KH be equal to R6Ṙ2 (being this a constant, it

can be then evaluated in terms of Ro and Ṙo). Using Eqs. (2.92) and (2.93), it

can be shown that both R̃ and t̃ diverge, so that this solution must be limited to

vanishingly small r and τ values. Therefore Eq. (2.94) simplifies into dr/dτ = r−3,

which admits the solution τ(r) = r4/4− 1/4 +C, where we have defined C = τ(1)

for consistency with the formulation given in Eq. (2.95). For C = 1/4, which means
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τ(0) = 0, we simply have τ(r) = r4/4 that, when inverted, gives the Oort’s law

r ∝ t1/4. The same result can be extracted from the general solution, Eq. (2.95), by

using the fact that F (a, b, c; x) → 1 when x→ 0.

2.4.2. The slow branch of solutions for gamma=5/3. In the standard

case γ = 5/3, Eqs. (2.95) and (2.96) get a much simpler functional dependence,

respectively:

τF(r) =
2

35

√
r + 1(5r3 − 6r2 + 8r − 16) +

18
√
2

35
+ C, (2.101)

τS(r) =
2

35

√
r − 1(5r3 + 6r2 + 8r + 16) + C, (2.102)

where again we use C = τ(1).

The deceleration parameter m, for the two branches, evaluates:

mF(r) =
2

35

r + 1

r4
(5r3 − 6r2 + 8r − 16) +

√
r + 1

r4

(

C +
18

35

√
2

)

, (2.103)

mS(r) =
2

35

r − 1

r4
(5r3 + 6r2 + 8r + 16) +

√
r − 1

r4
C. (2.104)

The asymptotic behaviour at large values of r is:

m(r) =
2

7
± 2

35r
+O

(

1

r2

)

(2.105)

(which is consistent with the more general Eq. (2.97)). Therefore, for r approaching

to infinity, in both branches m tends to the value 2/7, namely to the asymptotic

solution given by McKee and Ostriker [247]. However, an analysis of Eqs. (2.103)

and (2.104) show different properties for the two branches. In particular, only in the

slow branch m(r) shows a local maximum. In a given solution, the position of the

maximum and the value reached by m are related by:

mmax =
2(rmax − 1)

7rmax − 8
, (2.106)

valid for rmax > 8/7. Therefore, mmax is always larger than 2/7 for any solution in

the slow branch, and it can be considerably larger than 2/7, if rmax gets close to

8/7. Furthermore, if during its evolution m(r) is larger than 2/7 and still increasing
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Figure 2.13. Our best fit solution (slow branch, C = −0.248, t̃ = 3.64 × 104 yr) compared
with numerical data from [90]. The small frame shows just the data used for the fit. With the
exception of strong oscillations in the early transient, the analytic solution closely describes also
the evolution at earlier times. Dashed lines indicate the positions of tmax and tinters, while the
dotted line is obtained by using the analytic fit by Cioffi et al. [114].

with r, it must reach a maximum before approaching the asymptotic value 2/7, and

then it must belong to the slow branch. This is what shown by Blondin et al. [90]

(their Fig. 3, actually limited to the increasing part): therefore in the following we

shall consider only the slow branch of solutions.

2.4.3. Most appropriate initial conditions. Let us use the numerical re-

sults from [90] to determine the most appropriate parameters for our analytic so-

lution. For the fit we use the evolution of m (Fig. 3 in [90]), excluding the oscilla-

tory transient: the numerical data fitted are for times ranging from 7.4 × 104 till

3.0× 105 yr. The best (least-square) fit is obtained for C = −0.248± 0.006; while

the time scale inferred from this fit allows us to fix t̃ = (3.64± 0.05)× 104 yr (for

all best fit quantities, here we also indicate their 1-σ error). In Fig. 2.13, the best

fit curve is shown against the numerical data. The best fit curve reaches its maxi-

mum value (mmax = 0.328) at rmax = 2.11 (i.e. at τmax = 6.18). Moreover, using

Fig. 8 (velocity evolution) from the [90], we derive R̃ = 17.6 ± 0.1 pc. From these

quantities, the dimensional scaling for energy is Ẽ = (1.51± 0.07)× 1051 erg.

The numerical simulation we refer to corresponds to the following basic physical

parameters: energy of the explosion, E51 = 1 (in units of 1051 erg); and hydrogen

ambient density, na = 0.84 cm−3. Adopting the same definitions of Blondin et al. [90]
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for the transition time, and corresponding SNR radius

ttran ≈ 2.9× 104E
4/17
51 n−9/17

a yr, (2.107)

Rtran ≈ 19.1E
5/17
51 n−7/17

a pc, (2.108)

we determine the dimensionless quantities t̃/ttran = 1.14 and R̃/Rtran = 0.85. All

these quantities, although obtained after the comparison with a specific numerical

simulation, can be taken of general validity, for a SNR expanding in a homogeneous

medium, because the analytic solutions allow scaling.

Fig. 2.13 shows also (dotted curve) the analytic fit as derived from Cioffi et

al. [114]. Cioffi et al. [114] use a different cooling function from that of Blondin

et al. [90], whose simulation is shown in Fig. 2.13. Therefore in Cioffi et al. [114]

the functional dependence of time and length scales on parameters of a model are

different from those given in Eqs. (2.107) and (2.108). In order to compare our results

with Cioffi et al. [114] analytic fit, we have evaluated the scaling time ttran (labelled

as tPDS in their Eqs. (3.10) and (3.11)), using E51 = 1 and na = 0.84 cm−3 (with

solar abundances), obtaining ttran = 14670 yr. The formula used for the deceleration

parameter is m = 0.3/(1− ttran/4t), as derived from Eqs. (3.32) and (3.33) in that

paper. It is apparent, from Fig. 2.13, that Cioffi et al. [114] fit does not trace the

evolution of the deceleration parameter m.

Since the evolution of the SNR radius is a continuous function of time, let us

compute the time at which the radiative solution intersects the Sedov one. With the

parameters given above, it happens at tinters = 1.16ttran (when Rinters = 1.06Rtran),

namely, using our dimensionless variables, at τinters = 1.01 (with rinters = 1.24).

At this time, the SNR kinetic, Eq. (2.90), and thermal, Eq. (2.91), energies are

respectively Ekin = 0.191 × 1051 erg and Eth = 0.489 × 1051 erg, equivalent to a

total energy Etot = 0.680× 1051 erg, and to an energy ratio κ = 0.390.

Nicely, although fortuitously, at tinters the value of τ is very close to unity, while

that of κ is very close to the Sedov value (κSed = 0.394). We could then use τo = 1

and κo = κSed as an approximate criterion, from which to derive, analytically, that:

1) the solution must belong to the slow branch, since κo < κas; 2) ro and mo,
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evaluated using the relatioships:

ro = 2/(2− κo), (2.109)

mo = τo(2− κo)
7/2κ1/2o /16, (2.110)

are respectively ro ≃ 1.245 and mo ≃ 0.206; 3) C, evaluated using Eq. (2.102), is

≃ −0.272 (to be compared with the best fit value −0.248).

2.4.4. Comparison with previous results. Using a thin-shell approach, we

have developed the analytic treatment for the evolution of a shock front in SNR in

the radiative phase, and we have also obtained a series of interesting relations. The

main findings of the present work are the following.

The discrepancy between the analytic prediction of the asymptotic value of the

deceleration parameter (m = 2/7 [247]) and that derived numerically (m = 0.33,

[90]) is only apparent. This discrepancy has been attributed to the presence of a

reverse shock moving towards the center. We show, instead, that a thin-shell model,

that by definition does not contain any information on inner structure details, closely

fits the SNR evolution as derived numerically.

We confirm that 2/7 is the correct asymptotic value, even though the convergence

towards this value is expected to be slow. We believe that, if Blondin et al. [90]

numerical simulation had been runned until later stages of the SNR evolution, it

would have shown that m does not keep constant to 0.33, but eventually decreases.

This has been already pointed out by Chevalier [109] and can be seen in Fig. 5 of

Cioffi et al. [114], in Fig. 3 of Falle [148], and in Fig. 4b of Mansfield & Salpeter [241].

However, the convergence to the asymptotic value may need times longer than the

SNR lifetime.

It might be expected that the evolution will eventually change from a “pressure-

driven snowplow” (m = 2/7, McKee and Ostriker [247]) to a “momentum-conserving

snowplow” (m = 1/4, Oort [263]), as a consequence that the right side of Eq. (2.85)

vanishes when R → ∞. However, Cioffi et al. [114] have noted that, even at very

late times (∼ 102ttran), the deceleration parameter m is still closer to 2/7 than to

1/4. We have shown that such evolutive transition may in fact not occur, because
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the two kinds of evolution are associated with two different branches of solutions,

corresponding to different initial conditions. In other words, for a deceleration pa-

rameter smaller than 2/7, the right side of Eq. (2.85) (with γ = 5/3) vanishes more

slowly than the left side. Therefore, unless the pressure term is negligible from the

beginning, or part of the internal energy of the hot interior is lost by other channels

(e.g. by electron conduction, or radiative processes), pressure effects must play an

important role in the evolution at any time, until the SNR merges with the ambient

medium.

Some of the conclusions we have presented here could have been reached long

before. In fact, Blinnikov et al. [89] as well as Pasko and Silich [269] have obtained a

solution equivalent to our Eq. (2.102). However, they have not discussed the prop-

erties of this solution to larger extend.

2.5. Approximate analytical method for description of the flow

downstream of the radiative shock

In our previous works [7,195], a new approximate analytical method for descrip-

tion of the adiabatic flow behind the shock from the strong point explosion in a

medium with arbitrary large-scale density gradient was developed. In Sect. 2.3, it

was extended to the post-adiabatic phase in evolution of such shock. In the present

section, the method is generalized to the radiative stage.

2.5.1. Equations for the radiative hydrodynamics. System of equations

for radiative hydrodynamics are following [12]:

∂ρ

∂t
+

1

rN
∂

∂r
(rNρu) = 0, (2.111)

∂u

∂t
+ u

∂u

∂r
+

1

ρ

∂P

∂r
= 0, (2.112)

∂E

∂t
+ u

∂E

∂r
− P

ρ2

(

∂ρ

∂t
+ u

∂ρ

∂r

)

= Γ(ρ, T )− Λ(ρ, T )/ρ, (2.113)
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where unknown functions – density of gas ρ, pressure P , temperature T , internal

energy (in terms of unit mass) E and velocity u – depend on time t and spatial

coordinate r, N = 0, 1, 2 for plane, cylindrical and spherical flows respectively,

functions Γ(ρ, T ) and Λ(ρ, T ) describe respectively heating and cooling of gas. The

role of energy losses due to radiation (function Λ) is the main factor which affects

model presented in this subsection. Three equations (2.111)-(2.113) are completed

with equation of state for ideal gas P = ρAT where A = Rg/µ, Rg the universal

constant, µ the molar mass, and with equation for energy E = (γ − 1)−1P/ρ where

γ is the adiabatic index.

We also use Lagrangian form of the system (2.111)-(2.113), where thermodynamic

functions and coordinate of the gas element depend on time t and initial coordinate

a: r = r(a, t), ρ = ρ(a, t), P = P (a, t), T = T (a, t), E = E(a, t) and

∂ρ

∂t
+
ρ2

ρo

(r

a

)N ∂u

∂a
+
Nuρ

r
= 0, (2.114)

∂u

∂t
+

1

ρo

(r

a

)N ∂P

∂a
= 0, (2.115)

∂E

∂t
− P

ρ2

(

∂ρ

∂t

)

= Γ− Λ/ρ, (2.116)

∂r

∂t
− u = 0. (2.117)

Here ρo = ρo(a) is the ambient density distribution. We consider spherical shocks

(i.e. N = 2) thereafter.

Thin shell is formed since tsf ; its motion is forced by the pressure of hot gas

inside. All approximate methods are based on “thin-layer” approximation, where

the thickness of the shell is negligible, and pressure is considered to be uniform

inside the shell ( [11,85] and references therein); distribution of parameters – density,

pressure, gas velocity – are not calculated. Let us consider a method which gives fill

description of plasma flow on radiative stage. It consists of two parts: calculations

of the shock dynamics and distribution of parameters downstream.

2.5.2. Dynamics of the radiative shock in nonuniform media. Let us

describe the shell by average values: velocity Vsh, density ρsh, mass Msh. Hot gas
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inside the region 0 < a < Rsf pushes the thin (with thickness ∆sh ≪ R) cooled

due to radiative losses shell, with coordinates a > Ro. Gas in the shell quickly

cools down till the temperature Tsh ∼ 104 K, the shock velocity and radius become

approximately equal to velocity and radius of the shell. Average pressure in the hot

region is calculated as

Phot = P (r, t) =
ε(t)(γ − 1)

4πR(t)3/3
, (2.118)

where ε(t) is the full (kinetic plus thermal) energy of the hot gas at time t, it is

smaller than initial explosion energy Eo on the value of work done for moving the

shell
∫

PhotdV .

In the assumed approximation, equations for the shell dynamics in nonuniform

medium with 1-D density distribution ρ(~r) = ρ(r) may be obtained from (2.82)-

(2.84) substituting constant ρa with ρo(r).

In case of uniform ambient medium, the dynamics of the shell is given by the

analytical solution of this system (Sect. 2.4), in case of nonuniform medium with

the power-law density distribution by the solution we derived in [15] (cf. [269]).

2.5.3. The cold gas of the shell. Known shell dynamics allows us to find

average parameters of gas inside the shell in a way similar to the post-adiabatic

stage (Sect. 2.3). Pressure in the shell is determined by the equality of the thermal

pressure Psh and dynamical pressure of incoming gas:

Psh = ρo(Rsh)V
2
sh. (2.119)

Temperature in the shell is of order of the temperature of the unperturbed gas

Tsh = 104 K. Density in the shell may be found from P = ρAT :

ρsh =
µPsh

RgTsh
=

µV 2
sh

RgTsh
ρo(Rsh) =

V 2
sh

c2iso
ρo(Rsh) = M2ρo(Rsh). (2.120)

Thickness of the shell ∆sh may be determined from known shell mass Msh

∆sh =
Msh

4πR2
shρsh

. (2.121)

2.5.4. The hot gas inside the shell. The hot gas flow parameters cannot

be found in the traditional thin-layer approximation (except for the volume-average
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pressure Pin). At the same time, our approach (which is based on the simultaneous

use of the Lagrangian and Eulerian descriptions) is applicable for estimating the

flow parameters at the radiative stage. Since the hot-gas velocity is zero at the SNR

center and is equal to the shell velocity Vsh(t) at the outer boundary of the remnant,

we can assume that the hot-gas velocity depends linearly on distance:

v(r, t) = Vsh(t)(r/Rsh(t)), 0 < r < Rsh (2.122)

We operated with the similar relation in the case of the transition stage (Sect. 2.3.3),

but the velocity amplitude was larger. A decrease in the velocity amplitude is caused

by the transformation of the kinetic energy into the thermal energy in the backward

shock. Linear relation (2.122) describes the homological expansion of the hot gas, as

in the case of the transition stage. Expressions for the flow parameters are derived

in the same way as formulas (2.65)-(2.68):

r(a, t) = r(a, tsf)

(

Rsh(t)

Rsf

)

(2.123)

ρ(a, t) = ρ(a, tsf)

(

Rsf

Rsh(t)

)3

(2.124)

P (a, t) = P (a, tsf)

(

Rsf

Rsh(t)

)3γ

(2.125)

T (a, t) = T (a, tsf)

(

Rsf

Rsh(t)

)3(γ−1)

(2.126)

Equations (2.122)-(2.126) give full description of the hot gas inside the thin cold

shell; it is determined in any time t > tsf by the initial state of the system at the

time tsf and by motion law for the shell Rsh(t).

Full description of the radiative stage includes also equations (2.82)-(2.84), with

ρo(r) instead constant ρa, for shell dynamics Rsh(t) and equations (2.119)-(2.121)

for parameters inside the shell.

2.5.5. Accuracy of the method. Let us consider accuracy of the proposed

method comparing it with numerical calculations for case of uniform ISM. Accuracy

of our description of the shell dynamics is demonstrated in Sect. 2.4 where an ana-

lytical solution is compared with detailed calculations. Approximate distributions of
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Figure 2.14. Distribution of gas parameters downstream of the shock. Method (lines marked
with 1), numerical calculations [114] (lines marked with 2). Spherical explosion, γ = 5/3, Eo =
0.931 · 1051 erg, no = 0, 1 cm−3, t = 2.5 · 105 yr = 3.3tsf .

characteristics of the hot gas are compared with the numerical simulations from [114]

on Fig. 2.14. Figure demonstrate high enough accuracy of the method that allows

one to use it for modeling the real objects.

2.6. Conclusions

Chapter 2 is devoted to hydrodynamic description of flows with strong nonrela-

tivistic shocks, in particular, approximate analytical methods for description of the

shock front and plasma flow are developed. They may be used in cases of uniform

and nonuniform ISM, after the time when deviation from the condition of adia-

baticity becomes to be effective. In addition, a new model for morphological class

of SNRs, namely, the thermal X-ray composites, is presented. It bases on an idea

about the motion of adiabatic shock in ISM with strong gradient of density.

1. Considering 2-D or 3-D models of SNRs it is necessary to take into account the

effects of projection. Once projected onto the plane of the sky, such an object changes

its appearance depending on the actual density contrast across the remnant and on

the angle between the density gradient and the direction towards the observer. A

new possibility to explain the nature of thermal X-ray composites, i.e. a class of
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SNRs with a thermal X-ray centrally-filled morphology within a radio shell, as a

projection effect of the 2- or 3-dimensional shell-like SNR evolved in a nonuniform

medium with scale-height ≤ 10 pc is proposed. Theoretical properties of a shell-like

SNR evolved at the edge of a molecular cloud correspond to the observed properties

of TXCs if the gradient of the ambient density does not lie in the projection plane

and the magnetic field is nearly aligned with the line of sight. So, at least a part of

objects from the class may be interpreted within the framework of the considered

effect.

2. Different reference times which appear in the description of transition of a

strong adiabatic shock into the radiative era are reviewed. The need for consideration

of an additional transition phase in between the end of the adiabatic era and the

beginning of the radiative “pressure-driven snowplow” stage for a shock running in

the uniform or nonuniform medium is emphasized. This could be of importance

in particular for studying of the interaction of supernova remnants with molecular

clouds and therefore for understanding the processes of the cosmic ray production in

such systems. The duration of this subphase – about 70% of SNR age at its beginning

– is almost independent of the density gradient for media with increasing density and

is longer for higher supernova explosion energy and for smaller density in the place

of explosion: ttr ∝ E
a(ω)
SN A−b(ω) with a > 0 and b > 0 for shock in a medium with

ρo ∝ AR−ω. It is shown as well that if the density of the ambient medium decreases

then the cooling processes could differ from the commonly accepted scenario of

the “thin dense radiative shell” formation. This property should be studied in the

future because it is important for models of nonspherical SNRs which could be only

partially radiative.

3. An approximate analytical method of hydrodynamical description of the tran-

sition of SNR from the adiabatic stage of their evolution to the radiative one are

developed. It allows one to model the dynamics of the shook, formation of the thin

cold shell as well as distribution of parameters inside the shell and the internal hot

region. The model fits the results of the numerical simulations from [90, 114, 331]

with sufficient accuracy.
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4. The general analytic solution for the evolution of radiative SNRs in a uniform

interstellar medium, under thin-shell approximation, is presented. This approxima-

tion is shown to be very accurate approach to this task. For a given set of parameters,

our solution closely matches the results of numerical models, showing a transient in

which the deceleration parameter reaches a maximum value of 0.33, followed by

a slow convergence to the asymptotic value 2/7. Oort [263] and McKee and Os-

triker [247] analytic solutions are discussed, as special cases of the general solution

we have found. Approach developed is extended to the case of a non-uniform ISM

with power-low density distribution in [15] and to motion of shock under a force

from gas with non-zero mass in [16].

5. An approximate analytical method for hydrodynamical modeling of the flow

downstream of the radiative shock from the spherical point explosion in a nonuniform

isotropic medium is presented. Comparison of the method with few known results

of the numerical calculations [114] shows that the accuracy of the method is high

enough to use it in physical applications.
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CHAPTER 3

KINETICS AND RADIATION OF COSMIC RAYS IN SNRS

Conclusions about CRs accelerated by shocks in SNRs may be inferred from

observations. Relativistic electrons emit in radio, X-rays through synchrotron mech-

anism and in γ-rays via inverse-Compton effect (non-thermal bremsstrahlung is also

possible, but its contribution is dominated by the inverse-Compton emission). Ac-

celerated protons after interaction with protons with much smaller energy produce

neutral pions which decay in γ-photons [1, 2, 326].

Radio emission is observed from SNRs of different ages [172, 368], as well as

thermal and synchrotron X-rays [112, 330]; some SNRs emit also in γ-rays with

energies 0.1-100 GeV [152, 181] and 0.1-100 TeV [186, 346].

There are few components in model of CRs emission in SNR: 1) dynamics of the

shock and plasma downstream of the shock, 2) kinetics of charged particles in vicinity

of the shock an their evolution downstream after leaving region of acceleration and

3) emission processes of CRs, 4) synthesis of emission from SNR (e.g. images). Many

aspects of particle acceleration are known [86,128,202,240], as well as main processes

which are responsible for nonthermal emission of SNRs [67,97]. However, it is almost

unknown how particles start acceleration (i.e. how they are “injected”).

In the next chapters of the thesis, we consider emission of leptonic component

of CRs. In Sect 3.1, a model of injection is described and factors which influence

this process are determined. Evolution of the energy spectrum of relativistic elec-

trons inside the volume of SNRs are described in Sect 3.2, in cases of the shock

motion in uniform and nonuniform ISM and ISMF. Known methodology of sim-

ulation of inverse-Compton emission [326] requires calculations of many enclosed

integrals in each point within SNR, that, together with necessity of calculations of

magneto-hydro dynamics and evolution of CRs in three dimensions, requires incred-
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ible CPU resources. Therefore, we developed an analytical approximation for IC

emission (Sect 3.3) which allows us, for the first time, to synthesize images of SNRs

in γ-rays.

To make the proton-origin γ-rays surely dominating in an SNR model, we need

a high number density of target nuclei >∼ 102 cm−3. Therefore, πo decay γ-rays are

naturaly expected from SNRs which interact with molecular clouds. Our model for

TXCs (Sect. 2.1) strongly suggests to consider members of this class as prospective

sources of hadronic γ-emission. Respective estimations have been done in Sect 3.4.

Results presented in this chapter are published in [17, 18, 72, 264, 265, 275, 278–

280, 285].

3.1. Influence of thermalisation on electron injection in SNR shocks

3.1.1. Injection problem and the individual particle approach. The

standard theory of diffusive acceleration, in test-particle approximation (see e.g. the

review of Jones & Ellison [202]), shows that a power-law distribution develops at high

energies. The spectral index of this high-energy population depends on the shock

compression ratio, while it does not depend at all on the original energy distribution

of the injected particles. In fact, a simplified way to describe the overall particle

evolution, from nearly thermal to very high velocities, is to treat particle injection

and acceleration as two separate problems. The injection problem consists in finding

out the initial momentum distribution of the fraction of (originally thermal) particles

that can enter the acceleration process, i.e. which make at least one acceleration

cycle. The acceleration problem, instead, consists in following the evolution of the

distribution of these particles along all next acceleration cycles.

In order to keep the number of free parameters low, while modelling more effec-

tively the emission in all observed spectral ranges, one needs to introduce a physically

self-consistent scenario for the thermal and nonthermal populations. For instance,

the standard model of particle acceleration constrains the slope of the electron distri-
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bution at high velocities, but does not predict its normalization: in other terms, the

injection efficiency (i.e. the fraction of particles that enter the acceleration process)

is poorly known, because this process is sensitive to physical details not included in

the standard model of Fermi acceleration. The level of electron-ion equilibration or,

alternatively, the electron temperature is another key quantity hard to determine

“a priori” in collisionless shocks. While in models of SNR shocks injection and equi-

libration efficiencies are taken as independent free parameters, in the reality both

depend on the physical conditions within the shock transition, and therefore they are

not independent. Goal of this section is in fact to investigate, in nonrelativistic SNR

shocks, a possible connection between electron injection and thermal equilibration.

A self-consistent treatment of injection and acceleration must include a micro-

physical model of particle-wave interactions in the plasma. We approach the problem

in a simplified way. We assume the presence of scattering centres, without concen-

trating on their nature, but simply assuming that they match the following require-

ments: i) the interaction with these scattering centres generates a nearly isotropic,

Maxwellian velocity distribution of particles on timescales not longer than one colli-

sion time; ii) the timescales for (wave-mediated) isotropization and energy exchange

between electrons are both smaller than the (wave-mediated) electron-ion equilibra-

tion time; iii) the scattering centres play at the same time the role of thermalising,

within the shock, the incoming particle population to the post-shock temperature

and that of driving the process of diffusive acceleration. When we will need to use

more specific properties of the wave-particle interaction, we will refer to the results

of Bykov & Uvarov [96] on the electron kinetics.

There are in general three ways to calculate the post-shock momentum distri-

bution of particles: either by solving the kinetic equations, or by making a hybrid

simulation (which is however unable to model the momentum distribution of elec-

trons because electrons are treated as a fluid), or finally by extending the individual

particle approach of Bell [69]. He has estimated the probability for a particle to

return to the shock from downstream and has shown that in this way one obtains

a power-law distribution for the accelerated particles with velocities v ≫ V (where
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V is the shock velocity).

In the present section we propose to extend the Bell approach to the problem

of injection by introducing the probability to recross the shock from downstream

to upstream. This probability is connected to the process of thermalisation of the

incoming flow within the shock. This fact has been shown by Malkov [239] in the

case of protons. Namely, the idea that ions are prevented from backstreaming by the

self-generated waves (which also participate in thermalisation of ions) has allowed

Malkov to obtain an analytic solution of the injection problem for protons. The

main point in his thermal leakage theory is that only those protons that can “leak”

upstream are injected into the Fermi process.

We use the same idea in our approach to electrons, even though we are not tight

to any specific kind of interaction. We consider only the case of parallel shocks,

namely when the ambient magnetic field is parallel to the shock normal.

3.1.2. Injection efficiency and distributions of electrons.

Efficiency of electron injection. Let us assume that all electrons are injected

into the acceleration process from the downstream thermal population, i.e. we do not

invoke seed particles with velocities already much higher than the thermal velocity.

Their distribution is then well approximated by nesfM, where

fM(y) =
4√
π
y2 exp(−y2) (3.1)

is a normalized Maxwellian, isotropic in the fluid comoving frame. We have intro-

duced the reduced momentum y = p/pth, which is also equal to the reduced velocity

v/vth, as long as non-relativistic particles are considered, as it is the case at injec-

tion. Thermal momentum and velocity are defined by pth = mevth =
√
2mekTes,

where Tes is the post-shock electron temperature. We consider a fully ionized H+He

gas (with nHe = 0.1nH, for a mean mass per particle µ = 0.609), and a strong,

unmodified shock. For an adiabatic index γ = 5/3, the shock compression ratio is

σ = 4 but, for the sake of generality, in the following formulae we shall allow for a
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general σ. Therefore, the ratio of the electron thermal velocity, vth, to V is

vth
V

=

√

2(σ − 1)

σ2

χs

χo
, (3.2)

where χo = me/(µmp) ≃ 8.94× 10−4. The factor χs = Tes/Ts, where Ts is the mean

shock temperature, accounts for the thermal equilibration level between electrons

and ions immediately after the shock, and ranges from χo (no equilibration) to 1

(full equilibration).

Introducing the simple-minded assumption that only particles in the high-velocity

tail of the Maxwellian distribution can be accelerated, it is easy to link the minimum

momentum of this tail, ptail = ytailpth, to the injection efficiency ς (i.e. the fraction

of accelerated particles). One has just to solve the equation
∫∞
ytail

fM(y) = ς , which

gives for instance ytail = 2.85 for ς = 10−3 and ytail = 3.91 for ς = 10−6. It is worth

noticing that, for reasonable values of ς , this integral is dominated by particles with

y ∼ ytail, with ytail of order of unity: it is apparent from this example that injection

involves mostly particles with velocities of the order of the thermal one, and not

only those with v ≫ V .

In the above estimation, we have assumed that all particles with y > ytail, and

only them, are accelerated. In order to find out the injection efficiency in a more

general case, we introduce the probability P(y) for a particle with velocity v = yvth

to be accelerated, i.e. to recross the shock from downstream to upstream at least

once. This probability yields the fraction of particles, with a given velocity, which can

be accelerated; while the Maxwellian distribution in turn gives the number density of

particles with that velocity. Thus, for an isotropic velocity distribution, the fraction

of accelerated particles (injection efficiency) is given by the integral

ς =

∞
∫

0

P(y)fM(y) dy. (3.3)

In other terms, the distribution of particles injected into the acceleration process is

finj(y) = P(y)fM(y). (3.4)
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The probability P(y) in turn can be estimated as the product of the probability,

Pr, that a particle returns to the shock from downstream, times the probability, Pc,

that this particle crosses the shock moving upstream. The next two subsections will

be devoted to estimate these two probabilities.

We wish to point out that a common misconception lies underneath the Fermi

acceleration approach, namely that the electrons must enter this process having

already a velocity much higher than V . This is usually obtained, by requiring either

i) that the electron temperature is close to equipartition, or ii) that only electrons

in the high-energy tail of the Maxwellian distribution enter into the acceleration

process, or finally iii) that some unknown pre-acceleration mechanism takes place

to accelerate electrons to the required velocity regime. The condition v ≫ V is

in fact very useful to simplify the mathematical treatment of the process, but in

our belief is not strictly required by physical arguments. In the present section

we will show instead i) that electrons may be injected efficiently also when their

temperatures is far from equipartition, ii) that, in order to have reasonably high

injection efficiencies, χs has to be considerably less than unity; in other words, the

velocities of the majority of the injected electrons must not be not too far from the

thermal velocity and the minimum injection momentum can even be much smaller

than thermal one, and finally iii) that there is no physical need for an independent

pre-acceleration process, if the treatment of the acceleration is modified in order to

account also for relatively low particle velocities (this can be done by introducing

the probability of crossing the shock).

Probability of returning to the shock. In the case of isotropic velocity dis-

tribution in the downstream flow, the probability for particles with velocity v to

return to the shock from downstream is given by the ratio of the upstream and

downstream fluxes [202]:

Pr(v) =

∣

∣

∣

∣

−u2
∫

−v
(u2 + vx) dvx

∣

∣

∣

∣

v
∫

−u2
(u2 + vx) dvx

= H(v − u2)

(

1− u2/v

1 + u2/v

)2

, (3.5)
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where: u2 = V/σ is the velocity of the downstream flow, in the shock reference

frame; v is the velocity, in the downstream flow reference frame, of the particle that

has just reached the shock; H(v − u2) is the Heaviside step function (meaning that

u2 is the minimum value of v that allows a particle to return to the shock). In this

section, we label quantities refering to upstream with “1” and quantities refering to

downstream with “2”. Coordinates are defined in such a way that, in the reference

frame of the shock, the flow moves along the x-axis in the positive direction.

It is useful to re-write Eq. (3.2) to fix a lower boundary to the reduced momenta

of the injected particles

ymin =
u2
vth

=

(

χo

2(σ − 1)χs

)1/2

. (3.6)

The quantity ymin is always less than (2(σ−1))−1/2 (i.e. pmin < 0.4pth for σ = 4) and

can be much smaller than that if χs ∼ 1 (which means vth ≫ V ). This means that,

the higher the level of electron-ion equilibration, the higher the electron thermal

velocity compared to V , and thus the higher the fraction of electrons able to return

to the shock from downstream.

Probability of crossing the shock. The standard theory of diffusive acceler-

ation [69] implicitely assumes Pc ≃ 1, which means that the particle mean free path

λ is longer than the thickness, ∆x, of the shock transition region. This condition

applies only for particles with high enough velocity (v ≫ V ).

On the contrary, the evolution of particles with lower velocities is affected by scat-

terings within the shock transition. In fact, the mere existence of a shock implies

that the incoming ambient plasma must be thermalised, within the shock transition

region, by some kind of scatterings centres. Also particles that enter the shock tran-

sition region from downstream, as long as they have velocities similar to thermal

particles, must experience a similar rate of scatterings. Thus, also for them λ < ∆x.

In the presence of scatterings, only a fraction of these particles will succeed cross-

ing the shock and finally reaching the upstream region. In general, modelling this

process is very complex. Here we will present a simplified treatment, based on some

approximations. The first of them is diffusive approximation, which requires that
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mean free paths are smaller than the shock thickness, and that the velocity distri-

bution is nearly isotropic.

However, this assumption is invalid near the downstream boundary of the shock

layer. In fact, the original distribution of downstream particles which return to

the shock is highly anisotropic, since all particles entering the shock have, in the

shock reference frame, an x-component opposite to the flow velocity. The above

assumption is anyway valid over most of the volume, provided that isotropization

processes within the shock are very efficient. Namely, we require that the length scale

for isotropization is of the order of one mean free path (similarly to what happens

for Coulomb collisions between similar particles).

The estimation of Pc(v) is generally very complex. Here we use a crude approxi-

mation (based on the so-called “modulation” equation, see e.g. [202]) and write

Pc = exp(−〈u〉∆x/κ). (3.7)

where 〈u〉 ≈ (u1 + u2)/2 = u2(σ + 1)/2 and κ is the diffusion coefficient.

We want to point out that probability of crossing is closely related to the ther-

malization level χs. The thickness ∆x may be derived from the condition that the

temperature of the incoming fluid increases to the post-shock value Tes = χsTs while

the fluid moves through the shock transition from upstream to downstream. In this

way, the two problems – injection and thermalisation – become closely connected.

This can be seen by rewriting

∆x = 〈u〉∆t12 = 〈u〉
χs
∫

0

(

dχ

dt

)−1

dχ (3.8)

where ∆t12 is the time it takes to a fluid element to cross the shock, moving from its

upstream boundary to the downstream one. In general, it is necessary to introduce

a microphysical model of thermalisation in order to obtain explicitely the functional

dependence of the rate of thermalization dχ/dt.

For the diffusion coefficient we use the standard formula κ = λ′v′/3, where v′

is the velocity of a particle in the local reference frame of the flow and λ′ is the

particle mean free path with respect to scatterings within the shock transition. A
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further assumption behind this formula is that the scattering centres are frozen into

the fluid. This is, for instance, the case in the Bykov & Uvarov [96] model for the

electron kinetics in a strong shock. In this model, particles are scattered by the

ion-generated Alfvénic waves, and the Alfvénic speed is much lower than the shock

velocity. In case of electron diffusion in presence of magnetic field turbulence, it

is common to parametrize the mean free path as λ′ = ηrg, where rg = p′c/eB

is the gyroradius and η accounts for the level of turbulence. We concentrate here

on particles with velocities not much larger than V , and therefore we will use the

nonrelativistic formula for λ′. For such parameterization of the mean free path, λ′

may be written as λ′ = τDv
′ where τD is the average deflection time defined as

τD = ηmec(eB)−1.

In order to compute a probability Pc(v) for particles having a given velocity v

in the downstream reference frame, we need to average over all v′ velocities cor-

responding to a a given v downstream. In the reference frame of the average flow

within the shock transition, velocities v′ corresponding to the same v are different

in different directions, namely ~v′ = ~v − ( ~〈u〉 − ~u2). The angle-averaged value of v′2

for these particles is given by

v′2 =

−u2
∫

−v

(

(vx − u2(σ − 1)/2)2 + v2⊥
)

dvx

/

−u2
∫

−v

dvx

= v2 +
σ − 1

2
vu2 +

σ2 − 1

4
u22. (3.9)

Let us assume that, on the average, electrons in the incoming flow are thermalised

to the level χs in Nc collisionless interactions. For the sake of illustration, let us

calculate the number of scatterings, Nc, which yield a given injection efficiency. The

involved time is approximately ∆t12 = NcτD and therefore

〈u〉∆x
κ

=
3〈u〉2
v′2

∆t12
τD

=
3〈u〉2
v′2

Nc, (3.10)

so that the probability (3.7) becomes

Pc(v
′) = exp

(

−3(σ + 1)2

4

(u2
v′

)2

Nc

)

. (3.11)



103

Eq. (3.3), together with probabilities (3.5), (3.11) and Eqs.(3.6), (3.9), shows that,

in order to get an injection efficiency ς = 10−3, Nc must be equal to 9 for χs = 0.001,

and to 770 for χs = 0.1.

It is interesting to note that our expression for Pc behaves like the “leakage

probability” νesc of Malkov [239], calculated for protons. Namely, the probability

for protons to leak across the shock from downstream is approximately νesc(y) ∝
exp

(

−const (y′)−2
)

[167].

Finally, we want to stress that the introduction of the probability Pc does not af-

fect the slope of the accelerated spectrum at relativistic energies. Following standard

test-particle approach to Fermi acceleration [69], a power-law momentum distribu-

tion of relativistic particles is generated, with an index α = −(2− σ)/(σ − 1) that

depends only on the shock compression ratio. This index is obtained by combining

the term for the momentum increment per cycle (∆p/p) with that for the difference

(1−Pr) per cycle, in the high-velocity limit. The asymptotic behaviour of both terms

is ∝ v−1; while Eq. (3.7) is such that (1−Pc) ∝ v−2. Therefore, in the high velocity

limit Pc gives negligible contribution to the formation of the particle spectrum in

comparison to Pr, and does not affect the formula for α.

3.1.3. Thermalisation of electrons and injection. In the shock-front ref-

erence frame, if upstream electrons and ions enter the leading edge of the shock tran-

sition with the same velocity then the electron energy is lower than that of protons

by a factor me/mp. Therefore, if the velocities of electrons and ions are random-

ized independently within the shock front, we obtain Tes = (me/µmp)Ts ≪ Ts (i.e.

χs = χo ≪ 1 in our notation), while the ionic temperatures are about (ne+ni)Ts/ni

(where “i” denotes ions), namely much closer to Ts.

The temperatures of electrons and ions may get closer, if there is a process within

the shock which allows energy exchanges between the two species. In collisional

shocks, the equilibration process is Coulomb scattering between ions and electrons,

while, in the collisionless case (like it generally occurs in SNRs), turbulence plays

the dominant role.
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Results from observations. Since longtime, it has been suggested that plasma

instabilities could lead to prominent heating of electrons within the shock (e.g. [245]).

Some observations and theoretical results put forward the possibility that colli-

sionless processes within the shock of SNRs could heat electrons up to the level

χs ≃ 0.4 ( [94] and references therein). Results on SNR DEM L71 in LMC [297]

and on RCW86 [169] also suggest χs ∼ 0.3. Analysis of Chandra data on Ty-

cho SNR indicates that χs . 0.1 [169, 199]. Other recent observations (SN1006,

Tycho, 1E 0102.2–7219) favour a considerably lower thermalisation level, namely

χs . 0.03÷ 0.07 [170, 197, 214, 221, 222, 356]).

It is important to know how does the level χs depend on the properties of the

shock. Observational estimations of the shocks with Mach number M up to ∼ 400

suggest that stronger shocks (namely with higher Vs) could equilibrate species less

effectively. Namely, Schwartz et al. [327] present results of measurements of Tes/Ts

for interplanetary shocks and planetary bow shocks (M . 25) and find strong

evidence that this ratio depends on the Mach number as M−1. Ghavamian et al. [169]

estimations for a number of SNRs seem to extend this trend to stronger shocks,

with 25 . M . 200. Rakowski [298] summarises the observational methods and

estimations of χs in SNRs shocks and confirms the inverse dependence in the range

25 . M . 400.

Results from Bykov and Uvarov (1999). Interactions of electrons with ion-

or self-generated waves could be responsible for both accelerating and heating of

electrons (see [98, 240] for a review).

Bykov & Uvarov [96] have considered the interactions of electrons with ion-

generated electro-magnetic fluctuations and have developed a kinetic model that

accounts at the same time for electron injection, acceleration and thermalisation in

quasiparallel shocks. Their model is applicable for shocks with local Mach number

M less than ∼
√

mp/me. They have introduced the effective electron temperature

Teff (measured in units of the upstream temperature To), which may be related to
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our χs by

χs = Teff
To
Ts

= Teff
σ2

(σ + 1)M2
, (3.12)

and have shown that it depends on the Mach number. This dependence can be ap-

proximately described by a power law: Teff ∝ Ma, with index 0 < a . 2 depending

on which model of wave-particle interaction is considered. Therefore, the level of

thermalisation depends on the velocity of the shock: χs ∝ Ma−2 for strong shocks,

namely the higher the velocity the smaller the thermalisation level.

If λ′ is momentum independent (transport of electrons is due to large-scale mag-

netic field fluctuations that provide effective heating) then a ≈ 2, and the level of

equilibration χs does not depend on the Mach number. This means that Tes ∝ V 2,

but with a factor that may be higher than that inferred from Rankine-Hugoniot

equations for the electron population [246]. The opposite case is when electron heat-

ing in the shock transition region is effectively suppressed by a developed small-scale

vortex turbulence, giving a ≈ 0. In such a situation the postshock electron temper-

ature is Tes ≈ To, independently of the Mach number. Another interesting model of

wave-particle interactions is Bohm-like diffusion, for which λ′ ∝ p and a = 1. In the

present section we consider only the Bohm-like diffusion case since it seems to be in

agreement with observations (namely χs ∝ M−1, see Sect. 3.1.3).

Bykov & Uvarov [96] also introduce the dimensionless parameter Γ = u1∆x/v
′λ′

(calculated for electrons with v = vth), and in their Fig. 4 they show its depen-

dence on Teff , for different models of wave-particle interactions (Fig. 4a for diffusion

boundary conditions and Fig. 4b for free escape boundary conditions). In particular,

their curve 4 represents result for Bohm-like diffusion.

Application of Bykov & Uvarov results to our model. We have approxi-

mated Bykov & Uvarov [96] numerical results by using Γ = T
1/a
eff /ξ − 1 where ξ is a

constant. This, together with (3.12), gives

Γ =

(

(σ + 1)M2χs

σ2

)1/a
1

ξ
− 1. (3.13)
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In a Bohm-like case, i.e. with a = 1, ξ = 1.25 corresponds to the diffusive boundary

conditions and ξ = 0.75 to free escape boundary conditions. The parameter Γ is pro-

portional to the combination 〈u〉∆x/κ in the exponent of the transition probability.

This allows us to write

Pc(y, χs,M) = exp

(

−3(σ + 1)

2σ

Γ(χs,M)

y′2

)

(3.14)

for nonrelativistic electrons and λ′ ∝ p.

By using (3.13) for Γ in (3.14), the dependence of the fraction of injected particles

ς on the level of electron thermalisation χs may be obtained (Fig. 3.1). By comparing

(3.14) with (3.11), using (3.6) for ymin, we finally obtain a relation between Γ and

Nc:

Nc =
4(σ − 1)χsΓ(χs)

(σ + 1)σχo
. (3.15)

The calculated dependence of the injection efficiency on the Mach number and on

the thermalisation level is shown in Fig. 3.1 for the Bohm-like diffusion. The range

of values plotted in this figure corresponds to a range from 2 to 20 for Γ in Fig. 4 of

Bykov & Uvarov [96], with the minimum Γ corresponding to the maximum ς . The

curves in Fig. 3.1 are essentially the same curve, with different horizontal offsets.

Namely, the formula for the injection efficiency ς(M, χs) is very well approximated

by a function of M2χs. The reason of this can be found in Eq. (3.3), together with

the explicit definitions of Pr and Pc (respectively, Eqs. (3.5) and (3.7)): for standard

parameter ranges, the most effective term is the argument in the exponential of Pc,

which is proportional to Γ. In turn, Eq. (3.13) shows that the dependence of Γ from

M and χs is only through the combination M2χs. In this sense, we may say that Γ

is a function of a single parameter (not considering, of course, the dependence on the

assumed diffusion type and on the boundary conditions, which can be accounted for

by using parameters a and ξ). For instance, in a Bohm-like case a power-law approx-

imation of the curves shown in Fig. 3.1 is ς ≃ 2× 105M−10χ−5
s (this approximation

is represented in the figure by dashed lines). Since in this case χs ∝ M−1, the overall

dependence of the injection efficiency on the Mach number in a Bohm-like case is

as strong as ς ∝ M−5.
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Figure 3.1. Injection efficiency ς versus post-shock ratio χs for a model of Bykov & Uvarov [96]
for Bohm-like diffusion and diffusion boundary conditions. Curves are labelled by their respective
Mach number. The approximation ς = 2× 105 (M2χs)

−5
is shown by dashed lines.

In order to allow for different types of diffusion, as well as for different electron-

wave interactions etc., one could consider a more general case, in which: i) χs ∝
M−m; and, ii) ς ∝ M−2qχ−q

s (where we expect q to be always positive). We then

obtain ς ∝ M−b with b = q(2 −m). In other words, in the case of a decelerating

SNR shock χs always increases, while ς increases if m < 2, and decreases if m > 2.

3.1.4. Discussion. The electron injection and thermalisation are not indepen-

dent processes. This is clearly outlined by Fig. 3.2 where the probabilities Pr and

Pc as a function of reduced momentum are shown for two values of χs together with

the initial distribution (3.4) of injected particles. The hybrid electron distribution

nesfH(y)dy, Maxwellian up to yb and power-law above [291], is also shown on the

figure to see the differences. The break momentum yb is given by the assumption

that all injected particles obtain momenta higher than yb after acceleration i.e. is

defined by ς =
∫∞
yb
fH(y)dy.

It is a common believe that only particles from the energetic tail of Maxwellian

distribution are capable to be accelerated. On the contrary, the distribution finj

shows that thermal particles with velocities v > vmin have the possibility to par-

ticipate in acceleration process, although with different probability. The minimum
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Figure 3.2. Electron distribution functions and probabilities calculated for two different values
of χs. 1 – Maxwellian distribution, 2 – probability to return to the shock Pr, 3 – probability
to cross the shock Pc, 4 – initial distribution finj of electrons injected into acceleration process,
5 – final hybrid electron distribution (α = 2). Plots are calculated for the model of electron-
wave interaction developed by Bykov & Uvarov [96] (case of Bohm-like diffusion with diffusive
boundary conditions), M = 40. a) χs = 0.01, in this case ymin = 0.12, yb = 2.6, ς = 0.048,
Nc = 20; b) χs = 0.06, in this case ymin = 0.05, yb = 3.9, ς = 3.1× 10−5, Nc = 930.

velocity vmin = 0.07 (χs/0.03)
−1/2 vth may be considerably less than the thermal

velocity (see Eq. (3.6)). The most probable velocity v∗ at which the maximum of

the distribution finj occurs is v∗ ≈ (2÷ 3)vth for a wide range of injection fractions

ς = 10−3 ÷ 10−6 (Fig. 3.3 and compare with Fig. 3.1). In other words, most of the

electrons are injected with velocities v∗ ≃ 50χ
1/2
s V .

The injection efficiency ς of electrons in a collisionless shock is associated to the

process of electron heating within the shock, through the competition of two effects.

On one side, the higher the post-shock electron temperature, the higher the energy

of thermal electrons and the higher the fraction of those which are ready to cross

the shock from downstream to upstream (this is given by the probability Pr, lines 2

on Fig 3.2a,b). On the other side, however, the higher the temperature, the higher

the number of scattering centers. Electrons traversing the shock from downstream

to upstream also interact with these sites and the more such interactions the less

electrons are able to cross the shock and to enter into the Fermi acceleration loop

(see probability Pc, lines 3 on Fig 3.2a,b). In this section we show that, for a given
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Figure 3.3. Velocity corresponding to the maximum of the distribution function finj versus χs

for a few choices of the shock Mach number (see curve labels). Model of electron kinetics is the
same as in the previous figure.

M, the combined effect of these two processes is that the quantity ς decreases with

increasing of χs (Fig. 3.1).

Both injection and thermalisation are sensitive to the Mach number. It is shown

(see Sect. 3.1.3) that, for a standard range of parameters, ς(χs,M) is a decreasing

function of a single argument ς = ς(M2χs). Theoretical models show that in high-

velocity shocks the energy of the shock is transferred to the thermal electrons less

efficiently, so that χs ∝ M−m with 0 ≤ m ≤ 2 (Bykov & Uvarov [96]). Observations

favour a dependence χs ∝ M−1, suggesting a Bohm-like type of diffusion. Our

calculations show that the level of electron-ion equilibration is expected to depend

on the injection fraction as well, so that the approximate relation between these

three parameters is χs ∝ M−2ς−1/q (Sect. 3.1.3). The smaller the Mach number,

the higher the level of electron-ion equilibration for a given injection efficiency. On

the other hand, for a given thermalisation level, the stronger the shock the less

particles can be injected.

To conclude, we would like to review the assumptions used in the present section.

Our approach is in test-particle approximation. Actually, it is known that, in

young SNRs, shocks could be strongly modified; and the inclusion of nonlinear effects

could change our results significantly. The usage of a test-particle approach in the

present section is however consistent with what done by Bykov & Uvarov [96], and

the results of their analysis are valid at least for shocks with Alfvén Mach number
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less than ≃ 43. Thus our results should be applicable at least to SNRs either in the

late adiabatic phase or beyond. Our opinion is that, together with using nonlinear

treatments, it is valuable investigating what happens in the linear (test-particle)

approximation, also in consideration that a nonlinear theory has anyway to give, as

limit case, the linear results.

Eqs. (3.1) and (3.5) assume nearly isotropic distribution of particles. In general,

this is not fully true for the thermal population right after the shock. In order to

overcome this difficulty, in numerical calculations these formulae are assumed to

apply a few mean free paths downstream, in order to insure that the distribution

is isotropic in the local frame (e.g. [138]). Within our approach, this implies some

restrictions on the underlying physics. Our assumptions about properties of the

scattering centers in our model (see Introduction) require that the timescale for

isotropisation is not larger than the timescale for one interaction. This means that,

in order to assume isotropy of particles velocities, we would in principle need to

increase the number of interactions Nc at least by one (see Eq. (3.11)). Since already

Nc ≫ 1 for, say, χs > 10−3 (see estimations after Eq. (3.11)), this increment would

not change much our results, in the case of shocks producing an electron population

thermalised up to the level χs higher than 10−3. Since χs ∝ M−1, our models are

limited again to the shocks with moderate Mach numbers.

3.2. Electron energy spectrum and its evolution downstream of the

adiabatic shock

3.2.1. Energy spectrum of electrons. Let us assume that the synchrotron

X-ray or IC γ-ray radiation is due to relativistic electrons distributed with an en-

ergy spectrum N(E) = KE−s exp(−E/Emax) electrons cm−3 erg−1, where E is the

electron energy, N(E) is the number of electrons per unit volume with arbitrary

directions of motion and with energies in the interval [E,E+ dE], K is the normal-

ization of the electron distribution, s the power-law index and Emax the maximum



111

energy of electrons accelerated by the shock. The distribution of the radio-emitting

electrons N(E) simplifies to N(E) = KE−s. In general, the spectral index s may

depend on E, e.g. s(E) = s + δs(E) like it would be in case of the nonlinear ac-

celeration. Unless otherwise stated, the value s = 2 is used, as it appears in the

test-particle acceleration theory, s = (2 + σ)/(σ − 1), where σ = (γ + 1)/(γ − 1)

the shock compression ratio (defined as σ = ns/no), which is 4 for adiabatic index

γ = 5/3.

Some observations suggest that the cut-off could be broader than pure exponent

(at least in SN 1006 and G347.3-0.5 [140,141,223,352]). We have shown [278], that

this broadening should be attributed to the physics of acceleration rather than to an

artifact of observations (i.e. superposition of spectra in different conditions along the

line of sight as suggested by [302]). Therefore we assume that the energy spectrum

of accelerated electrons is given by

N(E) = KE−s exp

[

−
(

E

Emax

)α]

, (3.16)

where α ≤ 1 is the parameter regulating the broadening/narrowing of the high-

energy end of electron spectrum. It could be that α = 0.5−0.6 ( [140] and references

therein). Also the larger values of the parameter, α = 1 ÷ 2, appear in recent

theoretical works [208, 334, 375] suggesting that the end may be narrower than the

pure exponent.

Injection efficiency and normalization of the spectrum. The normaliza-

tion of the electron distribution Ks depends on the injection efficiency (the fraction

of electrons that move into the cosmic-ray pool). On theoretical grounds, Ks is ex-

pected to vary with the shock velocity V (t) and, in case of inhomogeneous ISM,

with the immediately post-shock value of mass density, ρs; let us assume that ap-

proximately Ks ∝ ρsV (t)−b. Reynolds [303] considered three empirical alternatives

for b as a free parameter, namely, b = 0,−1,−2. In Sect. 3.1, we showed that

one can expect b > 0. Negative b reflects an expectation that injection efficiency

may behave in a way similar to acceleration efficiency: stronger shocks might in-

ject particles more effectively. In contrast, positive b represents a different point of
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view: efficiencies of injection and acceleration may have opposite dependencies on

the shock velocity. Stronger shock produces higher turbulence which is expected to

prevent more thermal particles to recross the shock from downstream to upstream

and to be, therefore, injected. Since the picture of injection is quite unclear from

both theoretical and observational points of view, we do not pay attention to the

physical motivations of the value of b. Instead, our goal is to see how different trends

in evolution of injection efficiency may affect the visible morphology of SNRs. Such

understanding could be useful for future observational tests on the value of b.

The electron injection efficiency may also vary with the obliquity angle between

the external magnetic field and the shock normal, φo. There are numerical simula-

tions which suggest that injection efficiency is larger for parallel shocks, i.e. where

the magnetic field is parallel to the shock speed (obliquity angle close to zero; [137]).

However, it has been shown [157] that models with injection strongly favoring par-

allel shocks produce SNR maps that do not resemble any known objects (it is also

claimed that injection is more efficient where the magnetic field is perpendicular to

the shock speed; [200]). In such an unclear situation, we consider, in particular, the

three cases: quasi-parallel, quasi-perpendicular, and isotropic injection models. In

practise, the obliquity variation ofKs is given byKs(Θo) = Ks‖FK(Θo) with FK(Θo)

independent of time. Typically, one considers three models for injection [225, 303]:

quasi-parallel (FK(Θo) = cos2Θs), isotropic (FK(Θo) = 1) and quasi-perpendicular

(FK(Θo) = sin2Θs) where Θs is the angle between the post-shock magnetic field

and the shock normal; the obliquity angle between the external magnetic field

and the shock normal, Θo, is related to Θs by sin2Θo = (cot2Θs/σ
2 + 1)−1 or

cosΘs = σ−1
B cosΘo (e.g. [157]). Since Ks ∝ ρsV (t)−b, the surface variation of Ks,

in case of the nonuniform ISM, is given by

Ks = Ks‖FK(Θo)RsV−b (3.17)

where Rs = ρs/ρs‖, V = V/V‖.

Maximum energy of electrons. We follow the approach of Reynolds [303] for

the description of time evolution and surface variation of Emax, generalizing his ap-
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proach to cases of non-uniform ISM and/or non-uniform ISMF. He [303] considered

three alternatives for time and spatial dependence of Emax. Namely, the maximum

accelerated energy maybe determined: 1) by the electron radiative losses (due to

synchrotron and IC processes), 2) by the limited time of acceleration (if age of SNR

is smaller than characteristic time for losses) and 3) by properties of micro-physics

when the scattering of electrons with E > Emax becomes less efficient and the elec-

trons freely escape from the region of acceleration1.

The obliquity variation of the maximum energy is Emax = Emax,‖FE(Θo) with

FE(Θo) independent of time. Shocks of different strength are able to accelerate

electrons to different Emax; this is reflected by Emax ∝ V q.

In case of the nonuniform ISM/ISMF, the maximum energy should account for

the surface variation of shock velocity V and magnetic field B:

Emax,ξ ∝ FE,ξ(Θo) V
qξ Bλξ

o , (3.18)

where ξ = 1, 2, 3 corresponds respectively to loss-limited, time-limited and escape-

limited models of Emax. The values of q and λ are: q1 = 1, q2 = q3 = 0, and

λ1 = −1/2, λ2 = λ3 = 1 [303]. Note that we assume q2 = 0 because Emax rises

quite slowly with time when it is determined by the finite time of acceleration [303],

even in the nonuniform ISM, and most of emission rises therefore from downstream

regions close to the shock. From Eq. (3.18), we express the surface variation of Emax

as

Emax,ξ = Emax,ξ,‖ FE,ξ(Θo) Vqξ Bλξ
o , (3.19)

where Emax,ξ,‖ is a free parameter, representing the maximum energy in a point p

on the SNR surface where the ISMF is parallel to the shock normal, Bo = Bo/Bo,‖.

1For the escape case, it is commonly assumed that MHD waves responsible for the scattering are much weaker

above some wavelength, λmax, and Emax is approximately the energy of particles with that gyroradius (e.g. [303]).



114

The obliquity dependence of Emax is [303]

fE,1(Θo) =

√

G(Θo)

G(0)Rj(Θo)
,

fE,2(Θo) =
1

Rj(Θo)
,

fE,3(Θo) = 1 ,

(3.20)

where

G(Θo) =
σBZ(Θo) + σ

σBZ(Θo)(1 + d2) + σ(σ2
B + d2)

,

Z(Θo) = σ2
B

1 + η2 + tan2Θo

1 + η2 + σ2 tan2Θo
,

σ2
B(Θo) =

1 + σ2 tan2Θo

1 + tan2Θo
,

Rj(Θo) =
σB

σB + σ

[(

cos2Θo +
sin2Θo

1 + η2

)

+
σ

σB

(

cos2Θs +
sin2Θs

1 + η2

)]

d = BCMB/Bo, BCMB = 3.27 µG is the magnetic field strength with energy density

equal to that in the CMB, η = λ‖/rg is the “gyrofactor”, i.e. the ratio between the

mean free path, λ‖, along the magnetic field and the gyroradius, rg (see [303]). In

general it is expected that the mean free path can be no less than rg, so that η ≥ 1;

the equality corresponds to the Bohm limit, i.e. a level of turbulence leading to wave

amplitudes comparable to the stationary magnetic field strength. Figure 3.4 shows

the obliquity dependence of Emax in the time-limited and loss-limited models for

different η and γ = 5/3, assuming the remnant expanding through uniform ISM

and ISMF.

3.2.2. Electrons with radiative losses downstream of the shock in uni-

form media. Relativistic electrons leaving the region of acceleration and evolving

downstream of the shock suffer from adiabatic expansion and radiative losses due to

synchrotron and IC processes. Electrons are considered to be confined to the fluid

element which removed them from the acceleration cite [303]. Let the fluid element
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Figure 3.4. Obliquity dependence of Emax (see Eq. 3.20) in the time-limited (blue) and loss-
limited (red) model, for the labeled values of the gyrofactor η, assuming γ = 5/3.

with Lagrangian coordinate a was shocked at time ti. If energy of electrons was Ei

at ti, it becomes at present time t [303]

E =
Ei

n̄(ā)−1/3 + I(ā)Ei/Ef‖
(3.21)

where the first summand in the denominator reflects adiabatic losses, the second

one is due to radiative losses, overline means that the parameter is normalized to

its value immediately post-shock, e.g. n̄ = n/ns, ā = a/R(t), the fiducial energy for

the parallel shock is defined as Ef‖ = 637/(B2
eff,s‖t) cgs (it is the energy an initially

infinitely energetic electron would have after radiating for a time t in a constant

magnetic field of strength Beff,s‖). The effective magnetic field is B2
eff = B2+B2

CMB;

BCMB is introduced in order to account for the IC losses [303], therefore it is constant

everywhere. The synchrotron channel dominates IC losses if Bs ≫ BCMB.

The dimensionless function I accounts for evolution of fluid during time from ti

to t; it was initially defined as integral over time [303]. In case of Sedov shock, I
may be written in terms of spatial coordinate that is more convenient for simulations

than original representation in terms of time. Namely, one can show that for uniform

ISM:

I(ā,Θo, d) =
5σ2

B

2n̄(ā)1/3

∫ 1

ā

x3/2B̄eff

( ā

x

)2

n̄
( ā

x

)1/3

dx. (3.22)
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Eq. (3.21) results in relations

Ei =
E

EadErad
, dEi =

dE

EadE2
rad

(3.23)

where the adiabatic and radiative losses are represented by

Ead = n̄(ā)1/3, Erad = 1− I(ā,Θo)E/Ef. (3.24)

If shock accelerates electrons to Emax at present time t, then, at some previous

time ti when fluid element a ≡ R(ti) was shocked, the shock was able to accelerate

electrons to

Emax(ti) = Emax

(

V (ti)

V (t)

)q

= Emaxā
−3q/2. (3.25)

Let us assume that, at time ti, an electron distribution has been produced at the

shock

N(Ei, ti) = Ks(ti)E
−s
i exp

[

−
(

Ei

Emax(ti)

)α]

. (3.26)

Conservation equation

N(E, a, t) = N(Ei, a, ti)
a2dadEi

σr2drdE
(3.27)

and continuity equation no(a)a
2da = n(a, t)r2dr, where r is the Eulerian coordinate,

shows that downstream

N(E, a, t) = K(a, t,Θo) E
−s Erad(ā, E,Θo)

s−2

× exp

[

−
(

E ā 3q/2

Emax‖(t) Ead(ā) Erad(ā, E) FE(Θo)

)α
] (3.28)

with K(a, t) = Ks(ti)n̄Es−1
ad . If Ks ∝ V −b, then evolution of K is self-similar down-

stream

K̄(ā) = K(a, t)/Ks(t) = ā 3b/2 n̄(ā)(2+s)/3. (3.29)

Therefore, in general,

K(a, t,Θo) = Ks‖(t)FK(Θo)K̄(ā) (3.30)

where the profile K̄(ā) is independent of obliquity. Note, that K(a, t,Θo) is not

affected by the radiative losses, therefore it behaves in the same way also for the
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radio emitting electrons. Once s is close to 2, the radiative losses influence the shape

of N(E) mostly through the exponential term in Eq. (3.28). In other words, they

are effective only around the high-energy end of the electron spectrum as it is shown

in [303].

Note that no specific value of the adiabatic index γ is assumed here. It influences

the downstream evolution of relativistic electrons through n̄(ā) which depends on γ

(Sedov [21]).

3.2.3. Radio-emitting electrons downstream of the shock in non-uni-

form ISM and ISMF. The approach of the previous subsection is extended here

to the possibility to deal with non-uniform ISM. At time ti, the electron distribution

on the shock was

N(Ei, ti) = Ks(ti)E
−s
i . (3.31)

Since we are interested in radio emission, we have to account for only energy losses

of electrons due to the adiabatic expansion [303]:

dE

dt
=
E

3ρ

dρ

dt
, (3.32)

where ρ is the mass density, so, the energy varies as

E = EiEad (3.33)

where

Ead(a, t) =
(

ρ(a, t)

ρs(ti)

)1/3

=

(

ρ(a, t)

ρs(t)

)1/3(
ρo(R)

ρo(a)

)1/3

. (3.34)

The conservation law for the number of particles per unit volume per unit energy

interval

N(E, a, t) = N(Ei, a, ti)
a2 da dEi

σr2 dr dE
, (3.35)

together with the continuity equation ρo(a)a
2da = ρ(a, t)r2dr and the derivative

dEi

dE
= E−1

ad , (3.36)

implies that downstream

N(E, a, t) = Ks(a, ti)E
−s
(

ρ(a, t)

ρs(a, ti)

)(2+s)/3

. (3.37)
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Assuming that Ks ∝ ρsV (t)−b,

Ks(a, ti) = Ks(R, t)

(

ρo(a)

ρo(R)

)(

V (t)

V (ti)

)b

. (3.38)

Therefore, the distribution of relativistic electrons follows

K(a, t)

Ks(R, t)
=
N(E, a, t)

N(E,R, t)
=

(

ρo(a)

ρo(R)

)(

V (t)

V (ti)

)b(
ρ(a, t)

ρs(a, ti)

)(2+s)/3

. (3.39)

Now we can substitute Eq. (3.39) with the ratio of the shock velocities [195]

V (ti)

V (t)
=

(

P (a, t)

Ps(t)

)1/2(
ρo(a)

ρo(R)

)(γ−1)/2(
ρ(a, t)

ρs(t)

)−γ/2
. (3.40)

Thus, the downstream variation of K(a, t) is described by the relation

K(a, t)

Ks(R, t)
=

(

P (a, t)

Ps(R, t)

)−b/2

×
(

ρo(a)

ρo(R)

)−b(γ−1)/2−(s−1)/3(
ρ(a, t)

ρs(R, t)

)bγ/2+(s+2)/3

. (3.41)

This formula may easily be used to calculate the profile of K(a) for known P (a)

and ρ(a) in the case of the radial flow of fluid. In the case when mixing is allowed,

the position ~R should correspond to the same part of the shock which was at ~a at

time ti. It is important to note that this formula accounts for variation of injection

efficiency caused by the non-uniformity of ISM.

3.2.4. Shock in non-uniform ISM and ISMF: electrons with radiative

losses. At variance with Sect. 3.2.3, we are interested here in synchrotron X-ray

and γ-ray emitting electrons. In this case, the evolution of the evolution of the energy

distribution of electrons has to account for energy losses of electrons due to both

adiabatic expansion and radiative losses caused by synchrotron and IC processes.

At time ti, the energy of the electron confined in the fluid element with Lagrangian

coordinates ~a ≡ ~R(ti) was Ei = E/EadErad where Ead is given by (3.34), Erad is a

term accounting for the radiative losses of electrons; it is similar to (3.24):

Erad(E, a, t) = 1− I(a, t) E
Ef‖

(3.42)

where I(a, t) is an integral independent of E which is calculated in case of nonuni-

form medium and field with the approach described in Appendix D. The electron
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energy losses in a given fluid element are mainly due to radiative losses if Ef < Emax

and to adiabatic expansion if Ef
>∼Emax.

At time ti, the shock was able to accelerate electrons to Emax(ti). From Eq. (3.18),

we derive that

Emax(ti)

Emax(t)
=

(

V (ti)

V (t)

)q (
Bo(a)

Bo(R)

)λ

≡ F(a, R) . (3.43)

Again, the ratio, V (ti)/V (t), may be expressed through pressure and density; the

conservation law (3.35) together with the continuity equation and the derivative

dEi/dE = 1/EadE2
rad , implies that downstream

N(E, a, t,Θo) = K(a, t,Θo)E
−sEs−2

rad

× exp

[

−
(

E

Emax(t,Θo)F(a, R) EadErad

)α]

, (3.44)

with Emax(t,Θo) is given by Eq. (3.19); K(a, t) = Ks(ti) Es+2
ad , the downstream

variation of K(a, t) is described by (3.41).

Radiative losses of electrons Ė ∝ E2 are mostly effective in modification of the

distributionN(E, a, t) around E ∼ Emax [303]. This may be noted in Eq. (3.44). The

variation of the energy distributionN(E, a, t) of electrons with energyE ≪ Emax (in

this case also E ≪ Ef , leading to Erad → 1), i.e. electrons with negligible radiative

losses, is given by N(E, a, t)/Ns(E,R, t) = K(a, t)/Ks(R, t), where Ns(E,R, t) is

the energy distribution of electrons immediately after the shock. This expression does

not depend on energy E and, in fact, we will use this expression for investigation

of properties of the radio surface brightness distribution of SNR. In contrast, the

modification of the distribution N(E, a, t) due to effective electron radiation is given

by the two last multipliers in Eq. (3.44). The radiative losses of electrons therefore

are important for the surface brightness distribution of SNR in X-ray and γ-rays.
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3.3. Approximation of the radiation power of electrons due to the

inverse-Compton process in the black-body photon field

A common approach to calculate IC emission is to deal with IC emissivity for a

given energy of the initial field photons (e.g. [91,201]) with assumption of a given a

priori shape of the electron spectrum, power law as a common choice. The resulting

IC photon spectrum is then given by the integration over the energy distribution

of the field photons. Such an approach is essential for special cases of the energy

distribution of the field photons.

It is known, however, that the conditions when the IC gamma-ray photons are

produced by relativistic electrons propagating in the isotropic blackbody radiation

field are often met in astrophysical sources. In particular, for SNRs under typical

conditions, one may just consider black-body photons, with a few different temper-

atures representing CMB/IR/optical radiation. Even more, in SNRs not assosiated

with IR emission, the contribution from CMB photons takes over the role of infrared

and optical photons (see discussion in Appendix in [223]). The IR/optical photon

fields may typically contribute 10%-15% of the IC flux in such SNRs [67,162]. Similar

situations are found in other astrophysical environments, too.

On the other hand, the shape of the electron spectrum at energies that are im-

portant for IC gamma-ray emission may differ considerably from a power law, es-

pecially, if one considers the emission of electrons with energy E around maximum

possible values (e.g. contribution from electrons accelerated by the SNR shock to

Emax ∼ 30 − 300 TeV is important for interpreting the HESS observations of shell

SNRs).

We present an approximation for IC emissivity that may be applied to IC emis-

sion originating from the isotropic black-body photon field with temperature T . Our

approximation is given in terms of an energy of incident electrons rather than in the

commonly used terms of the field photon energy. Such an approach gives the possi-

bility of accurately modeling IC emission of electrons with energy spectra different
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from power law, a situation often appearing in astrophysical objects.

Since the temperature of the initial photons T is a parameter in our approach, our

approximation may be used for calculating IC radiation from different photon fields

(CMB, IR, optical). The target radiation field in some circumstances (e.g. around

Galactic center) may not be black-body and/or the contribution from IR/optical

photons may dominate CMB there [191,292]. In cases where the different components

of the target radiation field may be approached by a superposition of multiple Planck

distributions with different T , our approximation may be used in a similar fashion.

The overall IC emission will be the weighted sum of single approximations, each with

a different value for the temperature. In cases where the initial radiation field may

not be approximately described by a sum of black-body distributions, our formulae

do not apply.

Another assumption is the isotropy of the electron and photon fields. A thorough

treatment of anisotropic IC scattering from cosmic-ray electrons is done in [259].

3.3.1. Overview of known formulae. The spectral distribution of the vol-

ume emissivity of (isotropically distributed) electrons due to the IC process is

[91, 201, 326]

P (Eγ) = cEγ

∫

dγN(γ)

∫

dǫnph(ǫ)σKN (Eγ, ǫ; γ) (3.45)

where γ is the Lorenz factor of the electron, N(γ) the spectral distribution of elec-

trons, ǫ and Eγ are the energies of photon before and after interaction, nph(ǫ) is the

(isotropic) initial photon energy distribution,

σKN (Eγ, ǫ; γ) =
3σT
4ǫγ2

G (q, η) (3.46)

is the angle-integrated IC cross-section, σT the Thomson cross-section,

G (q, η) = 2q ln q + (1 + 2q)(1− q) + 2ηq(1− q), (3.47)

and

q =
Eγ

Γ(γmec2 − Eγ)
, Γ =

4ǫγ

mec2
, η =

ǫEγ

(mec2)2
. (3.48)
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Kinematic requirements result in (4γ2)−1 ≤ q ≤ 1 [91]. Setting q to its minimum

and maximum values limits energies of up-scattered photons:

Eγ,min =
γmec

2Γ

4γ2 + Γ
, (3.49)

Eγ,max =
γmec

2Γ

1 + Γ
(3.50)

that simplifies to

Eγ,min = ǫ, Eγ,max = 4γ2ǫ (3.51)

in Thomson limit (Γ ≪ 1) and to

Eγ,min = ǫ (if Γ ≪ 4γ2), Eγ,max = γmec
2 (3.52)

in extreme Klein-Nishina limit (Γ ≫ 1). The condition q ≤ 1 sets the minimum

Lorentz factor

γmin =
Eγ

2mec2

[

1 +

(

1 +
(mec

2)2

ǫEγ

)1/2
]

(3.53)

electron should have in order to scatter photon with energy ǫ to energy Eγ. The

function γmin(Eγ) may approximately be split into two parts

γmin =







E
1/2
γ /

(

2ǫ1/2
)

, for η ≪ 1

Eγ/
(

mec
2
)

, for η ≫ 1
. (3.54)

(The Klein-Nishina decline is negligible for η ≪ 1, Eq. 3.47.) The point where one

could approximately switch from γmin ∝ E
1/2
γ to γmin ∝ Eγ is

Eγ,∗ =

(

mec
2
)2

4ǫ
. (3.55)

3.3.2. Method of approximation. In some astrophysical environments, the

initial photon field may well be represented by the isotropic black-body radiation

nph(ǫ) =
1

π2~3c3
ǫ2

exp (ǫ/ǫc)− 1
(3.56)

with ǫc = kT .

Let us re-write Eq. (3.45) in the form

P (Eγ) =

∫

dγN(γ)p(γ, Eγ) (3.57)
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where the spectral distribution of IC radiation power of a ‘single’ electron with

Lorenz factor γ is

p(γ, Eγ) =
3σTm

2
ec

2ǫc
4π2~3

γ−2I(ηc, ηo) =
2e4ǫc
π~3c2

γ−2I(ηc, ηo) (3.58)

with the function I(ηc(Eγ), ηo(γ, Eγ))

I(ηc, ηo) =
∫

(η/ηc)G(ηo/η, η)

exp (η/ηc)− 1
dη, (3.59)

ηc =
ǫcEγ

(mec2)
2 , ηo ≡ qη =

E2
γ

4γmec2(γmec2 − Eγ)
. (3.60)

Let us introduce

G1 (q) = 2q ln q + (1 + 2q)(1− q), (3.61)

G2 (q, ηo) = 2ηo(1− q). (3.62)

In the limit η → ∞, G1, G2, G asymptotically approach the values

G1,as = 1, G2,as = 2ηo, Gas = 1 + 2ηo. (3.63)

The minimum value of η, namely ηmin = ηo, is given by the condition G(ηo/η, ηo) =

0. Relation ηmin = ηo with definition of η, Eq. (3.48), yield the formula for the

minimum energy of the photon ǫmin, which may be up-scattered to the energy Eγ

by the electron with Lorentz factor γ:

ǫmin =
Eγmec

2

4γ (γmec2 − Eγ)
. (3.64)

In the limit ηo ≪ ηc, which is equivalent to the Thomson limit Γ(ǫc) ≪ 1, the

integral (3.59) may be found analytically

IT(ηc, ηo) = ηc

∞
∫

0

η′dη′

exp(η′)− 1
=
π2ηc
6
. (3.65)

With decreasing η, G falls rather rapidly from Gas to zero. Let G(ηo/η, η) be ap-

proximated by Heavicide step function

G(ηo/η, η) ≈ (1 + 2ηo)H(η − ηo). (3.66)
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The integral I may then be approximately found as I(ηc, ηo) ≈ IH(ηc, ηo):

IH(ηc, ηo) = (1 + 2ηo)

∞
∫

ηo

η/ηc
exp (η/ηc)− 1

dη

= (1 + 2ηo)ηc

(

π2

6
+ Li2(exp(ηo/ηc)) +

(ηo/ηc)
2

2

)

,

(3.67)

where the dilogarithm function

Li2(x) = −
1
∫

x

ln(t)

1− t
dt. (3.68)

An accurate approximation of (3.67) is

IH(ηc, ηo) ≈
π2

6
ηc(1 + 2ηo) exp

(

−2ηo
3ηc

)

. (3.69)

This expression restores I almost exactly for ηo/ηc . 10−2 and ηo/ηc & 1. However,

IH(ηc, ηo) overestimates I(ηc, ηo) up to 2 times for 10−2 . ηo/ηc . 1. This is because

the deviation of G from the Heavicide step function is important in this range.

The original integral I has an important property, because it may be split as

I = I1 + I2 with

I1(ηc, ηo) =
∫

(η/ηc)G1(ηo/η)

exp (η/ηc)− 1
dη = ηc

∫

xG1(xo/x)

exp (x)− 1
dx, (3.70)

I2(ηc, ηo) = ηo

∫

(η/ηc)G2∗(ηo/η)

exp (η/ηc)− 1
dη

= ηcηo

∫

xG2∗(xo/x)

exp (x)− 1
dx,

(3.71)

where xo = ηo/ηc and G2∗ = G2/ηo. As one can see, these integrals may be scaled:

I1(aηc, aηo) = aI1(ηc, ηo), I2(aηc, aηo) = a2I2(ηc, ηo). (3.72)

The possibility of scaling these integrands (integral I may not be universally scaled)

is an important property that allows us to obtain an analytic approximation. It is

also the reason for the approximation accuracy over the wide range of parameters.

Using a = η−1
c in the scale laws (3.72), one has

I1(ηc, ηo) = ηcI1(1, ηo/ηc), I2(ηc, ηo) = η2cI2(1, ηo/ηc). (3.73)
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Figure 3.5. The accuracy of the approximation (3.76) as the sum I1 + I2. Integrals I1(1, x),
I2(1, x) (solid lines) are compared here with their approximations (3.74) and (3.75) (dotted lines).

This means that it is enough to check how accurate approximate expressions will be

in approximation of just I1(1, x) and I2(1, x), and we will know how accurate these

approximations will be for any ηc and ηo.

Let us slightly correct exponential part in each terms of (3.69) by introducing

into the exponents the second terms of the form c1(ηo/ηc)
c2 where c1 and c2 are

constant. These terms make (3.69) more accurate in the representation of I1 and I2.
It is important that the terms are also scaled with (3.72). With these corrections,

we come to approximations

I1 ≈
π2

6
ηc exp

[

−2ηo
3ηc

− 5

4

(

ηo
ηc

)1/2
]

, (3.74)

I2 ≈
π2

3
ηcηo exp

[

−2ηo
3ηc

− 5

7

(

ηo
ηc

)0.7
]

. (3.75)

The values of c1 and c2 are obtained by fitting the exact I1(1, x) and I2(1, x). The

approximations are compared with the exact dependences in Fig. 3.5 which reveals

good accuracy of obtained approximate formulae.

The scaling property is a reason that the sum of approximations (3.74) and (3.75)

I(ηc, ηo) ≈ π2

6
ηc

(

exp

[

−5

4

(

ηo
ηc

)1/2
]

+2ηo exp

[

−5

7

(

ηo
ηc

)0.7
])

exp

[

−2ηo
3ηc

]

(3.76)
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Figure 3.6. Accuracy of approximation (3.77). Integrals I (3.59) (solid lines), I1 and I2 (3.70),
(3.71) (dashed lines), and respective terms of approximation (3.77) (dotted lines) versus ηo for a
number of ηc = 0.01, 1, 100 (from below).

is accurate to represent I in any regime, from Thomson to extreme Klein-Nishina.

Equation (3.76) is good for any ηc. We may suggest two simpler approximations

for different ranges of ηc. If mostly interested in ηc . 100 (e.g. the case of IC

emission of electrons accelerated by the forward shock in SNRs), then one can use

an expression

I(ηc, ηo) ≈
π2

6
ηc (1 + 3ηo) exp

[

−2ηo
3ηc

− 5

4

(

ηo
ηc

)1/2
]

. (3.77)

Figure 3.6 shows that the second term here (the one proportional to 3ηo) overesti-

mates I2 in its power-law part. Nevertheless, this error is negligible for ηc ≤ 100

(Fig. 3.6). If ηc & 10 is of interest, then one may neglect accuracy in exponential

part of approximation of I1 and use the approximation (Fig. 3.7)

I(ηc, ηo) ≈
π2

6
ηc (1 + 2ηo) exp

[

−2ηo
3ηc

− 5

7

(

ηo
ηc

)0.7
]

. (3.78)

Figure 3.8 shows the accuracy of Eq.(3.77) in approximation of emission power (3.58)

for electrons with energies 1012 ÷ 1016 eV.

3.3.3. ’Delta-function’ approximation. Figure 3.8 demonstrates that a ‘sin-

gle’ electron with Lorentz factor γ – being scattered by all black-body photons –

emits most of its IC radiation at photons with some characteristic energy Eγm.
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Figure 3.7. Accuracy of approximation (3.78). Integrals I (3.59) (solid lines), I1 and I2 (3.70),
(3.71) (dashed lines), and respective summands of approximation (3.78) (dotted lines) versus ηo
for a number of ηc = 0.01, 1, 100 (from below).
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Figure 3.8. The spectrum p(Eγ) (3.58) calculated with integral I (solid lines) and with its ap-
proximation (3.77) (dashed lines) for energies of electrons E = 1.5 · (1012, 1013, 1014, 1015, 1016) eV.
Crosses correspond to position of Eγ,max(γ, ǫc). The temperature of the black-body radiation is
T = 2.75K.

One can introduce a ‘delta-function approximation’, in addition to the classical

‘monochromatic approximation’ where the electron is scattered by the photons with

a fixed energy ǫo (e.g. [326]). One can namely assume that a ‘single’ electron (scat-

tered by all black-body photons) emits all of its IC power at photons with Eγm:

p(γ, Eγ) ≈ pm(γ)δ(Eγ − Eγm) (3.79)

where

pm(γ) =

∞
∫

0

p(γ, Eγ)dEγ. (3.80)
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There are well known approximations for the total IC energy loss pm of electron in

the Thomson (see (3.85) below) and extreme Klein-Nishina limits (e.g. Sect. 4.2.3

in [326]).

Our numerical calculations show (Fig. 3.8) that Eγm may be approximated by

Eγm(γ) ≈ Eγ,max(γ, ǫc) (3.81)

where Eγ,max(γ, ǫ) is given by (3.50). In the Thomson limit, this is

Eγm(γ) ≈ 4ǫcγ
2. (3.82)

In the classical ‘monochromatic approximation’ (e.g. [326]), the average 〈Eγ〉 =

(4/3)ǫoγ
2 is used to estimate the energy of ‘monochromatic’ IC photons emitted by

electron.

3.3.4. Thomson limit. The use of (3.65) in (3.58) allows us to write down the

expression for IC emissivity in the Thomson limit ηo ≪ ηc. The spectral distribution

of IC radiation power of a ‘single’ electron with energy E = γmec
2 is

pT(γ, Eγ) =
σTǫ

2
c

8~3c2
Eγ

γ2
=
πe4ǫ2c
3~3c2

Eγ

E2
, Eγ ≤ Eγ,lim (3.83)

where Eγ,lim is the characteristic maximum energy defined below. This expression

represents integration over all possible energies ǫ of the seed black-body photons.

The power pT(γ, Eγ) is the increasing function of Eγ, while p(γ, Eγ) decreases

rather rapidly after the maximum (Fig. 3.8). We define an energy Eγ,lim by the

condition
Eγ,lim
∫

0

pT(γ, Eγ)dEγ = pmT(γ) (3.84)

where

pmT(γ) = (4/3)cσTωγ
2 (3.85)

is the total energy loss of electron due to IC in the Thomson limit, and ω =
∫

ǫnph(ǫ)dǫ is the energy density of all initial photons. The definition (3.84) results

in

Eγ,lim =
4

π
ǫcγ

2





2

3

∞
∫

0

z3dz

exp(z)− 1





1/2

= 2.65ǫcγ
2. (3.86)
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Note that Eγ,lim differs only a little from Eγ,max(ǫc) = 4ǫcγ
2.

The volume emissivity of electrons distributed as

N(γ) = Noγ
−s for γmin < γ < γmax, γmin ≪ γmax (3.87)

is

P (Eγ) =
σTǫ

2
c

8~3c2(s+ 1)
NoEγγ

−(s+1)
min . (3.88)

For Eγ . Eγ,∗, the minimum Lorentz factor is γmin = E
1/2
γ /(2ǫ

1/2
∗ ), Eq. (3.54), and

we approximate the (3.57) in the Thomson limit

P (Eγ) =
2s−2σTǫ

2
cǫ

(s+1)/2
∗

~3c2(s+ 1)
NoE

−(s−1)/2
γ , (3.89)

with the known slope P (Eγ) ∝ E
−(s−1)/2
γ . The value of ǫ∗ may be fixed by comparing

(3.89) with e.g. expression (4.2.17) in [326]; i.e., ǫ∗ = A(s)ǫc with

A(s) =





12

π2
(s2 + 4s+ 11)

(s+ 5)(s+ 3)2

∞
∫

0

z(s+3)/2dz

exp(z)− 1





2/(s+1)

. (3.90)

Numerically, A(1.8) = 0.665, A(2) = 0.710, A(2.2) = 0.755.

3.4. Thermal X-ray composites as sources for hadronic γ-rays

Up to now, there is no clear observational confirmation that hadronic component

of CRs is generated by SNRs. Gamma-rays from proton-proton collisions are mainly

expected from the SNRs which are located near the dense interstellar material and

reveal evidence about interaction with it.

To look for signatures of proton acceleration in SNR, it is interesting to consider

a class of SNRs which is known as thermal X-ray composites (Sect. 2.1). It is inter-

esting that most of these SNRs reveal observational evidence about the interaction

with nearby molecular clouds. Thus, ambient media in the regions of their location

are nonuniform and cause a nonsphericity of SNRs. Model of TXC described in

Sect. 2.1 strongly suggests that the thermal X-ray peak inside the radio shell tells



130

us that one part of SNR shock has entered into a denser medium compared with

other parts. This makes TXCs promising sites for γ-ray generation via πo decays.

Let us consider this possibility in more details.

3.4.1. Estimations on the pion-decay γ-ray luminosity of SNR. Lumi-

nosity of an SNR in πo decay γ-rays in ε ≥ εmin/6 band is [194, 342]:

Lγ =
cσpp
6
nNWcr. (3.91)

where εmin ≈ 600 MeV is the minimal proton kinetic energy of the effective pion

creation, cross section σpp(ε) is close to the mean value σpp = 3 · 10−26 cm2, nN

is the mean number density of target nuclei and Wcr is the total energy of cosmic

rays in the SNR with ε ≥ εmin. There are different estimations of the efficiency ν

of the flow’s kinetic energy transformation into the energy of accelerated particles:

Wcr = νEo. . Thus, in the first approach, the theoretical estimation on the πo decay

γ-luminosity of any SNR is

L≥100
γ = 6.3 · 1033noν3E51 erg/s,

where ν3 = ν/0.03, E51 is the energy of supernova explosion in the units of 1051 erg,

no = noN/1.4 is the average hydrogen number density within SNR which equals to

average hydrogen number density of the ambient medium in the region of an SNR

location, in cm−3.

The real situation is more complicated. Often only a part of SNR (with volume

Vint) interacts with a denser ISM material. There are factors which increase CR

energy density ωcr [194]: 1) The CRs are not uniformly distributed inside an SNR;

most of CRs are expected to be in a thin shell near the shock front where most of

swept-up mass is concentrated. 2) The reverse shock from interaction with dense

cloud also increases the energy density of CRs. These factors enhance ωcr in the

region of interaction as we have shown in [194]:

ωcr ≈ 1.7

(

γ

γ − 1

)3/2

ωcr , (3.92)

where CR energy density in the region of interaction is ωcr = Wcr/Vint and ωcr =

Wcr/Vsnr. This gives ωcr ≈ 6.6 ωcr for γ = 5/3.
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If we put Wcr = ωcrVint into (3.91), we obtain with (3.92) that for any SNR

L≥100
γ = 1.7 · 1035ηnoν3E51 erg/s (3.93)

where η = Vint/Vsnr, no is the number density of the ambient medium before the

shock wave in the region of interaction, γ = 5/3. We have to take into account that

region of interaction is not extended to the region before the shock, since the energy

density of CR should be considerably lower outside the SNR [1, 161, 194]. It is easy

to estimate η following our consideration in [194]:

η = 0.18µ2
√

ξ, µ ≤ 0.2, (3.94)

where ξ = no/no, µ = Rint/R ,Rint is the average radius of the surface of interaction,

R is the average radius of SNR.

Thus, considering the hydrodynamic process of SNR-cloud interaction in details,

it is possible to increase the expected πo decay γ-ray flux by 26ηξ ≃ 0.2ξ3/2 times,

i. e., up to few orders of magnitude.

3.4.2. Hadronic origin of γ-rays from MSH 11-61A. SNR G290.1-0.8

(MSH 11-61A) is located in the southern hemisphere. The distance to the remnant,

7 kpc, is obtained from the optical observations [320], but not yet confirmed by X-ray

observations [337]. X-ray and radio morphologies [330,368] make the SNR a member

of TXC class. In the direction to MSH 11-61A lies the γ-ray source 2EG 1103-6106

(3EG J1102-6103) [319, 343]. Is it possible to consider observed flux of the source

directed toward the MSH 11-61A as πo decay γ-ray emission?

The γ-flux from the source 3EG J1102-6103 in the EGRET band εγ = 30 ÷ 2 ·
104 MeV is approximated as [248]

Sγ = (1.1± 0.2) · 10−9
( εγ
213 MeV

)−2.3±0.2 photon

cm2 · s ·MeV
.

Thus, the luminosity of the source in εγ ≥ 100 MeV band is respectively

L≥100
γ,obs = 4 · 1034 d2kpc erg/s.

The parameters of MSH 11-61A [337] are presented in Table 3.1 (different for

different distance assumed). There are also values of ξ in the table which allow to



132

Table 3.1
Parameters of MSH 11-61A [337], luminosity L≥100

γ,obs of 2EG 1103-6106 and estimations on the
proton origin γ-luminosity of the SNR. Presented values of ξ allow us to satisfy condition

Lγ,obs = Lγ.

d, Age t, R, E51, no, L≥100
γ,obs, L≥100

γ /ξ3/2, ξ,

kpc 104 yrs pc 1051 erg cm−3 1036 erg/s 1032 erg/s 102

10 1.3 18 1 0.27 4 3.2 5

7 0.9 13 0.4 0.27 2 1.3 6

adjust the expected luminosity of MSH 11-61A in πo decay γ-rays with observed

flux from the source 3EG J1102-6103. We see that moderate number density ∼
150 cm−3 of cloud located near the one region of the remnant is enough to explain

the luminosity of 3EG J1102-6103, by protons accelerated on the shock front of

MSH 11-61A. Note, if we take ν ≃ 0.1 − 0.2 [47] instead of the value used here,

ν = 0.03, the density of cloud needs to be only ∼ 20÷ 40 cm−3.

The same consideration allows us to adjust also the γ-luminosity of the source

3EG J0617+2238 toward IC 443 with the luminosity of this SNR [194].

3.5. Conclusions

Some properties of relativistic charged particles which are accelerated by forward

shocks in SNRs are investigated. In particular, electron injection, evolution of ac-

celerated electrons downstream of the shock as well as its γ-ray emission due to

inverse-Compton process and pp-interactions are considered.

1. Within a test-particle approach, an analytic treatment of the electron injection

at parallel nonrelativistic shock is presented. The probability of a particle to be

injected is estimated as that of going back to the upstream region at least once. This

is the product of the probability of returning to the shock from downstream times

that of recrossing the shock from downstream to upstream. The latter probability is

expected to be sensitive to details of the process of electron thermalisation within the

(collisionless) shock, a process that is poorly known. In order to include this effect,
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results of a numerical study [96] are used. It becomes apparent that the injection

efficiency is related to the post-shock electron temperature, and that it results from

the balance between two competing effects: the higher the electron temperature, the

higher the fraction of downstream electrons with enough velocity to return to the

shock and thus to be ready to cross the shock from downstream to upstream; at the

same time, however, the higher the turbulence, which would hinder the crossing.

2. Downstream evolution of the energy spectrum of relativistic electrons acceler-

ated on the strong nonrelativistic shock is considered. It includes energy-dependent

adiabatic and radiative losses due to synchrotron and IC emission. The description

developed includes for the first time the possibility to account for the shock motion

in the nonuniform ISM and/or nonuniform ISMF. It allows for a detailed modeling

of the non-thermal leptonic emission of SNRs in radio, X-ray and gamma-ray bands.

3. An approximation is presented for the inverse-Compton radiation power of

electrons in the isotropic black-body photon field. This approximation allows calcu-

lation of IC emissivity as an integral over the energies of incident electrons rather

than over the field photon energies. Such an approach allows for accurate modeling

of IC emission of electrons with energy spectra different from power law, in tasks

where essential CPU resources are needed, e.g. in modeling the SNR emission. The

main idea behind our approach is the possibility of splitting the initial integral into

two parts that may be scaled, contrary to the original integral. This scaling is the

reason for the high accuracy of the approximation over the wide range of parameters,

from the Thomson to extreme Klein-Nishina regime. This approach also results in

some new analytic expressions representing the known results in the Thomson limit.

4. A new model for the thermal X-ray composites strongly suggest that thermal

X-ray peak inside the radio shell of SNR tells us that one part of SNR shock enters

into a denser medium compared with other parts of the shell. This makes a TXCs

promising sites for γ-ray generation via πo-decays. Detailed consideration of SNR-

cloud interaction allows one to increase an expected proton induced γ-ray flux from

SNR at least on an order of magnitude, that is enough to adjust the theoretical

πo-decay γ-luminosities with observed fluxes in SNR MSH 11-61A and IC 443.
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CHAPTER 4

SURFACE BRIGHTNESS DISTRIBUTION IN THE SHELL-TYPE

SNRS

The current generation of large X-ray observatories (NASA’s Chandra and ESA’s

XMM-Newton) together with improvements made in the field of gamma-ray exper-

iments (HESS, Fermi etc.) allow us to investigate properties of SNRs which were

unknown earlier. It has become clear that simple idealized models have been pushed

to their limit; a comprehensive understanding requires the inclusion of physical ef-

fects which have been traditionally neglected (like, for instance: the dependence of

the acceleration processes on the shock dynamics, as well as on the angle between

the ambient magnetic field and the shock normal; deviations from e-p thermal equi-

libration). In addition, it is now a common belief that SNR models cannot ignore

details like the configuration of the magnetized SNR environment, or the presence

of molecular clouds (important for generation of the proton-origin gamma-rays), or

any other small and/or large-scale gradients.

Current studies cover however only few directions of that complex picture. Namely,

very important observational results are explored only partially: scientists make use

almost exclusively the spectral characteristics of the sources. Spectral analysis gives

valuable constraints on the parameter space. Nevertheless, the γ-ray part of the

broad-band spectra of nonthermal emission from SNRs may be explained either as

leptonic or as hadronic in origin. The analysis of the spatial distribution of nonther-

mal emission - one of the main goals of the present thesis - is an additional important

channel of the experimental information which remains almost unexplored yet.

The present chapter is devoted to theoretical modeling of the nonthermal maps of

adiabatic SNRs. We present models and synthesize the radio, synchrotron X-ray and

IC γ-ray images of SNRs in uniform media in Sect. 4.1. Analytical approximations
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which reveal the main factors affecting the azimuthal and radial profiles of surface

brightness of Sedov SNRs due to emission of relativistic electrons are obtained in

Sect. 4.2. The role of ISM/ISMF nonuniformity in radio, X-ray and gamma-ray maps

of SNRs is explored in Sects. 4.3 and 4.4.

In order to clearly see the role of different factors (in particular, nonuniformities

of ISM or ISMF) in determining the morphology of SNRs, we use some simplifying

assumptions about electron kinetic and behavior of magnetic field in vicinity of the

shock front. Our our studies of SNR maps assume classic MHD and test-particle

theory of acceleration. Though they neglect effects of the back-reaction of the effi-

ciently accelerated particles, they nevertheless are able to explain general properties

of the distribution of the surface brightness in radio, X-rays and γ-rays. This is

because the classic theory, in contrast to the non-linear one, is able to deal with

oblique shocks, that is vital for synthesis of SNR images. Effects of non-linear ac-

celeration on the radial profiles of brightness are considered in [104, 143, 224, 376].

In particular, the radial profiles of hard X-ray brightness were used for estimates of

the post-shock magnetic field in some SNRs (e.g. [78]) and the radial structure of

the X-ray emission from the shock precursor in SN 1006 was used to find evidence

about efficient particle acceleration [258].

Approximations developed in Sect. 4.2 are able to account for non-linear effects.

Future studies on SNR morphology should consider these effects in more details.

Beside that, it is important to know the properties of the ‘classic’ images because

they create the reference base for investigation of the efficiency of NLA effects in

the surface brightness distribution of SNRs.

Results presented in this chapter are published in [264,265,271,274,276,278,281,

282, 285].
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4.1. Radio, X-ray and gamma-ray maps of SNRs in uniform ISM

and ISMF

There are some discussions emphasyzing that observed correlations of brightness

in radio, X-rays and γ-rays may be considered to favor electrons to be responsible

for TeV emission in RX J1713.7-3946, Vela Jr. and some other SNRs (e.g. [45,

287]). However, should the patterns of surface brightness in radio, X-rays and γ-rays

realy correlate if the TeV γ-radiation originates from electrons? What should be the

limitations for theory once observed patterns are really quite similar, especially in

symmetrical bilateral SNRs, like in SN 1006 [28]?

An experimental investigation of SNR images have to be complemented with

theoretical modelling of SNR maps in different energy domains. A detailed approach

to modeling the synchrotron images of adiabatic SNRs in uniform ISMF and uniform

ISM is developed by Reynolds [303]. He uses modeled synchrotron maps of SNRs

to put constraints on some properties of accelerated particles [157, 303, 305]. We

extend the approach of Reynolds [303] to investigate properties of the patterns of

brightness distribution in SNR, factors which mostly affect them and to compare

maps in different bands.

4.1.1. Synthesis of maps: model. Let us consider adiabatic SNR in uniform

ISM and uniform ISMF. We use the Sedov solutions for dynamics of fluid [21] as well

as description of the MF behavior downstream of the shock from Reynolds [303]. The

use of analytical solutions allows us to reduce the computational time considerably.

We improve the approach from [303] to calculation of the evolution of the distribution

function N(E) of relativistic electrons downstream of the shock in Sect. 3.2.2.

The ISMF orientation versus observer is described by the aspect angle φo, an angle

between ISMF and the line of sight. The obliquity angle Θo is the angle between

ISMF and the normal ~n to the shock. The azimuth angle ϕ (in the projection plane)

is measured from the direction of the component of ISMF in the plane of the sky

(Fig. 4.1). The compression factor for ISMF σB increases from unity at parallel shock
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Figure 4.1. Geometry of the task. The obliquity angle Θo, the aspect angle φo and the azimuth
angle ϕ are shown. For clarity, ISMF Bo is chosen to be parallel to the X0Z plane.

to σ at perpendicular one, in an agreement with [303].

An important point is the degree of ordering of magnetic field downstream of the

shock. Radio polarization observation of a number of SNRs (e.g. Tycho [126], SN1006

[311]) show the low degree of polarization, 10-15% (in case of ordered magnetic

field the value expected is about 70%; [157]), indicating highly disordered magnetic

field. Thus we calculated the synchrotron images of SNR for two opposite cases.

First, since our hydrodynamic code gives us the three components of magnetic field,

we are able to calculate images with ordered magnetic field. Second, we introduce

the procedure of the magnetic field disordering (with randomly oriented magnetic

field vector with the same magnitude in each point) and then synthesize the radio

maps. In models which have a disordered magnetic field, we use the post-shock

magnetic field before disordering to calculate the angle Θs; as discussed by [157],

this corresponds to assume that the disordering process takes place over a longer

time-scale than the electron injection, occurring in the close proximity of the shock.

Since we found that the asymmetries induced by gradients either of ambient plasma

density or of ambient magnetic field strength are not significantly affected by the
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degree of ordering of the magnetic field downstream of the shock, in the following

we will focus on the models with disordered magnetic field.

It is common to consider three models for injection: quasi-parallel, isotropic and

quasi-perpendicular. The pattern of the radio surface brightness distribution in the

case of the quasi-perpendicular injection is quite similar to the isotropic injection

case, though with different contrasts ( [157] and Sect. 4.3). The numerical calcu-

lations of [137] show that the obliquity dependence of the injection efficiency ς (a

fraction of accelereted electrons) may be either flatter or steeper than in the clas-

sic quasi-parallel case (ς ∝ cos2Θo). Therefore, in order to be more general than

Reynolds [303], in the Sects. 4.1.2 and 4.1.3, we allow also the injection efficiency to

vary with obliquity angle with different ‘sensitivity’ which is given by the parameter

ΘK:

ς(Θo) = ς‖ exp
(

−(Θo/ΘK)
2
)

(4.1)

where ς‖ is the efficiency for the parallel shock. This expression restores approxi-

mately the results of Ellison et al. [137] with ΘK = π/9 ÷ π/4. The classic quasi-

parallel injection may be approximated with ΘK = π/6. Isotropical injection as-

sumes ΘK = ∞, but the values ΘK ≥ 2π produces almost the same images as

ΘK = ∞ because the range for obliquity angle is 0 ≤ Θo ≤ π/2. The variation of

the parameter ΘK provide smooth transition from polar-cap (ΘK ≤ π/6) to barrel-

like (ΘK ≥ π) models of SNR. We consider also quasi-perpendicular injection:

ς(Θo) = ς‖ exp
(

−((Θo − π/2)/ΘK)
2
)

. (4.2)

The surface brightness is calculated integrating emissivities along the line of sight

within SNR, assuming the source is optically thin. The emissivity of electrons is given

by

q(ε) =

∫ ∞

0

N(E)p(E, ε)dE (4.3)

where ε is the photon energy and p is the spectral distribution of synchrotron or

inverse-Compton radiation power of electrons.

In the case of synchrotron emissivity, the spectral distribution of radiation power
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of a single electron with energy E in the magnetic field ~B is

p(E, ε) =

√
3e3µφB

mec2
F

(

ε

εc

)

, (4.4)

where εc = hνc = hc1µφBE
2, h is the Plank constant, νc is the critical frequency,

φ the angle between the magnetic field and the LoS, µφ is either µφ = sinφ for the

case of ordered magnetic field or µφ = 〈sinφ〉 = π/4 for disordered magnetic field,

c1 = 3e/(4πm3
ec

5), e andme are the charge and mass of electron, respectively, c is the

speed of light. The special function F (w) can be approximated as (e.g. [325, 365]):

F (w) =



















2.15w1/3 w < 0.01 ,
√
π w0.29 exp(−w) 0.01 ≤ w ≤ 5 ,

√

π/2w1/2 exp(−w) w > 5 .

(4.5)

We found the above approximation quite accurate with discrepancies <∼ 4% from the

exact value; in particular,
∫∞
0 Fdε = 1.59 while the exact value is 8π/9

√
3 = 1.61.

We synthesize the radio emission, assuming that it is only due to synchrotron

radiation from relativistic electrons distributed with a power law spectrum N(E) =

KE−s. The radio emissivity can be expressed as [168]

q(ν) = C1K(µφB)α+1ν −α, (4.6)

where C1 is a constant, ν is the frequency of the radiation, α = (s − 1)/2 is the

synchrotron spectral index (assumed to be uniform everywhere as consequence of

the fact that adiabatic losses are independent of E, therefore, the electron spectrum

has the same power-law shape downstream of the shock).

In the case of γ-ray emissivity due to IC process, the spectral distribution of

radiation power of a single electron in a black-body photon field in Eq. 4.3) is

(e.g. [326])

p(E, ε) =
2e4ǫc
π~3c2

Γ−2Iic(ηc, η0) , (4.7)

where Γ is the Lorenz factor of electron, ǫc = kTCMBR, TCMBR is the temperature of

CMB (assumed to be TCMBR = 2.75 K), and the special function Iic(ηc, η0) can be

accurately approximated by our Eq. (3.76).
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Figure 4.2. Radio images of SNR for an aspect angle φo = 90o and different ΘK: π/12 (a), π/6
(b), π/4 (c), π/2 (d), π (e), 2π (f). Ambient magnetic field is oriented along the horizontal axis.
Hereafter, the increment in brightness is ∆S = 0.1Smax.

4.1.2. Synchrotron radio images. In the present subsection, we assume

that K is constant in time; eventual evolution of K affects the radial thickness

of rims and does not modify the main features of the surface brightness pattern

(Sect. 4.1.4).

Fig. 4.2 shows how ΘK affects a radio image of SNR. We note that smooth increase

of ΘK results in transition from the 3-D polar-cap model of SNR to the 3-D barrel-

like one. This is also visible on Fig. 4.3 where ISMF is directed toward observer.

Namely, increase of ΘK change the visual morphology from centrally-bright to shell-

like.

There are three names for a class of SNRs which have two opposite bright limbs

in the literature: ‘barrel-shaped’ [212], ‘bipolar’ [157] and ‘bilateral’ [159]. They were

introduced on the base of 2-D visual morphology. It is interesting that the first two

names reflects de facto the two different conceptions of SNRs in 3-D: either “barrel”

or with two “caps”.

Fig. 4.2 also shows that an assumption about orientation of ISMF leads to limi-
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Figure 4.3. Profiles of the radio surface brightness for an aspect angle φo = 0o (the radial profile
of brightness is the same for any azimuth). ΘK is π/12 (line 1), π/6 (line 2), π/4 (line 3), π/2 (line
4), π (line 5), 2π (line 6).

tation of possible injection model. Ambient magnetic field in all images on Fig. 4.2

is along horizontal axis. Thus, if one consider the polar-cap scenario for bilateral

SNR (ISMF is along axis which crosses two limbs) then one should consider the

quasi-parallel injection model which strongly depends on the obliquity (ΘK ≤ π/6,

Fig. 4.2a,b). Instead, if the barrel is the preferable model (ISMF is parallel to the

symmetry axis between two limbs) then the injection efficiency should be almost

independent of obliquity (Θo ≥ π, Fig. 4.2e,f), or prefer quasiperpendicular shocks.

The angle ψ between the symmetry axis in 17 ‘clearly’ bilateral SNRs and the

Galactic plane was measured in [159]. Axes are more or less aligned with the Galactic

plane in 12 SNRs (ψ < 30o), 2 SNRs have ψ ≈ 45o and 3 SNRs is almost perpen-

dicular (ψ > 60o). If we assume that ISMF is parallel to the plane of Galaxy then

most of bilateral SNRs should be 3-D barrels preffering thus isotropic (or quasiper-

pendicular) injection.

An interesting feature appears on images for ΘK = π/4 ÷ π/2 (Fig. 4.2c,d).

Namely, SNR has ‘quadrilateral’ morphology. With increasing of obliquity, the injec-

tion efficiency decreases while the compression factor of ISMF icreases. The variation

of injection ς(Θo) dominates σB(Θo) for ΘK ≤ π/6. If ΘK ≥ π (injection is almost

isotropic) then σB(Θo) plays the main role in azimuthal variation of the radio surface

brightness. In the intermediate range of ΘK, the significance of the two variations

are comparable leading therefore to azimuthal migration of the brightness maxima



142

-1.0

-0.5

0.0

0.5

1.0

r/
R

-1.0 -0.5 0.0 0.5 1.0
r/R

-1.0

-0.5

0.0

0.5

1.0

r/
R

-1.0 -0.5 0.0 0.5 1.0
r/R

-1.0 -0.5 0.0 0.5 1.0
r/R

-1.0 -0.5 0.0 0.5 1.0
r/R

a b c d

e f g h

φο=0 φο=30 φο=60 φο=90

φο=0 φο=30 φο=60 φο=90

Θ_Κ=π/12 Θ_Κ=π/12 Θ_Κ=π/12 Θ_Κ=π/12

Θ_Κ=2π Θ_Κ=2π Θ_Κ=2π Θ_Κ=2π

Figure 4.4. Radio images of SNR for different aspect angles φo: 0
o (a,e), 30o (b,f), 60o (c,g), 90o

(d,h). ΘK = π/12 (upper panel), ΘK = 2π (lower panel). Component of the ambient magnetic
field which is perpendicular to the line of sight, is oriented along the horizontal axis.

in the modelled images. There is no ‘quadrilateral’ SNR reported in the literature. If

there is no such SNR at all, the range ΘK ≃ π/4÷ π/2 may be excluded. However,

we stress that a complete statistical study of the morphology of radio SNRs would

be needed to definitly asses the lack of quadrilateral SNRs1.

The visual morphology of SNR is different for different aspect angles. Fig. 4.4

shows SNR images for quasi-parallel injection with ΘK = π/12 (upper panel) and

for isotropic injection (ΘK = 2π, lower panel). We may expect that ISMF may have

different orientation versus observer in various SNRs. If quasi-parallel injection is

not a rare exception then the polar-cap SNRs should be projected in a different way

and we may expect to observe not only ‘bipolar’ SNRs (Fig. 4.4c,d) but also SNRs

with one or two radio eyes within thermal X-ray rim (Fig. 4.4a,b). Authors [157]

developed statistically this thought and showed that the quasi-parallel injection

model would be unlikely, but again, we would need a complete study to verify this

statement2. Statistical arguments of [157] may be affected by the fact that centrally-

bright radio SNRs (lines 1-2 on Fig. 4.3) are expected to be fainter than bilateral or

circular SNRs with the same characteristics (lines 4-6 on Fig. 4.3): it could be that

1G338.3-0.0 could be an example of quadrilateral SNR
2G311.5-0.3 and G337.2-0.7 could be examples of SNRs with two radio ’eyes’
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most of the centrally-peaked SNRs may not be observable.

4.1.3. IC γ-ray images. The fiducial energy at parallel shock Ef‖, which is

responsible for the ‘sensitivity’ of relativistic electrons to the radiative losses [303]

and which is used in IC images is set to Emax. Also we assume here thatK is constant

in time. Electrons emitting IC photons have energies E ∼ Emax. Like K, Emax is

assumed to be constant in time. Its possible variation in time does not change the

pattern of IC brightness and leads to effects similar to those originating from the

time dependence of K. Namely, features in IC images have to be radially thicker

if Emax decreases with time (i.e. increases with the shock velocity): since Emax was

larger at previous times, there are more electrons in the SNR interior able to emit

IC photons at the present time. If Emax increases with time (i.e. decreases with the

shock velocity) then maxima in brightness are expected to be radially thinner.

In the most cases presented in this subsection,Emax is assumed to be constant over

SNR surface; this choice allows us to clearly see the role of other parameters. [303]

considered loss-limited, time-limited and escape-limited models forEmax. In all cases,

except of the loss-limited one with the level of turbulence comparable with the Bohm

limit, Emax should grow with increase of Θo [303]. Later on (Fig. 4.9), we model the

role of possible increase of Emax with obliquity with a simple parameterization

Emax(Θo) = Emax‖ exp
(

−((Θo − π/2)/ΘE)
2
)

(4.8)

where ΘE is a parameter, Emax‖ the maximum energy at parallel shock. This formula,

with different values of ΘE, is able to restore approximately different cases considered

by [303].

All IC images (except of that on Fig. 4.10) are calculated for the initial photon

field with T = 2.75 K and for the γ-ray photon energy ε = 0.1εmax(Emax) that is

for example ε = 0.3TeV for Emax = 30TeV.

Synthesized IC γ-ray images of SNRs are presented on Fig. 4.5, for different aspect

angles. These images assume almost isotropic injection (ΘK = 2π) and should be

compared with radio maps on the lower panel of Fig. 4.4. The component of ISMF

which is perpendicular to the line of sight is along horizontal axis on all images.
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Figure 4.5. IC γ-ray images of SNR. Isotropic injection, Emax is constant over SNR surface.
Aspect angles φo: 0

o (a), 30o (b), 60o (c), 90o (d). Component of the ambient magnetic field which
is perpendicular to the line of sight, is oriented along the horizontal axis.

An important difference is prominent from these two figures. Namely, the two lobes

develop with increasing of φo in both radio and γ-rays. However, their location in

respect to ISMF is opposite. The line conecting two maxima in radio is perpendicular

to ISMF while it is parallel to ISMF on IC images (cf. Fig 4.5d and Fig 4.4h).

The reason of this effect is the following. For assumed isotropic injection, the az-

imuthal variation of the radio brightness is determined only by the dependence σB on

obliquity (the azimuth angle equals to the obliquity angle for φo = π/2). Electrons

emitting TeV γ-rays have energies E ∼ Emax and experience substantial radiative

losses (this effect is negligible for radio emitting electrons). Magnetic field does not

appear directly in the formulae for IC emission, but it affects the downstream distri-

bution of relativistic electrons emitting IC γ-rays. The larger post-shock magnetic

field the larger radiative losses. The downstream distribution of IC-emitting elec-

trons is therefore steeper where magnetic field is stronger. This leads to lower IC

brightness in SNR regions with larger magnetic field (while radio brightness increases

there because of proportionality to B3/2).

In TeV γ-ray image of SN 1006 [28], the two maxima coincide in location with

limbs in radio and nonthermal X-rays. This fact, in view of the ‘limb-inverse’ prop-

erty, could be considered as argument against the leptonic origin of γ-ray emission

in SN 1006 (if injection is isotropic). However, these IC images are obtained under

assumption that Emax does not vary over SNR surface. If Emax is high enough at

regions with large magnetic field (at perpendicular shock), then the ‘limb-inverse’

effect may be less prominent or even might not be important (see below).
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Figure 4.6. IC γ-ray images of SNR. Quasi-parallel injection (4.1) with ΘK = π/4, Emax(Θo) =
const. Aspect angles φo: 0

o (a), 90o (b). In the latter, ISMF is along the horizontal axis.
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Figure 4.7. Profiles of the IC surface brightness along X-axis for the aspect angle φo = 0o

(the radial profile of brightness is the same for any azimuth; to be compared with Fig. 4.3) and
φo = 90o (ISMF is along the horizontal axis). Dependence of injection is given by (4.1) with ΘK

(from below): π/12, π/6, π/4, π/2, π, 2π, ∞. Emax is constant over SNR surface.

In case if injection strongly prefers parallel shocks (limbs in SN 1006 are polar

caps), the dependence ς(Θo) might dominate σB(Θo). The maxima of brightness in

radio and IC γ-rays are therefore located at the same regions of SNR projection

(Fig. 4.6, to be compared with Fig. 4.4a,d), in agreement with the Chandra and

HESS observations of SN 1006.

The role of intermediate values ΘK for injection which prefers parallel shock,

Eq. (4.1), on profiles of IC brightness is shown on Fig. 4.7. Increase of the sencitivity

of injection to the obliquity leads to radially thinner and more contrast features.

If injection prefers perpendicular shock, Eq. (4.2), its increase in the regions of

larger magnetic field may compensate the lack of γ-ray emitting electrons. In that

case, the position of limbs coincide in radio and IC γ-rays if the dependence ς(Θo)

is strong enough (Fig. 4.8b,d). In the range of intermediate ΘK, the quadrilateral
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Figure 4.8. Radio (a,b) and IC γ-ray images (c,d) of SNR for φo = 90o. Quasi-perpendicular
injection (4.2) with ΘK = π/2 (a,c) and ΘK = π/6 (b,d) (to be compared with Fig. 4.4d and
Fig. 4.5d). Emax is constant over SNR surface.

morphology appears also in models of IC γ-rays (Fig. 4.8c), as an intermediate

morphology between those on Fig. 4.5d and Fig. 4.8d. (The contrast of maxima in

the image of quadrilateral SNR is so small that this feature may probably not be

observable.)

Note that the quasi-perpendicular injection model leads to radio images similar to

those in the isotropic injection case, cf. Fig. 4.8a,b and Fig. 4.2f (see also [264]), be-

cause magnetic field and injection efficiency increase at perpendicular shocks both

leading to larger synchrotron emission. In contrast, there is a lack of IC radiat-

ing electrons around perpendicular shocks which may or may not (depending on

ΘK in (4.2)) be compensated by injection. Thus IC images involving the quasi-

perpendicular injection may radically differ from those with isotropic injection, cf.

Fig. 4.8d and Fig. 4.5d.

The obliquity variation of the electron maximum energy is an additional factor

affecting the IC γ-ray brightness in SNRs. Actually, [321] have shown that the cut-off

frequency increases at radio limbs of SN 1006 that may (partially) be due to larger
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Figure 4.9. IC γ-ray images of SNR for φo = 90o and Emax increasing with obliquity, with
ΘE = π/2 (a,c) and ΘE = π/4 (b,d). Isotropic injection (a,b), to be compared with Fig. 4.5d;
quasi-parallel injection with ΘK = π/4 (c,d), to be compared with Fig. 4.6b.

Emax there. Therefore Emax is expected to be largest in this SNR at the perpendicular

shock (at equatorial belt) if injection is isotropic or quasi-perpendicular or at the

parallel shock (at polar caps) if injection is quasi-parallel. In the latter case, the

calculations of [303] suggest that the only possible model for Emax in SN 1006 should

be loss-limited one in the Bohm limit.

The role of Emax increasing with obliquity, Eq. (4.8), is shown on Fig. 4.9. The

‘limb-inverse’ property may not be important and the limbs may coincide in radio,

X-rays and IC γ-rays even for the isotropic injection if the maximum energy is

large enough at perpendicular shocks to provide energetical electrons in despite of

radiative losses (Fig. 4.9b, cf. with Fig. 4.4h and Fig. 4.5d). Note also that the limbs

are thicker in this case, because of the more effective radiative losses at perpendicular

shock (due to larger ISMF compression), comparing to limbs if they are at parallel

shock.

The dependence of Emax on Θo may also cause splitting and rotation of IC limbs

in case of the quasi-parallel injection (Fig. 4.9d, cf. with Fig. 4.6b) or the quasi-
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Figure 4.10. The same as Fig. 4.5d, for 10 times larger photon energy, ε = εmax(Emax).

perpendicular one. There is a possibility for quadrilateral SNRs to appear in γ-rays

due to the interplay between dependences Emax(Θo), ς(Θo) and σB(Θo) (Fig. 4.9a,d).

All above IC images are calculated for the photon energy ε = 0.1εmax(Emax). The

pattern of the γ-ray surface brightness remain almost the same with increasing of the

photon energy, though regions of maximum brightness become radially thinner and

also contrasts change (Fig. 4.10). This is because electrons which contribute most

of emission at larger photon energy experience higher radiative losses and therefore

the downstream distribution of these electrons are steeper.

4.1.4. Synchrotron X-ray images. Now, in order to reduce the parameter

space, we consider the only classical quasi-parellel, quasi-perpendicular and isotropic

injection [303].

Azimuthal distribution. The pattern of synchrotron X-ray brightness of SNR

is in general similar to radio one. In most cases, the bright X-ray limbs or other

features are located in the same azimuth as in the radio images. The only differences

appear due to radiative losses which modify downstream distribution of the electrons

emitting in X-rays (thus the features of brightness are radially thinner) and due to

variation of Emax over the SNR surface. In the radio (see figures in Sect 4.1.2) as also

in the X-ray band, the remnant shows two symmetric bright lobes (for φo = 90o) in

all the injection models with the maxima in surface brightness coincident in the two

bands. The maxima are located at perpendicular shocks in the quasi-perpendicular

and isotropic models (i.e. where B is higher), and at parallel shocks in the quasi-
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Figure 4.11. Maps of synchrotron X-ray surface brightness synthesized for different aspect angles
(labeled in the upper left corner of each panel). The figure shows the quasi-perpendicular (top),
and quasi-parallel (bottom) particle injection models. The model of Emax is time-limited with
η = 1. Calculations are done for Emax‖ = 26TeV, Bo = 30µG, s = 2, α = 0.5, b = −3/2. The
ambient magnetic field is along the horizontal axis.

parallel model (i.e. where emitting electrons are only presented). The lobes are much

radially thinner in X-rays than in radio because of the large radiative losses at the

highest energies that make the X-ray emission dominated by radii closest to the

shock.

The X-ray morphology of SNR is different for different aspect angles (Fig. 4.11,

cf. with radio and γ-ray images in Sects. 4.1.2 and 4.1.3). In the case of quasi-

perpendicular injection, the morphology is bilateral (two lobes) for large aspect

angles (φo > 600, i.e. the component of ISMF in the plane of the sky is larger than

that along the line of sight) and almost ring-like for low aspect angles (φo < 300;

see Fig. 4.11) with intermediate morphology between 300 and 600. In the case of

quasi-parallel injection, the remnant morphology in the radio band is known to be

bilateral for large aspect angles and characterized by one or two eyes for low aspect

angles [157]. On the other hand, it is worth noting that the remnant morphology

in X-rays is in general bilateral for aspect angles φ > 300 and centrally bright
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Figure 4.12. Maps of synchrotron X-ray surface brightness. The model of Emax is loss-limited with
η = 1 (left) and η = 50 (right), to be compared with bottom left map on Fig. 4.11. Quasi-parallel
injection, φo = 90o, α = 1, other parameters are the same as on Fig. 4.11.

for very low angles, indeed a rather limited set of possible cases (lower panels in

Fig. 4.11). This happens because the non-thermal X-ray emission originates from

a very thin shell behind the shock making the effect of limb brightening in X-rays

more important than in the radio band. In addition, we note that centrally bright

X-ray (and radio) SNRs are expected to be much fainter than bilateral SNRs (see

lower panels in Fig. 4.11) and consequently much more difficult to be observed. The

above considerations may affect the statistical arguments generally invoked against

the quasi-parallel injection (i.e. the fact that this model produces morphology which

is not observed; e.g. [157, 264]).

Images on Fig. 4.11 are calculated for the time-limited model of Emax with η =

1, so Emax is quite similar for different obliquities, namely Emax⊥/Emax‖ = 1.3.

Larger η > 1 always provide Emax⊥/Emax‖ > 1 thus the character of azimuthal

variation of brightness would be similar. It would be more interesting to see the

role of obliquity variation of the maximum energy in case of the loss-limited model.

Fig. 4.12 shows two SNR maps for this case, for η = 1 (Emax⊥/Emax‖ = 0.49) and

η = 50 (Emax⊥/Emax‖ = 17). Left one demonstrates decrease of the azimuthal width

of the limb (emitting electrons dissapears quickly toward perpendicular shock). The

increase of η influences the morphology of the remnant going in the direction to

change the morphology type from polar-caps to barrel-like; however, even η = 50

does not provide rapid enough increase of number the emitting electrons to overcome

the decreasing injection; therefore, an intermediate morphology (quadrilateral) is

obtained.
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Figure 4.13. Radial profiles of X-ray surface brightness for different photon energies ε̃ (marked
near respective lines). Calculations are done for φo = 0, ϕ = 0, b = −3/2, ǫf‖ = 1.

The efficiency of variation of Emax with obliquity in modification of the azimuthal

distribution of X-ray synchrotron brightness depends obviously on the photon en-

ergy: if the maximum contribution to the emission at given photon energy is from

electrons with energy much less than Emax then this effect is negligible. It is useful

to introduce the reduced photon energy, as ε̃ = ν/νc(Emax‖, Bo) where νc(E,B) =

c1 〈sinφ〉E2B is the synchrotron characteristic frequency, c1 = 6.26× 1018 cgs, or

ε̃ = 19 εkeV

(

Emax‖
10TeV

)−2(
Bo

10µG

)−1

, (4.9)

where εkeV is the photon energy in keV. If ε̃ = 0.29 then the most contribution to

the synchrotron X-ray emission is from electrons with energy E = Emax.
3 Figs. 4.11

and 4.12 are calculated for ε̃ = 2.8, i.e. images shown are mainly due to emission of

electrons with energy an order of magnitude higher than Emax‖; the role of variation

of Emax is therefore clealy visible in images.

Radial profiles. In the present subsection, Emax is assumed to be constant in

time and the same for any obliquity; in addition, isotropic injection, s = 2 and α = 1

are assumed.

The radial thickness of features in the X-ray images is sensitive to the photon

energy: the larger the energy the thinner the limbs (Fig. 4.13). This is because

3For reference: the maximum contribution to synchrotron X-ray emission at 3 keV in MF 30 µG is from electrons

with energies 72 TeV; the maximum contribution to IC γ-ray emission at 1 TeV is from electrons with energies 17

TeV.
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Figure 4.14. Effect of radiative losses (represented by ǫf‖) on the radial profiles of X-ray surface
brightness, at two azimuth. The reduced fiducial energy ǫf‖ = 0.3, 1, 3 (from below); φo = π/2,
ε̃ = 1, b = 0.

radiative losses Ė of electrons with energy E is efficient for more energetic electrons,

Ė ∝ E2. If ε̃ > 0.29 then the most contribution to the synchrotron X-ray emission

is from electrons with energies E > Emax where the radiative losses are of the main

importance.

An important factor for emission of highly energetic electrons is the fiducial en-

ergy, which reflects the importance of radiative losses in modification of the electron

distribution. It is defined as ǫf = 637
(

B2
s tEmax

)−1
[303], or

ǫf = 13

(

Bs

10µG

)−2(
Emax

10TeV

)−1(
t

1000 yrs

)−1

. (4.10)

Radiative losses are important for ǫf < 1 and minor for ǫf > 1. Fig. 4.14 demon-

strates how the value of ǫf affects the radial profiles of X-ray brightness: the smaller

ǫf the thinner the rim.

Our model does not include consistently the effects on shock dynamics due to

back-reaction of accelerated CRs. However, we may approach the effect of shock

modification by considering different values of the adiabatic index γ which is ex-

pected to drop from the value of an ideal monoatomic gas. In particular, Fig. 4.15

considers the cases of γ = 5/3 (for an ideal monatomic gas), γ = 4/3 (for a gas

dominated by relativistic particles), and γ = 1.1 (for large energy drain from the

shock region due to the escape of high energy CRs). The shock modification results

in more compressible plasma and, therefore, in the radially-thinner features of the
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Figure 4.15. Radio (dashed lines) and X-ray (solid lines) radial profiles of surface brightness for
the adiabatic index γ = 5/3, 4/3 and 1.1. Calculations are done for φo = 0, ϕ = 0, b = 0, ǫf‖ = 3,
ε̃ = 0.3.

nonthermal images of SNRs. A small distance between the forward shock and con-

tact discontinuity [106,250] could also be attributed to γ < 5/3. Effect of the index

γ on the profiles of hydrodynamical parameters downstream of the adiabatic shock

is widely studied [21]: smaller γ makes the shock compression factor higher,

σ =



















4 for γ = 5/3,

7 for γ = 4/3,

21 for γ = 1.1,

(4.11)

and the gradient of density downstream stronger (e.g. Appendix B),

n̄(r̄) ≈ r̄κnr, κnr =



















12 for γ = 5/3,

25 for γ = 4/3,

88 for γ = 1.1,

(4.12)

(r̄ = r/R ≤ 1). In addition to that, the X-ray (and also TeV γ-ray) brightness

is modified by increased radiative losses of emitting electrons. Really, the larger

compression leads to the higher post-shock MF and thus to increased losses, Ė ∝ B2,

which results in turn in the thinner radial profiles of brightness.

It is unknown how the injection efficiency (the fraction of nonthermal particles)

depends on the properties of the shock. We parameterized its evolution as Ks ∝
V −b where b is a constant. Effect of the parameter b on the radial profiles of the

surface brightness is demonstrated on Fig. 4.16. The smaller b the thicker the profiles,
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Figure 4.16. Evolution of injection efficiency (represented by b) and radial profiles of surface
brightness in radio (left), X-rays (middle) and γ-rays (right). The parameter in relation Ks ∝ V −b

is b = −3/2, 0, 2. Other parameters are φo = π/2, ϕ = 0 (for radio and X-rays) and ϕ = π/2
(for γ-rays), ǫf‖ = 1. X-ray and γ-ray profiles are shown for two photon energies: where the most
contribution is from electrons with E = Emax (dashed lines) and three times larger (solid lines);
in case of X-rays, solid lines correspond to ε̃ = 1.

Figure 4.17. Radial profiles of the radio (left), X-ray (middle) and γ-ray (right) surface brightness
of SNR for different azimuth: 0, π/6, π/3, π/2 (marked near lines). The aspect angles are π/2 (solid
lines) and π/3 (dashed lines); b = −3/2, ǫf‖ = 1, ε̃ = 1, γ-ray profiles are for photons with energy
0.1εγ(Emax).

because there are more emitting electrons in deeper layers, which were injected at

previous times. This property affects the nonthermal emission in all bands. However,

the effect is less prominent in X-rays (and in TeV γ-rays) if radiative losses are quite

effective to dominate it (see Fig. 4.16, lines for different photon energies). Profiles

of the radio brightness may be used to put limitations on the value of b.

In a similar fashion, the X-ray and γ-ray radial profiles are affected also by the

time evolution of the maximum energy, Emax ∝ V q. However, it seems impossible

to determine q from such profiles because contribution of other factors is often

dominant.

An interesting feature of the synchrotron images of SNRs is apparent from Fig. 4.17.

The maxima of the radial profiles of brightness for different azimuth are located al-

most at the same distance ρ from the center of projection, for radio and X-rays.
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Thus, the best way to analyze the azimuthal profiles of the surface brightness is to

find the position ρ of the maximum for one azimuth and then to trace the azimuthal

profile of brightness Sρ(ϕ) for fixed ρ.

4.2. Approximate formulae for azimuthal and radial variations of

surface brightness in adiabatic SNRs

What are the main factors which determine the pattern of the nonthermal im-

ages of SNRs? Which of them are mostly responsible for the azimuthal variation

of the surface brightness and which for the radial one? In order to understand how

the properties of MF, electron injection and acceleration influence the brightness

distribution, we developed analytic approximate formulae for the azimuthal and ra-

dial profiles of the surface brightness of adiabatic SNR in uniform ISM and uniform

ISMF.

The analytical formulae are valid close to the shock only, but are adequate to

describe azimuthal and radial variations of brightness around maxima which are

located close to the edge of SNR shells.

4.2.1. Radio profiles. Let the evolution and obliquity variation of the elec-

tron injection efficiency be denoted as V (t)−bς(Θo) and of the obliquity variation of

MF compression as σB(Θo). Properties of the azimuthal and radial profiles of the

radio brightness is determined mostly by (Appendix C.2)

Sr(ϕ, ¯̺) ∝ ς(Θo,eff (ϕ, φo) )σB(Θo,eff (ϕ, φo) )
(s+1)/2Ir( ¯̺) (4.13)

where

Ir =
1

√

1− ¯̺2
1− ¯̺σ(κr+1)

σ(κr + 1)
, (4.14)

¯̺ = ρ/R, σ is the shock compression ratio,

κr = 3b/2 + (2 + s)κad + 1/σ + s, (4.15)
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κad is close to unity for γ = 1.1÷ 5/3 (Appendix B). The effective obliquity angle

Θo,eff is related to azimuth ϕ and aspect φo as

cosΘo,eff (ϕ, φo) = cosϕ sinφo, (4.16)

the azimuth angle is measured from the direction of ISMF in the plane of the sky.

Eq. (4.13) shows that the azimuthal variation of the radio surface brightness

S̺(ϕ) at a fixed radius ̺ of projection, is mostly determined by the variations of the

magnetic field compression (and amplification, if any) σB and by the variation of the

electron injection efficiency ς . The radial profile Sϕ(̺) ∝ Ir(̺) is determined mostly

by σ, b and s. Adiabatic index γ affects the radial and azimuthal profiles mostly

through the compression factor σ = (γ+1)/(γ− 1) because κad weakly depends on

γ.

4.2.2. Synchrotron X-ray profiles. Let us assume that the maximum en-

ergy is expressed as Emax(Θo, t) ∝ V (t)qF(Θo). The synchrotron X-ray bright-

ness close to the forward shock is approximately (Appendix C.3)

Sx(ϕ, ¯̺) ∝ ς(ϕ)σB(ϕ)
(s+1)/2 exp

[

−
(

ǫm(ϕ)

F(ϕ)

)α]

Irx(ϕ, ¯̺) (4.17)

where

Irx = Ir( ¯̺)Ix(ϕ, ¯̺) (4.18)

with

Ix =

[

1− ǫαm(ψ + 1)α

Fα

(

1− 1− ¯̺σ(κr+2)

1− ¯̺σ(κr+1)

κr + 1

κr + 2

)]

. (4.19)

The parameter

ψ = κad +
5σ2

Bǫm
2ǫf‖

− 3q

2
(4.20)

is responsible for the adiabatic (the first term) and radiative (the second term) losses

of emitting electrons and the time evolution of Emax on the shock (the third term).

The reduced electron energy which gives the maximum contribution to emission of

photons with energy ε̃ is

ǫm =

(

ε̃

0.29σB

)1/2

, (4.21)
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it varies with obliquity (since MF varies; electrons with different energies contribute

to the synchrotron emission at ε̃). Parameters ψ, ǫm, F depend on Θo,eff and, there-

fore, on the aspect angle φo and the azimuth angle ϕ.

If ǫm ≪ 1 then Eq. (4.17) for the X-ray brightness transforms to Eq. (4.13) for

the radio brightness.

The thickness of the hard X-ray radial profile is used to estimate the post-shock

strength of MF in a number of SNRs [78]. The absolute value of MF is present in

Eq. (4.17) through ε̃ and ǫf , Eqs. (4.9), (4.10) which appear in ψ and ǫm, Eqs. (4.20),

(4.21). In both cases, Bs is in combination with Emax (thus, the value of the electron

maximum energy may affect the estimations). The idea of the method bases on the

increased role of losses in X-rays due to larger MF, i.e. on the role of the second term

in ψ, Eq. (4.20). Really, the influence of κr (i.e. of s and b) is minor in X-rays (middle

panel on Fig. 4.16), if radiative losses affect the electron evolution downstream of

the shock (i.e. for ε̃ >∼ 0.29, ǫf <∼ 1). The role of the first and the third terms in ψ are

also minor in most cases (q = 0 for the time-limited and escape-limited models and

unity for the loss-limited one) because the second term >∼ 10. However, the adiabatic

index makes an important effect on the thickness of the profile, mostly through σ

which appears in σB and in Ix. Being smaller than 5/3 (that is reasonable especially

in the case of efficient acceleration, which is actually believed to be responsible for

the large MF), the index may compete to some extend the role of losses, used in the

method for estimation of MF (see e.g. Fig. 4.15) that might lead to smaller estimates

of MF strength.

4.2.3. IC gamma-ray profiles. The IC γ-ray brightness may approximately

be described as (Appendix C.4)

Sic(ϕ, ¯̺) ∝ ς(ϕ) exp

[

−
(

ǫm
F(ϕ)

)α]

Iic(ϕ, ¯̺) (4.22)
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where

Iic(ϕ, ¯̺) ≈
1

√

1− ¯̺2
1− ¯̺σ(κic+1)

σ(κic + 1)

×
[

1− ǫαmψα

Fα

(

1− 1− ¯̺σ(κic+2)

1− ¯̺σ(κic+1)

κic + 1

κic + 2

)]

,

(4.23)

κic = 3b/2 + (2 + s)κad + 1/σ − 1. (4.24)

The expression for ψ is the same as (4.20) but ǫm is different:

ǫm =
ε1/2

2(kT )1/2γmax‖
, (4.25)

where ε is the γ-ray photon energy, T the temperature of the seed photon field, γmax

the Lorentz factor of electrons with energy Emax, or

ǫm = 1.66

(

Emax‖
10TeV

)−1
( ε

1TeV

)1/2
(

T

2.75K

)−1/2

. (4.26)

The azimuthal variation of the IC γ-ray brightness depends mostly on the injec-

tion efficiency. The role of variation of Emax is prominent only if obliquity dependence

of injection is not strong. Parameter α, being smaller than unity, results in smaller

azimuthal contrasts of synchrotron X-ray or IC γ-ray brightness comparing to model

with purely exponential cut-off in N(E). The radial distribution of IC brightness is

determined mostly by σ, ǫm, ǫf , b and, to the smaller extend, by s and q.

4.2.4. Accuracy of the formulae. The approximations presented above do

not require long and complicate numerical simulations but restore all the properties

of nonthermal images discussed in the previous sections, including dependence on

the aspect angle. Therefore, they may be used as a simple diagnostic tool for non-

thermal maps of SNRs.

The formulae are rather accurate in description of the brightness distribution close

to the shock. They do not represent centrally-brightened SNRs. Instead, they may

be used in SNR shells for those azimuth ϕ where ǫm <∼ 1 and ǫf >∼ 0.1, in the range of

¯̺ from (1− 2∆¯̺m) to 1, where ∆¯̺m = 1− ¯̺m, ¯̺m is the radius (close to the shock)

where the maximum in the radial profile of brightness happens. Approximations are

compared with numerical calculations in respective Appendices.
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4.2.5. Properties of the non-thermal images. Analysis of azimuthal pro-

files of brightness in different bands allows one to put limitations on models of

injection, MF, Emax. In most cases, the best way to estimate the azimuthal varia-

tion Sρ(ϕ) of the surface brightness is following. An approximate radial profile Sϕ(ρ)

of the brightness should be produced for azimuth where the largest losses occur (i.e.

where ǫf ∝
(

Fσ2
B

)−1
is smaller; e.g. at ϕ = 90o). This allows us to find ¯̺m which

should be used in Sρ(ϕ) in order to estimate the azimuthal variation of brightness.

Energy of electrons evolve downstream of the shock as E(ā) = EiEadErad, where

Ei is initial energy, ā = a/R, a the Lagrangian coordinate. Adiabatic and radiative

losses of electrons in a given fluid element a are represented by functions Ead(ā) ≤ 1,

Erad(ā) ≤ 1 respectively (Sect. 3.2.2). Close to the shock, they are approximately

Ead ≈ āκad (κad depends on the adiabatic index γ only and is close to unity for

γ = 1.1 ÷ 5/3), Erad ≈ ā5σ
2

B
ǫm/(2ǫf‖) (Appendix B). The latter expression clearly

shows that the fiducial energy ǫf is important parameter reflecting the ‘sensitivity’

of the model to the radiative losses, as it shown by [303]: the larger the fiducial

energy the smaller the radiative losses. In fact, Erad = 1 means no radiative losses

at all. Another fact directly visible from this approximation is that radiative losses

are much more important at the perpendicular shock (where σB = σ) than at the

parallel one (where σB = 1). In addition, the radiative losses depends rather strongly

on the index γ: σ2
B = 16 for γ = 5/3 but σ2

B = 49 for γ = 4/3.

Our approximations reflects also the general ‘rule’ for IC emission: there is less

IC emission where MF is stronger. Namely, the azimuthal variation is Iic(ϕ) ∝
1− const · ψ(ϕ)/F(ϕ)α with ψ ∝ σB(ϕ)

2: emitting electrons disappears toward the

shock with larger σB because MF strength is a reason of higher losses there. Similar

dependence on σB is for X-rays, Eq. (4.19); it is however dominated by the increased

term Sx(ϕ) ∝ σB(ϕ)
3/2.

TeV γ-ray image of SN 1006 demonstrates good correlations with X-ray image

smoothed to the HESS resolution [28]. We mean here both the location and sizes

of the bright limbs. Let us consider the polar-caps model of SN 1006. The shock is
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quasi-parallel around the limbs, MF azimuthally increases (in ≈ 4 times) and the

injection efficiency decreases (in > 10−3 times) out of the limbs. The number of

electrons emitting in X-rays and TeV γ-rays is dramatically low at perpendicular

shock comparing to the parallel, that is in agreement with no TeV emission at NW

and SE regions of SN 1006. However, the azimuthal sizes of the limbs in X-rays

and γ-rays have to be different, in the polar-caps model. They should be larger in

X-rays. Really, Sx ∝ ςσ
3/2
B while Sic ∝ ς . We hope that future observations allows

us to see if there is a difference in azimuthal sizes of the limbs in various bands.

How back-reaction of accelerated particles may modify nonthermal images of

SNRs? Our formulae can restore some of these effects. In our approximations, s, in

general, is allowed to vary with E, e.g. to be s(E) = s+ δs(E). The index s reflects

the ’local’ slope of the electron spectrum around ǫm. Therefore, if s(E) 6= const,

the index s have to vary with azimuth because ǫm varies, Eq. (4.21). Generally

speaking, such approach allows one to estimate the role of the nonlinear ‘concavity’

of the electron spectrum in modification of the nonthermal images. However, we

expect that this effect is almost negligible because δs(E) is very slow function,

at least within interval of electron energies contributing to images. Other effect

of efficient acceleration consists in the adiabatic index γ smaller than 5/3. Our

approximations are written for general γ. Namely, the index γ affects S(ϕ, ¯̺) through

σ. Cosmic rays may also cause the amplification of the seed ISMF. In our formulae,

σB(Θo) represents the obliquity variation of the ratio of the downstream MF to

ISMF strength, Bs/Bo. Therefore, it may account for both the compression and

amplification of ISMF; for such purpose, σB should be expressed in a way to be

unity at parallel shock.
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4.3. Asymmetries in bilateral supernova remnants due to nonuni-

form ISM and nonuniform ISMF

The bilateral SNRs are characterized by two opposed radio-bright limbs separated

by a region of low surface brightness. In general, the remnants appear asymmetric,

distorted and elongated with respect to the shape and surface brightness of the two

opposed limbs. In most (but not all) of the BSNRs the symmetry axis is parallel to

the galactic plane, and this has been interpreted as a difficulty for “intrinsic” models,

e.g. models based on SN jets, rather than for “extrinsic” models, e.g. models based

on properties of the surrounding galactic medium [159].

In spite of the interest around BSNRs, a satisfactory and complete model which

explains the observed morphology and the origin of the asymmetries does not exist.

The galactic medium is supposed to be stratified along the lines of constant galactic

latitude, and characterized by a large-scale ambient magnetic field with field lines

probably mostly aligned with the galactic plane. The magnetic field plays a three-

fold role: first, a magnetic tension and a gradient of the magnetic field strength is

present where the field is perpendicular to the shock velocity leading to a compres-

sion of the plasma; second, cosmic ray acceleration is most rapid where the field

lines are perpendicular to the shock speed [200, 267]; third, the electron injection

could depend on orientation of MF with respect to the shock speed. [159] notes

that magnetic models (i.e. those considering uniform ISM and ordered magnetic

field) cannot explain the asymmetric morphology of most BSNRs, and invokes a dy-

namical model based on pre-existing ISM inhomogeneities, e.g. large-scale density

gradients, tunnels, cavities. Unfortunately, the predictions of these ad-hoc models

have consisted so far of a qualitative estimate of the BSNRs morphology, with no

real estimates of the ISM density interacting with the shock. Moreover, most likely

also nonuniform ambient magnetic fields may cause asymmetries in BSNRs, without

the need to assume ad-hoc density ISM structures. Two main aspects of the nature

of BSNRs, therefore, remain unexplored: how and under which physical conditions
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do the asymmetries originate in BSNRs? What is more effective in determining the

morphology and the asymmetries of this class of SNRs, the ambient magnetic field

or the non-uniform ISM?

Answering such questions at an adequate level requires detailed physical model-

ing, high-level numerical implementations and extensive simulations. Our purpose

here is to investigate whether the morphology of BSNR observed in the radio band

could be mainly determined by the propagation of the shock through a non-uniform

ISM or, rather, across a non-uniform ambient magnetic field. To this end, we model

the propagation of a shock generated by an SN explosion in the magnetized non-

uniform ISM with detailed numerical MHD simulations, considering two comple-

mentary cases of shock propagation: 1) through a gradient of ambient density with

a uniform ambient magnetic field; 2) through a homogeneous isothermal medium

with a gradient of ambient magnetic field strength.

4.3.1. MHD modeling and numerical setup. In the case of the nonuni-

form media, the shock propagation is modeled by solving numerically the time-

dependent ideal MHD equations of mass, momentum, and energy conservation in a

3-D cartesian coordinate system (x, y, z):

∂ρ

∂t
+∇ · (ρu) = 0 , (4.27)

∂ρu

∂t
+∇ · (ρuu − BB) +∇P∗ = 0 , (4.28)

∂ρE

∂t
+∇ · [u(ρE + P∗)− B(u · B)] = 0 , (4.29)

∂B

∂t
+∇ · (uB−Bu) = 0 , (4.30)

where

P∗ = P +
B2

2
, E = ǫ+

1

2
|u|2 + 1

2

|B|2
ρ

,
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are the total pressure (thermal pressure, P , and magnetic pressure) and the total

gas energy (internal energy, ǫ, kinetic energy, and magnetic energy) respectively, t

is the time, ρ = µmHnH is the mass density, µ = 1.3 is the mean atomic mass

(assuming cosmic abundances), mH is the mass of the hydrogen atom, nH is the

hydrogen number density, u is the gas velocity, T is the temperature, and B is

the magnetic field. We use the ideal gas law, P = (γ − 1)ρǫ, where γ = 5/3 is

the adiabatic index. The simulations are performed using the flash code [156], an

adaptive mesh refinement multiphysics code for astrophysical plasmas.

As initial conditions, we adopted the model profiles of [350], assuming a spherical

remnant with radius r0snr = 4 pc and with total energy E0 = 1.5 × 1051 erg,

originating from a progenitor star with mass of 15 Msun, and propagating through

an unperturbed magnetohydrostatic medium. The initial total energy is partitioned

so that 1/4 of the SN energy is contained in thermal energy, and the other 3/4 in

kinetic energy. The explosion is at the center (x, y, z) = (0, 0, 0) of the computational

domain which extends between −30 and 30 pc in all directions. At the coarsest

resolution, the adaptive mesh algorithm used in the flash code (paramesh; [237])

uniformly covers the 3-D computational domain with a mesh of 83 blocks, each with

83 cells. We allow for 3 levels of refinement, with resolution increasing twice at each

refinement level. The refinement criterion adopted follows the changes in density

and temperature. This grid configuration yields an effective resolution of ≈ 0.1 pc

at the finest level, corresponding to an equivalent uniform mesh of 5123 grid points.

We assume zero-gradient conditions at all boundaries.

We follow the expansion of the remnant for 22 kyrs, considering two sets of simu-

lations: 1) through a gradient of ambient density with a uniform ambient magnetic

field; or 2) through a homogeneous isothermal medium with a gradient of ambient

magnetic field strength. Table 4.1 summarizes the physical parameters characterizing

the simulations.

In the first set of simulations, the ambient magnetic field is assumed uniform

with strength B = 1 µG and oriented parallel to the x axis. The ambient medium

is modeled with an exponential density stratification along the x or the z direction
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Table 4.1
Relevant initial parameters of the simulations: n0 and ni are particle number densities of the

stratified unperturbed ISM (see text), h is the density scale length, and (x, y, z) are the
coordinates of the magnetic dipole moment. The ambient medium is either uniform or with an

exponential density stratification along the x or the z direction (x−strat. and z−strat.,
respectively); the ambient magnetic field is uniform or dipolar with the dipole oriented along the

x axis and located at (x, y, z).

ISM n0 ni h B (x, y, z)

ISM cm−3 cm−3 pc pc

GZ1 z−strat. 0.05 0.2 25 uniform -

GZ2 z−strat. 0.05 0.2 10 uniform -

GX1 x−strat. 0.05 0.2 25 uniform -

GX2 x−strat. 0.05 0.2 10 uniform -

DZ1 uniform 0.25 - - z−strat. (0, 0,−100)

DZ2 uniform 0.25 - - z−strat. (0, 0,−50)

DX1 uniform 0.25 - - x−strat. (−100, 0, 0)

DX2 uniform 0.25 - - x−strat. (−50, 0, 0)

(i.e. parallel or perpendicular to the B field) of the form: n(ξ) = n0+ni exp(−ξ/h)
(where ξ is, respectively, x or z) with n0 = 0.05 cm−3 and ni = 0.2 cm−3, and where

h (set either to 25 pc or to 10 pc) is the density scale length. This configuration

has been used in our work [195] to describe the SNR expansion in an environment

with a molecular cloud. Our choice leads to a density variation of a factor ∼ 6 or

∼ 60, respectively, along the x or the z direction over the spatial domain considered

(60 pc in total). The temperature of the unperturbed ISM is T = 104 K at ξ = 0

and is determined by pressure balance elsewhere. The adopted values of T = 104

K, n = 0.25 cm−3 and B = 1 µG at ξ = 0, outside the remnant, lead to β ∼ 17

(where β = P/(B2/8π) is the ratio of thermal to magnetic pressure) a typical order

of magnitude of β in the diffuse regions of the ISM [236].

In the second set of simulations, the unperturbed ambient medium is uniform

with temperature T = 104 K and particle number density n = 0.25 cm−3. The

ambient magnetic field, B , is assumed to be dipolar. This idealized situation is

adopted here mainly to ensure magnetostaticity of the non-uniform field. The dipole

is oriented parallel to the x axis and located on the z axis (x = y = 0) either at
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Figure 4.18. 2-D sections in the (x, z) plane of the initial mass density distribution and initial
configuration of the unperturbed dipolar ambient magnetic field in two cases: dipole moment
located on the z axis (DZ1, left panel), or on the x axis (DX1, right panel). The initial remnant
is at the center of the domain. Black lines are magnetic field lines.

z = −100 pc or at z = −50 pc; alternatively the dipole is located on the x axis

(y = z = 0) either at x = −100 pc or at x = −50 pc (as shown in Fig. 4.18). In

both configurations, the field strength varies by a factor ∼ 6 (z or x = −100 pc) or

∼ 60 (z or x = −50 pc) over 60 pc: in the first case in the direction perpendicular

to the average ambient field 〈B〉, whereas in the second case parallel to 〈B〉. In all

the cases, the initial magnetic field strength is set to B = 1 µG at the center of the

SN explosion (x = y = z = 0).

Note that the transition time from adiabatic to radiative phase for a SNR is

(e.g. [90], Sect. 2.2)

ttr = 2.84× 104 E
4/17
51 n

−9/17
ism yr , (4.31)

where E51 = E0/(10
51 erg) and nism is the particle number density of the ISM. In

our set of simulations, runs GZ2 and GX2 present the lowest values of the transition

time, namely ttr ≈ 25 kyr. Since we follow the expansion of the remnant for 22 kyrs,

our modeled SNRs are in the adiabatic phase.

Ks is expected to vary with the shock velocity Vsh(t) and, in case of inhomoge-

neous ISM, with the immediately post-shock value of mass density, ρs; let us assume

that approximately Ks ∝ ρsVsh(t)
−b.
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We found, in Sect. 4.1 and 4.2, that the value of b does not affect the main features

of the surface brightness distribution if SNR evolves in uniform ISM. Therefore we

use the value b = 0 to produce the SNR images in models with uniform ISM (models

DZ1, DZ2, DX1, and DX2). In cases where non-uniformity of ISM causes variation of

the shock velocity in SNR (models GZ1, GZ2, GX1, and GX2), we calculate images

for b = −2, 0, 2. The post-shock evolution of relativistic electrons is calculated as

described in Sect. 3.2.3.

4.3.2. Effect of the environment on radio maps of SNRs. In all the mod-

els examined, we found the typical evolution of adiabatic SNRs expanding through

an organized ambient magnetic field (see [62] and references therein): the fast ex-

pansion of the shock front with temperatures of few millions degrees, and the devel-

opment of Richtmyer-Meshkov (R-M) instability, as the forward and reverse shocks

progress through the ISM and ejecta, respectively (see [207]). As examples, Fig. 4.19

shows 2-D sections in the (x, z) plane of the distributions of mass density and of

the module of the magnetic field for the models GZ2, DZ2, and DX2 at t = 18

kyrs. The inner shell is dominated by the R-M instability that causes the plasma

mixing and the magnetic field amplification. In the inner shell, the magnetic field

shows a turbulent structure with preferentially radial components around the R-M

fingers (see Fig. 4.20). Note that, some authors have invoked the R-M instabilities

to explain the dominant radial magnetic field observed in the inner shell of SNRs

(e.g. [205]); however, in our simulations, the radial tendency is observed well inside

the remnant and not immediately behind the shock as inferred from observations.

We found that, throughout the expansion, the shape of the remnant is not appre-

ciably distorted by the ambient magnetic field because, for the values of explosion

energy and ambient field strength (typical of SNRs) used in our simulations, the

kinetic energy of the shock is many orders of magnitude larger than the energy den-

sity in the ambient B field (see also [254]). The shape of the remnant does not differ

visually from a sphere also in the cases with density stratification of the ambient
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Figure 4.19. 2-D sections in the (x, z) plane of the mass density distribution (left panels), in
log scale, and of the distribution of the magnetic-field strength (right panels), in log scale, in the
simulations GZ2 (upper panels), DZ2 (middle panels), and DX2 (lower panels) at t = 18 kyrs.
The box in the upper left panel marks the region shown in Fig. 4.20.
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Figure 4.20. Close-up view of the region marked with a box in Fig. 4.19. The dark fingers mark
the R-M instability. The magnetic field is described by the superimposed arrows the length of
which is proportional to the magnitude of the field vector.

medium4 as we have shown earlier [195].

The radio emission of the evolved remnants is characterized by an incomplete

shell morphology when the viewing angle is not aligned with the direction of the

average ambient magnetic field (cf. [157]); in general, the radio emission shows an

axis of symmetry with low levels of emission along it, and two bright limbs (arcs)

on either side (see also [159]). This morphology is very similar to that observed in

bilateral SNRs.

Obliquity angle dependence. For each of the models listed in Table 4.1, we

synthesized the synchrotron radio emission, considering each of the three cases of

variation of electron injection efficiency with shock obliquity: quasi-parallel, quasi-

perpendicular, and isotropic particle injection. As an example, Fig. 4.21 shows the

synchrotron radio emission synthesized from the uniform ISM model DZ1 with ran-

domized internal magnetic field at t = 18 kyrs in each of the three cases. We recall

that for these uniform density cases, we have adopted an injection efficiency in-

dependent from the shock speed (b = 0). All images are maps of total intensity

normalized to the maximum intensity of each map and have a resolution of 400

4In these cases, the remnant appears shifted toward the low density region; see upper panels in Fig. 4.19 (see

also [127]).
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beams per remnant diameter (DSNR). The images are derived when the LoS is par-

allel to the average direction of the unperturbed ambient magnetic field 〈B〉 (LoS

aligned with the x axis), or perpendicular both to 〈B〉 and to the gradient of field

strength (LoS along y), or parallel to gradient of field strength (LoS along z).

The different particle injection models produce images that can differ considerably

in appearance. In particular, the quasi-parallel case leads to morphologies of the

remnant not reproduced by the other two cases: a center-brightened SNR when the

LoS is aligned with x (upper left panel in Fig. 4.21), a BSNR with two bright arcs

slanted and converging on the side where B field strength is higher when the LoS

is along y (upper middle panel), and a remnant with two symmetric bright spots

located between the center and the border of the remnant when the LoS is along

z (upper right panel). Neither the center-brightened remnant nor the double peak

structure, showing no structure describable as a shell, seems to be observed in SNRs5.

We found analogous morphologies in all the models listed in Table 4.1, considering

the quasi-parallel case. As extensively discussed by [157] for models with uniform

ambient magnetic field and b = −2, we also conclude that the quasi-parallel case

leads to radio images unlike any observed SNR (see also [212]).

The isotropic case leads to remnant’s morphologies similar to those produced in

the quasi-perpendicular case although the latter case shows deeper minima in the

radio emission than the first one. When the LoS is aligned with x (center and lower

left panels in Fig. 4.21) or with y (center and lower middle panels), the remnants have

one bright arc on the side where the B strength is higher. When the LoS is aligned

with z (center and lower right panels), the remnants have two opposed arcs that

appear perfectly symmetric. We found that the isotropic and quasi-perpendicular

cases lead to morphologies of the remnants similar to those observed.

Non-uniform ISM: dependence from parameter b. For models describing

the SNR expansion through a non-uniform ISM (models GZ1, GZ2, GX1, GX2), we

derived the synthetic radio maps considering three alternatives for the dependence

5Excluding filled center and composite SNRs, but these are due to energy input from a central pulsar.
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Figure 4.21. Synchrotron radio emission (normalized to the maximum of each panel), at t = 18
kyrs, synthesized from model DZ1 assuming b = 0 (see text) and randomized internal magnetic
field, when the LoS is aligned with the x (left), y (center), or z (right) axis. The figure shows
the quasi-parallel (top), isotropic (middle), and quasi-perpendicular (bottom) particle injection
cases. The color scale is linear and is given by the bar on the right. The directions of the average
unperturbed ambient magnetic field, 〈B〉, and of the magnetic field gradient, ∇|B |, are shown in
the upper left and lower right corners of each panel, respectively.
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of the injection efficiency on the shock speed, namely b = −2, 0, 2. As an example,

Fig. 4.22 shows the synthetic maps derived from model GZ1 with randomized inter-

nal magnetic field, assuming quasi-perpendicular particle injection, and considering

b = −2 (top panels), b = 0 (middle) and b = 2 (bottom).

When the LoS is not aligned with the density gradient, the radio images show

asymmetric morphologies of the remnants. In this case, the main effect of varying b

is to change the degree of asymmetry observed in the radio maps. In the example

shown in Fig. 4.22, the density gradient is aligned with the z axis and asymmetric

morphologies are produced when the LoS is aligned with x (left panels) or with y

(middle panels). In all the cases, the remnant is brighter where the mass density is

higher. On the other hand, the degree of asymmetry increases with increasing value

of b.

The reason of such behavior consists in the balance between the roles of the shock

velocity and density in changing the injection efficiency. Consider, as an example,

the top left panel in Fig. 4.22: the increase of the shock velocity on the north (due

to fall of the ambient density) leads to an increase of the brightness there (due to

rise of the injection efficiency) that partially balances the increase of the brightness

on the south due to higher density of ISM. On the other hand, for the model shown

in the bottom left panel in Fig. 4.22, the fraction of accelerated electrons increases

on the south due to both the rise of density and the decrease of the shock velocity.

When the LoS is aligned with the density gradient, the radio images are symmet-

ric. In the example shown in Fig. 4.22, this corresponds to the maps derived when

the LoS is along z (right panels); the remnants are characterized by two opposed

arcs with identical surface brightness.

Morphology. Fig. 4.23 shows the radio emission maps, at a time of 18 kyrs,

synthesized from models with a gradient of ambient plasma density (panels A and

D; assuming b = 2) and of ambient B field strength (panels B and E; assuming

b = 0). All the models assume quasi-perpendicular particle injection (the isotropic

case produces radio maps with similar morphologies and the quasi-parallel case
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Figure 4.22. Presentation as in Fig. 4.21 for model GZ1 with randomized internal magnetic
field, assuming quasi-perpendicular particle injection and b = −2 (top panels), b = 0 (middle) and
b = 2 (bottom). The directions of the average unperturbed ambient magnetic field, 〈B〉, and of
the ambient plasma density gradient, ∇ρ, are shown in the upper left and lower right corners of
each panel, respectively.
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Figure 4.23. Synchrotron radio emission (normalized to the maximum of each panel), at t = 18
kyrs, synthesized from models assuming a gradient of ambient plasma density (panels A and
D; with b = 2) or of ambient magnetic field strength (panels B and E; with b = 0) when the
LoS is aligned with the y axis. All the models assume quasi-perpendicular particle injection. The
directions of the average unperturbed ambient magnetic field, 〈B〉, and of the plasma density
or magnetic field strength gradient, are shown in the upper left and lower right corners of each
panel, respectively. The right column shows two examples of radio maps (data adapted from [368]
and [159]; the arrows point in the north direction) collected for the SNRs G338.1+0.4 (panel C)
and G296.5+10.0 (panel F). The color scale is linear and is given by the bar on the right.

is discussed later) and randomized internal magnetic field. The viewing angle is

perpendicular both to the average direction of the unperturbed ambient magnetic

field 〈B〉 (direct along the x axis) and to the gradients of density or field strength

(direct either along z, panels A and B, or x, panels D and E). The right panels show,

as examples, the radio maps of the SNRs G338.1+04 (panel C, data from [368]) and

G296.5+10.0 (panel F, from [159]).

In the quasi-perpendicular case discussed here, the maximum synchrotron emis-

sivity is reached where the magnetic field is strongly compressed. This configuration

has been referred as “equatorial belt” (e.g. [321]); 〈B〉 runs between the two op-

posed arcs (along the x axis). We found that, when the density or the magnetic
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field strength gradient is perpendicular to the field itself, the morphology of the

radio map strongly depends on the viewing angle. In these cases, the two opposed

arcs appear perfectly symmetric when the LoS is aligned with the gradient (see,

for instance, the right panels in Fig. 4.22), otherwise the two arcs can have very

different radio brightness, leading to strongly asymmetric BSNRs (see panels A and

B in Fig. 4.23). In the former case, the remnant is characterized by two axes of sym-

metry: one between the two symmetric arcs and the other perpendicular to the two.

In models with strong magnetic field strength gradients (DZ2; B varies by a factor

∼ 60 over 60 pc), we found that the radio images are center-brightened when the LoS

is aligned with the gradient (figure not reported). The fact that center-brightened

remnants are not observed suggests that the external B varies moderately in the

neighborhood of the remnants.

In case of asymmetry, the gradient is always perpendicular to the arcs, and the

brightest arc is located where either magnetic field strength or plasma density is

higher (see panels A and B in Fig. 4.23), since the synchrotron emission depends

on the plasma density, on the pressure, and on the field strength (see Eqs. 4.6 and

3.41); in this case, there is only one axis of symmetry oriented along the density

or B gradient. When the LoS is parallel to 〈B〉 (along x in our models), the radio

maps show a shell structure with a maximum intensity located where magnetic

field strength or plasma density is higher (see Fig. 4.21 for isotropic and quasi-

perpendicular cases and Fig. 4.22). Our simulations show that, when the density

or the magnetic field strength gradient is perpendicular to the field itself, remnants

with a monopolar morphology can be observed at LoS not aligned with the gradient

(see also [310]). Examples of observed monopolar remnants are G338.1+0.4 (see

panel C in Fig. 4.23) or G327.4+1.0 or G341.9-0.3.

When the density or B field gradient is parallel to 〈B〉 (panels D and E in

Fig. 4.23) and the LoS lies in the plane perpendicular to 〈B〉, the morphology of

the radio map does not depend on the viewing angle and the two opposed arcs

have the same radio brightness. In these cases, however, there is only one axis of

symmetry and the two arcs appear slanted and converging on the side where field
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Figure 4.24. Presentation as in Fig. 4.23, assuming quasi-parallel instead of quasi-perpendicular
particle injection.

strength or plasma density is higher; again, the symmetry axis is aligned with the

density or B gradient. Examples of this kind of objects are G296.5+10.0 (see panel

F in Fig. 4.23) or G332.4-004 or SN1006 (which is, however, much younger than the

simulated SNRs). When the external magnetic field is parallel to the LoS, because

the system is symmetric about the magnetic field, the remnant is axially symmetric

and the radio maps show a complete radio shell at constant intensity.

In the quasi-parallel case, 〈B〉 runs across the arcs. This configuration has been

referred as “polar caps” and it has been invoked for the SN1006 remnant [321]. The

quasi-parallel case, apart from the center-brightened morphology discussed in Sect.

4.3.2, can also produce remnant morphologies similar to those shown in Fig. 4.23. As

examples, Fig. 4.24 shows the radio emission maps obtained in the cases discussed in
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Fig. 4.23 but assuming quasi-parallel instead of quasi-perpendicular particle injec-

tion. Again, the viewing angle is perpendicular both to 〈B〉 (direct along the x axis)

and to the gradients of density or field strength (direct either along z, panels A and

B, or x, panels C and D). In the quasi-parallel case, remnants with a bright radio

limb are produced if the gradient of ambient density or of ambient B field strength is

parallel to 〈B〉 (instead of perpendicular to 〈B〉 as in the quasi-perpendicular case),

whereas slanting similar radio arcs are obtained if the gradient is perpendicular to

〈B〉 (instead of parallel as in the quasi-perpendicular case).

4.3.3. Measuring the degree of asymmetry. Our simulations show that

asymmetric BSNRs are explained if the ambient medium is characterized by gradi-

ents either of density or of ambient magnetic field strength: the two opposed arcs

have different surface brightness if the gradient runs across the arcs (see panels A

and B in Fig. 4.23, and panels C and D in Fig. 4.24), whereas the two arcs appear

slanted and converging on one side if the gradient runs between them (see panels

D and E in Fig. 4.23 and panels A and B in Fig. 4.24). In all the cases (including

the three alternatives for the particle injection), the symmetry axis of the remnant

is always aligned with the gradient.

Following [157], we quantify the degree of “bipolarity” of the remnants by using

the so-called azimuthal intensity ratio A, i.e. the ratio of maximum to minimum

intensity around the shell of emission as derived from the azimuthal intensity pro-

files6. In addition, we quantify the degree of asymmetry of the BSNRs by using a

measure we call the azimuthal intensity ratio Rmax ≥ 1, i.e. the ratio of the two

maxima around the shell, and the azimuthal distance θD, i.e. the distance in deg of

the two maxima. In the case of symmetric BSNRs, Rmax = 1 and θD = 180o. As

already noted by [157], the parameter A depends on the spatial resolution of the

radio maps and on the aspect angle (i.e. the angle between the LoS and the un-

perturbed magnetic field); moreover we note that, in real observations, the measure

6To calculate one of these profiles from a model, we first find the point on the map where the intensity is

maximum. Then the contour of points at the same radius as the point of maximum intensity defines the azimuthal

radio intensity profile.
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Figure 4.25. Azimuthal intensity ratio A (upper panel), azimuthal intensity ratio Rmax (middle
panel), and azimuthal distance θD (lower panel) for all the cases examined, considering the LoS
aligned with the y axis and a spatial resolution of 25 beams per remnant diameter, DSNR. Crosses:
isotropic; triangles: quasi-perpendicular; diamonds: quasi-parallel.

of A gives a lower limit to its real value if the background is not accurately taken

into account. On the other hand, the parameters Rmax and θD have a much less

critical dependency on these factors and, therefore, they may provide a more robust

diagnostic in the comparison between models and observations.

Fig. 4.25 shows the values of A, Rmax, and θD derived for all the cases examined

in this section, considering the LoS aligned with the y axis, and radio maps with

a resolution of 25 beams per remnant diameter7 (DSNR). Note that, our choice of

the LoS aligned with y (aspect angle φ = 90o) implies that the values of A in

Fig. 4.25 are upper limits, being A maximum at φ = 90o and minimum at φ = 0o

7After the radio maps are calculated, they are convolved with a gaussian function with σ corresponding to the

required resolution.
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(see [157]). The three models of particle injection (isotropic, quasi-perpendicular and

quasi-parallel) lead to different values of A. In the isotropic and quasi-perpendicular

cases, most of the values of A range between 5 and 20 (for model DX2, A is even

larger than 100); in the quasi-parallel case, the values of A are larger than 500.

We found that, in general, a gradient of the ambient magnetic field strength leads

to remnant morphologies similar to those induced by a gradient of plasma density

(compare, for instance, panel A with B and panel D with E in Fig. 4.23). On the

other hand, if b < 0 in GX and GZ models, ambient B field gradients are more

effective in determining the morphology of asymmetric BSNRs. This is seen in a

more quantitative form in Fig. 4.25. DX and DZ models give Rmax values higher

and θD values lower than GX and GZ models with b < 0: a modest gradient of the

magnetic field (models DX1 and DZ1) gives a value of Rmax higher or θD lower than

the two models with strong density gradients (models GX2 and GZ2) and b < 0.

Fig. 4.25 also shows that, in models with a density gradient, the degree of asym-

metry of the remnant increases with increasing value of b; the GX and GZ models

with b > 0 give values of Rmax and θD comparable with (or, in the case of Rmax,

even larger of) those derived from DX and DZ models. In the case of quasi-parallel

particle injection for remnants with converging similar arcs, it is necessary a strong

gradient of density perpendicular to B and b ≥ 0 (compare models GZ1 and GZ2 in

the lower panel in Fig. 4.25) to give values of θD comparable to those obtained with

a moderate gradient of ambient B field strength perpendicular to B (see model DZ1

in Fig. 4.25).

In order to compare our model predictions with observations of real BSNRs, we

have selected 11 SNR shells which show one or two clear lobes of emission in archive

total intensity radio images, separated by a region of minima. We have discarded

all those cases in which several point-like or extended sources appear superimposed

to the bright limbs, or other cases in which the location of maximum or minimum

emission around the shell is difficult to derive. Unlike other lists of BSNRs published

in the literature (e.g. [157, 159, 212]), here we focus on a reliable measure of the

parameters A, Rmax and θD; we avoid, therefore, patchy and irregular limbs, as in
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the case of G320.4-01.2 of [159]. Moreover, we are obviously not discarding remnants

which have constraints on A, Rmax or θD (e.g. [157] considered only cases with

Rmax < 2), and we are considering remnants observed with a resolution greater than

10 beams per remnant diameter. Since in our models we follow the remnant evolution

during the adiabatic phase, we also need to discard objects that are clearly in the

radiative phase. Unfortunately, for most of the objects selected, there is no indication

of their evolutionary stage in literature. Assuming that the remnant expands in a

medium with particle number density nism <∼ 0.3 cm−3, the shock radius derived

from the Sedov solution at time ttr (i.e. at the transition time from the adiabatic to

the radiative phase; see Eq. 4.31) is

rtr = 19 E
5/17
51 n

−7/17
ism

<∼ 35 pc , (4.32)

where we have assumed that E51 = 1.5. Therefore, we only considered remnants with

radius rsnr < 35 pc (i.e. with size < 70 pc) that are, most likely, in the adiabatic

phase. Our list does not pretend to be complete or representative of the class, and it

is compiled to derive the observed values of the parameters A, Rmax and θD with the

lowest uncertainties. For this reason, we have considered remnants for which a total

intensity radio image in digital format is available. Actually, in most of the cases,

we have used the 843 MHz data of the MOST supernova remnant catalogue [368].

Our list is reported in Table 4.2. We have separated evolved and young SNRs.

While the young SNRs listed in Table 4.2 have very reliable measurement of A, Rmax

and θD and a good record of literature, making them very good candidate to test the

diagnostic power of our model, we stress that we are focused on evolved SNRs. For

each object in Table 4.2, we show the apparent size, the distance (from dedicated

studies where possible, otherwise from the revised Σ−D relation of [103], see their

paper for caveats on usage of the Σ −D relation to derive SNR distance), the real

size, the resolution of the observation, and the parameters A, Rmax, and θD we have

introduced here.

Table 4.2 shows that most of the 11 remnants have A ≤ 10, i.e. values consistent
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Table 4.2
List of barrel-shaped SNR shells for which a measurement of A, B and θD is presented for

comparison with our models.

Remnanta Flux size d size Res.b A Rmax θD Ref./

Jy arcmin kpc pc beams/DSNR deg notes

Evolved Remnants

G296.5+10.0 48 90× 65 2.1 55× 40 108 > 11 1.2 85 1

G299.6-0.5 1.1 13× 13 18.1 68 18 6 2 160 2

G304.6+0.1 18 8× 8 7.9 18 11 20 1.5 120 3

G327.4+1.0 2.1 14× 13 13.9 56 19 > 10 > 10 ND 2,4

G332.0+0.2 8.9 12× 12 < 20 < 70 17 5 1 145 2,7

G338.1+0.4 3.8 16× 14 9.9 46× 40 21 3 2 > 120 2

G341.9-0.3 2.7 7× 7 14.0 28 10 8 3 170 2

G346.6-0.2 8.7 11× 10 8.2 26× 23 15 2 1.1 110 2,7

G351.7+0.8 11 18× 14 6.7 35× 27 22 2 1.6 130 2

Young Remnants

G327.6+14.6 19 30× 30 2.2 19× 19 42 22 1 127 5

G332.4-0.4 34 11× 10 3.1 10× 9 15 7 1.6 98 6

References and notes. - (1) A.k.a. PKS 1209-51/52. Age: 3–20 kyrs, [318]. Distance from [166]. (2)

Distance derived by [103] using a revised Σ−D relation. (3) Distance from [108]. (4) This shell has

only one limb (“monopolar” according to the definition of [157]). A and Rmax are lower limits and no

θD is derived. (5) A.k.a. SN1006. Distance from [369]. (6) A.k.a. RCW103. Distance from [314]. (7)

Two maxima have been found in one lobe. θD is the average of the two.

aAll the data are from the MOST supernova remnant catalogue [368], except where noted.
bSpatial resolution of the observation in beams per remnant diameter.

with those derived in Fig. 4.25 for the three alternatives for the particle injection

(recall that the values shown in the figure have to be considered as upper limits).

Four remnants show high values of A (10 < A < 100) that are difficult to explain in

terms of the isotropic or the quasi-perpendicular injection models with b < 0 unless

the remnant expands through a non-uniform ambient magnetic field (see models

DX2, and DZ2 in Fig. 4.25). In the light of these considerations, we cannot exclude

a priori any of the three alternative models for the particle injection.

Four of the 11 objects in Table 4.2 show values of Rmax ≥ 2, pointing out that,

in these objects, the bipolar morphology is asymmetric with the two radio limbs
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differing significantly in intensity. An example of this kind of remnants is G338.1+0.4

(see panel C in Fig. 4.23). In the light of our results, its morphology can be explained

if a gradient of ambient density or of ambient magnetic field strength is either

perpendicular to the radio limb in the isotropic and quasi-perpendicular cases or

parallel to the radio limb in the quasi-parallel case. It is worth noting that reveling

such a gradient from the observations may be a powerful diagnostic to discriminate

among the alternative particle injection models, producing real advances in the

understanding of the nonthermal physics of strong shock waves.

An extreme example of a monopolar remnant with a bright radio limb is G327.4+1.0

whose value of Rmax is larger than 10. Fig. 4.25 shows that high values of Rmax can

be easily explained as due to non-uniform ambient magnetic field strength or to non-

uniform ambient density if b > 0. We suggest that the morphology of G327.4+1.0

may give some hints on the value of b (and, therefore, on the dependence of the in-

jection efficiency on the shock velocity) if the observations show that the asymmetry

is due to a non-uniform ambient medium through which the remnant expands.

In Table 4.2, six of the 11 remnants (including the two young remnants SN1006

and RCW103) have values of θD < 140o, pointing out that, in these objects, the

two bright radio limbs appear slanted and converging on one side. An example of

this class of objects is G296.5+10.0 (a.k.a PKS 1209-51/52) shown in panel F in

Fig. 4.23. In this case, the value of θD ∼ 85o derived from the observations may be

easily explained as due to a gradient of magnetic field strength either perpendicular

to the radio limbs in the isotropic and quasi-perpendicular cases or parallel to the

radio limbs in the quasi-parallel case. Models with a gradient of ambient density

cannot explain the low values of θD found for G296.5+10.0 unless the gradients are

strong (the density should change by a factor 60 over 60 pc) and the dependence of

the injection efficiency on the shock velocity gives b ≥ 2.

4.3.4. Summary. Our findings have significant implications on the diagnostics

and lead to several useful conclusions:

1. The three different particle injection models (namely, quasi-parallel, quasi-
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perpendicular and isotropic dependence of injection efficiency from shock obliquity)

can produce considerably different images (see Fig. 4.21). The isotropic and quasi-

perpendicular cases lead to radio images similar to those observed. The parallel-case

may produce radio images unlike any observed SNR (center-brightened or with a

double-peak structure not describable as a shell). This is in agreement with the

findings of [157].

2. In models with gradients of the ambient density, the dependence of the injection

efficiency on the shock velocity (through the parameter b) affects the degree of

asymmetry of the radio images: the asymmetry increases with increasing value of b.

3. Small variations of the ISMF lead to significant asymmetries in the morphology

of BSNRs (see Figs. 4.23 and 4.24). Therefore, we conclude that the close similarity

of the radio brightness of the opposed limbs of a BSNR (i.e.Rmax ≈ 1 and θD ≈ 180o)

is evidence of uniform ambient B field where the remnant expands.

4. Variations of the ambient density lead to asymmetries of the remnant with

extent comparable to that caused by non-uniform ambient magnetic field if b ≥ 2.

We conclude that remnants with Rmax ≈ 1 and θD ≈ 180o are evidence of b < 2 if

the remnant expands in a strongly non-uniform ISM.

5. Strongly asymmetric BSNRs (i.e. Rmax ≫ 1 or θD ≪ 180o) imply either

moderate variations of B or strong (moderate) variations of the ISM density if

b < 2 (b ≥ 2) as in the case, e.g., of interaction with a giant molecular cloud.

6. BSNRs with different intensities of the emission of the radio arcs (i.e.Rmax > 1)

can be produced by models with a gradient of density or of MF perpendicular to

the arc (upper panels in Fig. 4.23 and lower panels in Fig. 4.24), and the brightest

arc is in the region of higher plasma density or higher magnetic field strength.

7. SNRs with two slanting similar arcs (i.e. θD < 180o) can be produced by models

with a gradient of density or of MF running centered between the two arcs (lower

panels in Fig. 4.23 and upper panels in Fig. 4.24), and the region of convergence is

where either the plasma density or the magnetic field strength is higher.

8. In all the cases examined, the symmetry axis of the remnant is always aligned

with the gradient of density or of magnetic field.
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We found that the degree of ordering of the magnetic field downstream of the

shock does not affect significantly the asymmetries induced by gradients either of

ambient plasma density or of ambient magnetic field strength; thus our conclusions,

derived in the case of disordered magnetic field, do not change in the case of ordered

magnetic field.

We defined useful model parameters to quantify the degree of asymmetry of the

remnants. These parameters may provide a powerful diagnostic in the comparison

between models and observations, as we have shown in a few cases drawn from

a randomly selected sample of BSNRs presented in Table 4.2. For instance, if the

density of the external medium is known by other means (e.g. thermal X-rays, HI

and Co maps, etc.), BSNRs can be very useful to investigate the variation of the

efficiency of electron injection with the angle between the shock normal and the

ambient magnetic field (Sect. 5.3) or to investigate the dependence of the injection

efficiency from the shock velocity (Sect. 5.4). Alternatively, BSNRs can be used as

probes to trace the local configuration of the galactic magnetic field if the dependence

of the injection efficiency from the obliquity is known or assumed.

It is worth emphasizing that our model follows the evolution of the remnant

during the adiabatic phase and, therefore, their applicability is limited to this evo-

lutionary stage. In the radiative phase, the high degree of compression suggested

by radiative shocks leads to increase of the radio brightness due to compression of

ambient magnetic field and electrons. Since our model neglects the radiative cooling

it is limited to relatively small compression ratios and, therefore, it is not able to

simulate this mechanism of limb brightening.

It will be interesting to expand the present study, considering the detailed com-

parison of model results with observations. This may lead to a major advance in

the study of interactions between the magnetized ISM and the whole galactic SNR

population (not only BSNRs), since the mechanisms at work in the BSNRs are also

valid for SNRs of more complex morphology.
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4.4. Effects of nonuniform ISMF on synchrotron X-ray and inverse-

Compton gamma-ray morphology of SNRs

In a previous Sect. 4.3, we have investigated the origin of asymmetries in the radio

morphology of BSNRs through a model of SNR expanding through either a non-

uniform ISM or a non-uniform ISMF. In this section, we extend our analysis to the

non-thermal X-ray and IC γ-ray emission. In particular, we develop a numerical code

to synthesize the synchrotron radio, X-ray, and IC γ-ray emission from 3D MHD

simulations; then we couple the synthesis code with the MHD model introduced in

Sect. 4.3 and investigate the effects of a nonuniform ISMF on the morphology of the

remnant in the hard X-ray and γ-ray bands.

4.4.1. Modeling and numerical setup. We adopt the MHD model intro-

duced in Sect. 4.3, describing the propagation of a SNR shock through a magnetized

ambient medium. The shock propagation is modeled by numerically solving the time-

dependent ideal MHD equations of mass, momentum, and energy conservation in a

3D Cartesian coordinate system (x, y, z). The model does not include consistently

the effects on shock dynamics due to back-reaction of accelerated CRs. However,

we approach the effect of shock modification by considering different values of the

adiabatic index γ which is expected to drop from the value of an ideal monoatomic

gas; in particular, we consider here the cases of γ = 5/3 (for an ideal monatomic

gas), γ = 4/3 (for a gas dominated by relativistic particles), and γ = 1.1 (for large

energy drain from the shock region due to the escape of high energy CRs). The sim-

ulations are performed using the flash code ( [156]), an adaptive mesh refinement

multiphysics code for astrophysical plasmas.

As initial conditions, we adopt parameters appropriate to reproduce the SNR

SN1006 after 1000 yr of evolution: we assume an initial spherical remnant with

radius r0snr = 0.5 pc, originating from a progenitor star with mass of 1.4 Msun,

and propagating through an unperturbed magneto-static medium. The initial total

energy E0 is set to a value leading to a remnant radius rsnr ≈ 9 pc at t = 1000 yr
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(E0 ≈ 1.3−1.8×1051 erg, depending on γ) and is partitioned so that most of the SN

energy is kinetic energy. The remnant expands through an homogeneous isothermal

medium with particle number density n = 0.05 cm−3 and temperature T = 104

K. We consider three different configurations of the unperturbed ambient magnetic

field: 1) a uniform ambient magnetic field (runs Unif-g1, Unif-g2, and Unif-g3); 2) a

gradient of ambient magnetic field strength perpendicular to the average magnetic

field (runs Grad-BZ-g1, Grad-BZ-g2, and Grad-BZ-g3); and 3) a gradient of ambient

magnetic field strength aligned with the average magnetic field (runs Grad-BX-g1,

Grad-BX-g2, Grad-BX-g3).

In the case of a uniform ISMF, we assume that the field is oriented parallel to

the x axis. In the other two cases, the ambient magnetic field is assumed to be

dipolar8. The dipole is oriented parallel to the x axis and located either on the z

axis (x = y = 0) at z = −100 pc (Grad-BZ-g1, Grad-BZ-g2, Grad-BZ-g3) or on

the x axis (y = z = 0) at x = −100 pc (Grad-BX-g1, Grad-BX-g2, Grad-BX-g3).

In all the cases, the initial magnetic field strength is set to B0 = 30 µG at the

center of the SN explosion (x = y = z = 0). In the configurations with nonuniform

ISMF, the field strength varies by a factor ∼ 6 over 60 pc: either in the direction

perpendicular to the average ambient field 〈B〉 (Grad-BZ-g1, Grad-BZ-g2, Grad-

BZ-g3), or parallel to 〈B〉 (Grad-BX-g1, Grad-BX-g2, Grad-BX-g3). We follow the

expansion of the remnant for 1000 yr. Table 4.3 summarizes the physical parameters

characterizing the simulations considered here.

The SN explosion is at the center (x, y, z) = (0, 0, 0) of the computational domain

which extends between −10 and 10 pc in all directions. At the coarsest resolution,

the adaptive mesh algorithm used in the flash code (paramesh; [237]) uniformly

covers the 3D computational domain with a mesh of 83 blocks, each with 83 cells. We

allow for 5 additional nested levels of refinement during the first 100 yr of evolution

with resolution increasing twice at each refinement level; then the number of nested

levels progressively decreases down to 2 at t = 1000 yr as the remnant radius

increases following the expansion of the remnant through the magnetized medium.

8This idealized situation is adopted here mainly to ensure magnetostaticity of the nonuniform field.
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Table 4.3
Relevant initial parameters of the simulations.

γ Esn magnetic field (x, y, z)a

[1051 erg] configuration pc

Unif-g1 5/3 1.30 uniform -

Unif-g2 4/3 1.54 uniform -

Unif-g3 1.1 1.81 uniform -

Grad-BZ-g1 5/3 1.30 z−strat. (0, 0,−100)

Grad-BZ-g2 4/3 1.54 z−strat. (0, 0,−100)

Grad-BZ-g3 1.1 1.81 z−strat. (0, 0,−100)

Grad-BX-g1 5/3 1.30 x−strat. (−100, 0, 0)

Grad-BX-g2 4/3 1.54 x−strat. (−100, 0, 0)

Grad-BX-g3 1.1 1.81 x−strat. (−100, 0, 0)

a Coordinates of the magnetic dipole moment.

The refinement criterion adopted follows the changes in density and temperature.

This grid configuration yields an effective resolution of ≈ 0.0098 pc at the finest

level during the first 100 yr of evolution (when the radius of the remnant was < 2

pc) and ≈ 0.078 pc at the end of the simulation, corresponding to an equivalent

uniform mesh of 20483 and 2563 grid points, respectively. We assume zero-gradient

conditions at all boundaries.

Post-shock evolution of the electron distribution in nonuniform ISM and/or ISMF

is modelled as described in Sect. 3.2.4.

From the model results, we synthesize synchrotron radio, X-ray, and IC γ-ray

emission.

4.4.2. Synchrotron X-ray and IC γ-ray maps of SNRs in nonuniform

ISMF. Figure 4.26 shows the 3D rendering of the mass density at t = 1000 yr

in the three cases of γ considered for uniform ISMF. The main effect of γ on the

shock dynamics is to change its compression ratio and the distance of the contact

discontinuity from the blast wave position; no dependence on the obliquity angle is

present, γ being uniform in each simulation. The value of γ is expected therefore to

influence the absolute values of emission in the radio, X-ray and γ-ray bands but
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Figure 4.26. 3D rendering of the mass density at t = 1000 yr for a remnant expanding through
a uniform ISMF and for three cases of γ = 5/3, 4/3, 1.1 (runs Unif-g1, Unif-g2, and Unif-g3, see
Table 4.3).

not the large scale morphology of the remnant to which this section is focused on.

In the following, we first discuss the effects of nonuniform ISMF on the synchrotron

and IC emission adopting, as reference, the case with γ = 5/3, allowing the direct

comparison of our results with those available in the literature; then in Sect. 4.4.2,

we discuss the effect of γ on the morphology of the non-thermal emission.

In all the synthetic images presented below, we introduce the procedure of mag-

netic field disordering (with randomly oriented magnetic field vector in each point)

downstream of the shock, according to observations showing a low degree of polar-

ization (10-15%; e.g. Tycho [126], SN 1006 [311]).

In all the simulations, we assume the (average) unperturbed ISMF 〈B〉 oriented

along the x axis. In the two magnetic field configurations we explored, the gradient

of ISMF strength is either normal (runs Grad-BZ-g1, Grad-BZ-g2, Grad-BZ-g3;

∇|〈B〉| along z) or aligned (runs Grad-BX-g1, Grad-BX-g2, Grad-BX-g3; ∇|〈B〉|
along x) to 〈B〉. Since we analyze the remnant morphology as it would be observed

from different points of view, we define two angles to describe the orientation of

〈B〉 and ∇|〈B〉| in the space (see Fig. 4.27): φB is the angle between 〈B〉 and the

LoS, and φ∇B is the angle between ∇|〈B〉| and the normal to the ISMF in the
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Figure 4.27. Relevant angles describing the orientation of the ISMF and of the gradient of ISMF
strength with respect to the observer: φB is the angle between the (average) unperturbed ISMF
and the LoS, and φ∇B is the angle between the gradient of the ISMF strength and the vertical
line passing through the center of the remnant AV.

plane of the sky (axis Av in Fig. 4.27). The first angle is the aspect angle commonly

used in the literature. The definition of the second angle allows us to explore the

remnant morphology for various aspect angles and for fixed φ∇B, ∇|〈B〉| lying on a

cone with angle φ∇B (see Fig. 4.27). In cases in which the gradient ∇B is aligned

with the average ISMF (runs Grad-BX-g1, Grad-BX-g2, Grad-BX-g3) φ∇B = 900

by definition. In Grad-BZ models, the angle between 〈B〉 and ∇|〈B〉| is always 900.

In the following, the images are calculated for various values of the angles defined

above and with a resolution of 256× 256 pixels.

Parameter space. The prescriptions for the electron energy distribution at any

point inside the remnant and for the synthesis of synchrotron and IC emission are

characterized by several parameters regulating the energy spectrum of relativistic

electrons, the injection efficiency, the time and spatial dependence of Emax, etc. In

the following, we limit the model parameter space through some assumptions that

allow us to fix some of the parameters.

In particular, we assume that the high-energy end of the spectrum in Eq. (3.16)
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is characterized by α = 0.5. The maximum energy at parallel shock Emax,ξ,‖ is

a free parameter in Eq. (3.19) that we assume to be Emax,ξ,‖ = 26 TeV in all our

calculations. Another important parameter for emission from high energy electrons is

the fiducial energy Ef [303]; at parallel shock, Ef,‖ = 22 TeV in models with uniform

ISMF, Ef,‖ = 20 TeV in Grad-BZ models and Ef,‖ = 10 TeV in Grad-BX models9.

In all the cases, therefore, Ef < Emax for a significant portion of the remnant and

the electron energy losses are mainly due to radiative losses (see discussion in Sect.

3.2.4).

Since no effect on the asymmetries induced by a nonuniform ISMF is expected,

we assume b = 0 in all our calculations, this being the most neutral case.

To reduce further the number of model parameters, we focus here on remnant

1 kyr old, as in the case of SN1006. Finally, radio, X-ray and γ-ray images are

synthesized at 1 GHz, 3 keV, and 1 TeV, respectively. It is worth to emphasize that

all the above parameters are not expected to influence the degree of the asymmetries

induced by a nonuniform ISMF on which we are focused.

Asymmetries in the remnant morphology. In Sect. 4.3, we analyzed the

asymmetries induced by a nonuniform ISMF in the radio morphology of the remnant.

In particular, we found there that asymmetric BSNRs are produced if a gradient

of the ambient magnetic field strength ∇B is not aligned with the LoS. In this

section we extend our analysis to non-thermal X-rays and IC γ-rays. To this end, we

synthesize the synchrotron and IC emission, considering each of the three cases of

variation of electron injection efficiency with shock obliquity (quasi-perpendicular,

isotropic, and quasi-parallel particle injection). In this section, the adiabatic index

is assumed to be γ = 5/3; we explore only the time-limited model for Emax and

assume to be in the Bohm limit (gyrofactor η = 1; see Sect. 3.2.1). The effects of γ,

Emax, and η on the remnant morphology are explored in Sect. 4.4.2. As an example,

Figs. 4.28 and 4.29 show the maps of synchrotron radio, X-ray, and IC γ-ray surface

9Note that Ef,‖ depends on the magnetic field strength at parallel shock which is different in the three con-

figurations of unperturbed ISMF explored here due to the magnetic field gradient (in all the cases, we assume

B0 = 30 µG at the center of the SN explosion).
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brightness at t = 1 kyr, in each of the three injection models. The aspect angle is

φB = 900 in all images, i.e. the ambient magnetic field is perpendicular to the LoS;

the angle φ∇B is 00 for run Grad-BZ-g1 and 900 for Grad-BX-g1.

The main factors affecting the azimuthal variations of surface brightness are

the variations of: injection efficiency ς(Θo) and magnetic field Bs(Θo) in the radio

band; ς(Θo), Bs(Θo) and maximum energy Emax(Θo) in the X-ray band; ς(Θo) and

Emax(Θo) in the IC γ-ray band. Therefore, the morphology of the remnant in the

three bands can differ considerably in appearance. In the radio and in the X-ray

band, the remnant shows two lobes located at perpendicular shocks in the quasi-

perpendicular and isotropic models (i.e. where the magnetic field is larger), and at

parallel shocks in the quasi-parallel model (i.e. where emitting electrons reside). The

lobes are much thinner in X-rays than in radio because of the large radiative losses

at the highest energies that make the X-ray emission dominated by radii closest

to the shock. In the γ-ray band, the remnant morphology changes significantly in

the three injection models: it is almost ring-like (with two faint minima at parallel

shocks) when the injection is quasi-perpendicular; the morphology shows two lobes

located at parallel shocks when the injection is isotropic, at variance with the lobes

in radio and X-rays that are located at perpendicular-shocks (i.e. bright γ-ray lobes

correspond to dark radio and X-ray areas); the morphology is characterized by two

narrow bright lobes almost superimposed to those in radio and X-rays when the

injection is quasi-parallel. A ring-like γ-ray morphology is compatible with those

found by HESS in the SNRs RX J1713.7-3946 [45] and RX J0852.0-4622 (Vela

Jr.; [38]) where γ-rays are detected virtually throughout the whole remnant and

the emission is found to resemble a shell structure. On the other hand, the bipolar

γ-ray morphology of SN1006 revealed by HESS [28], with the bright lobes strongly

correlated with non-thermal X-rays, may be easily reproduced in the polar-caps

scenario (quasi-parallel injection).

The effects of the nonuniform ISMF on the remnant morphology in the X-ray

band are similar to those discussed in Sect. 4.3 for the radio band: remnants with

two non-thermal X-ray lobes of different brightness (upper left panel in Fig. 4.28
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Figure 4.28. Maps of synchrotron radio (left), X-ray (center), and IC γ-ray (right) surface bright-
ness (normalized to the maximum of each map) at t = 1 kyr synthesized from run Grad-BZ-g1,
assuming randomized internal magnetic field. The relevant angles are φB = 900 and φ∇B = 00.
The figure shows the quasi-perpendicular (top), isotropic (middle), and quasi-parallel (bottom)
particle injection models. The model of Emax is time-limited, the gyrofactor is η = 1 (Bohm limit)
and the adiabatic index is γ = 5/3. The average ambient magnetic field is along the horizontal
axis; the gradient of magnetic field strength is along the vertical axis.



192

Figure 4.29. As in Fig. 4.28 for run Grad-BX-g1. Both the average ambient magnetic field and the
gradient of magnetic field strength are along the horizontal axis. The relevant angles are φB = 900

and φ∇B = 900.
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and lower left panel in Fig. 4.29) are produced if a gradient of ambient magnetic

field strength is perpendicular to the lobes; remnants with converging similar non-

thermal X-ray lobes (lower left panel in Fig. 4.28 and upper right panel in Fig. 4.29)

are produced if the gradient runs between the two lobes. Analogous asymmetries are

found in the γ-ray morphology of the remnant although the degree of asymmetry

is less evident. Note however that, in the case of isotropic injection, the γ-ray lobes

are converging on one side when radio and X-ray lobes are characterized by different

brightness (see Fig. 4.28). This is the consequence of the “limb-inverse” property in

γ-rays (Sect. 4.1) In general, this property is valid not only in the case of isotropic

injection; this type of injection is just the more prominent case. In fact, the critical

quantities determining the “limb-inverse” property are the contrasts between electron

injection, ISMF, and model of Emax. For instance, in the case of uniform ISMF, the

azimuthal contrast in IC γ-ray brightness is roughly

S‖
S⊥

∝ injection‖
injection⊥

exp

[

−Em

(

1

Emax,‖
− 1

Emax,⊥

)]

=

=
injection‖
injection⊥

exp

[

− Em

Emax,‖

(

1− Emax,‖
Emax,⊥

)]

(4.33)

where Em is the electron energy which gives the maximum contribution to IC emis-

sion at a considered frequency and subscripts refer to positions along the limb where

the ambient magnetic field is either parallel (‖) or perpendicular (⊥) to the shock

normal. Even in the case of quasi-parallel injection (injection‖/injection⊥ > 1), the

contrast S‖/S⊥ depends on the contrast of Emax: the ratio Emax,‖/Emax,⊥ may lead

to an exponential term either > 1 or < 1, leading to S‖/S⊥ either > 1 or < 1.

Figure 4.30 shows the azimuthal profiles of the synchrotron radio, X-ray, and IC

γ-ray surface brightness synthesized from runs Grad-BZ-g1 and Grad-BX-g1 for the

three injection models when the relevant angles are φB = 900 and φ∇B = 00 for run

Grad-BZ-g1 and φ∇B = 900 for Grad-BX-g1. Note the “limb-inverse” property in γ-

rays for isotropic injection as discussed in Sect. 4.1. In general we find that the degree

of asymmetry (whatever the pattern of asymmetry – either different brightness or
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Figure 4.30. Azimuthal profiles of the synchrotron radio (red), X-ray (blue), and IC γ-ray (green)
surface brightness synthesized from runs Grad-BZ-g1 (left; the relevant angles are φB = 900 and
φ∇B = 00) and Grad-BX-g1 (right; φB = 900 and φ∇B = 900), assuming quasi-perpendicular
(top), isotropic (middle), and quasi-parallel (bottom) injection models. The model of Emax is
time-limited, the gyrofactor is η = 1 (Bohm limit) and the adiabatic index is γ = 5/3. The
azimuth is measured from the north (see Figs 4.28 and 4.29).

convergence of the lobes – is) induced by ∇B in the remnant morphology is different

in the three bands: the non-thermal X-ray (IC γ-ray) emission appears to be the most

(less) sensitive to the gradient. This happens because the emissivity q(ǫ) depends

directly on the magnetic field strength only in the synchrotron emission process (no

in the IC process). Consequently, the IC γ-ray emission shows a weaker dependence

on the ∇B. In fact, IC brightness depends on ~B indirectly, through radiative losses

of electrons: larger ~B induces decrease of the number of electrons emitting IC γ-rays.

Note that the sensitivity on ∇B depends also on the energy of photons, and on the

reduced fiducial energy Ef , which is the measure of efficiency of the role of radiative

losses in modification of the downstream evolution of emitting electrons.

Useful parameters to quantify the degree of asymmetry of the remnant are those
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defined in Sect. 4.3: the azimuthal intensity ratio Rmax ≥ 1, i.e. the ratio of the

maxima of intensity of the two lobes as derived from the azimuthal intensity profiles

(a measure of different brightness of the lobes; Rmax > 1 in case of asymmetry), and

the azimuthal distance θD, i.e. the distance in deg of the two maxima (a measure

of the convergence of the lobes; θD < 1800 in case of asymmetry). For instance,

in the case of quasi-parallel injection in Fig. 4.30 (lower panels), we find that the

azimuthal distance θD ranges from 1480 in γ-rays to 1340 in radio to 980 in X-rays

for run Grad-BZ-g1, and the azimuthal intensity ratio Rmax ranges from 1.01 in

γ-rays to 1.82 in radio to 2.86 in X-rays for run Grad-BX-g1.

Dependence on the adiabatic index. In Sect. 4.1, we analyzed the effect of γ

on non-thermal images of SNR expanding through homogeneous ISM and uniform

ISMF. They showed that reducing the value of γ, the synchrotron brightness of

SNR is modified by increased radiative losses of emitting electrons, due to increased

compression of ~B, which results in thinner radial profiles of brightness. Figure 4.31

shows maps of synchrotron radio, X-ray, and IC γ-ray emission for the case of ISMF

characterized by a gradient of field strength perpendicular to the average MF and

different values of the adiabatic index γ (runs Grad-BZ-g1, Grad-BZ-g2, and Grad-

BZ-g3). As expected, γ determines both the shock compression ratio σ and the

distance of the contact discontinuity from the blast wave position Dcd (see also

Fig 4.26 in the case of uniform ISMF): the smaller γ, the larger σ (and the larger the

radiative losses of emitting electrons) and the shorter Dcd. As shown in the figure,

the main effect of smaller γ is to make thinner the lobes in the three bands. In

particular, in the extreme case of γ = 1.1, the lobes are so thin that they are largely

perturbed by the hydrodynamic instabilities forming at the contact discontinuity,

the typical size of the instabilities being comparable with Dcd. The adiabatic index

slightly influences also the azimuthal thickness of the lobes, especially in the quasi-

parallel case: the smaller γ, the narrower this thickness. Nevertheless, the adiabatic

index does not change significantly neither the degree nor the pattern of asymmetry

of the remnant morphology caused by the gradient of ambient MF.
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Figure 4.31. As in Fig. 4.28 for runs Grad-BZ-g1 (γ = 5/3), Grad-BZ-g2 (γ = 4/3), and Grad-
BZ-g3 (γ = 1.1). The figure shows synchrotron radio (left panels), X-ray (center panels) and IC
γ-ray (right panels), assuming either quasi-perpendicular (upper panels) or quasi-parallel (lower
panels) injection models. Each panel shows only one half of the remnant which is symmetric with
respect to the vertical axis.

Dependence on the maximum energy. The model of Emax may affect both

the degree and the pattern of asymmetry of the remnant morphology due to the

different dependencies of the three Emax models on the magnetic field strength.

The largest differences can be found in the IC γ-ray band when the two lobes are

characterized by different brightness (i.e. a gradient of magnetic field strength is

perpendicular to the lobes). We found that the asymmetry between the two lobes

can be reduced in the X-ray band or even inverted in the IC γ-ray band when the

Emax model is loss-limited. As an example, Fig. 4.32 shows the azimuthal profiles of

the IC γ-ray surface brightness synthesized from runs Grad-BZ-g1 and Grad-BX-

g1 when the lobes have different brightness. In the loss-limited case, the brightest

γ-ray lobe is located where both the radio and the X-ray lobes are fainter. This

happens because, at variance with the other cases, Emax depends inversely on the

pre-shock ambient magnetic field strength in the loss-limited case (see Eq. 3.19):

Emax is the largest where the magnetic field strength is the lowest. In the case of

the IC surface brightness, this determines the inversion of the asymmetry in the

remnant morphology, as the IC emissivity weakly depends on ~B. In the case of the
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Figure 4.32. Azimuthal profiles of the synchrotron radio (red lines) and IC γ-ray surface bright-
ness (green) synthesized from run Grad-BZ-g1 with quasi-perpendicular injection (top), and from
run Grad-BX-g1 with quasi-parallel injection (bottom); the aspect angle is φB = 900. The figure
shows the time-limited (solid), loss-limited (dotted), and escape-limited (dashed) Emax models.
The gyrofactor is η = 1 (Bohm limit).

non-thermal X-ray surface brightness, the inverse dependence of Emax on ~B partially

contrast the dependence of the non-thermal X-ray emissivity on ~B, reducing the

degree of asymmetry between the lobes. It is worth to note that, if Emax is high

enough in regions with weak magnetic field, than the inversion of asymmetry may

be present even in the X-ray band.

On the other hand, when the nonuniform ISMF leads to non-thermal lobes con-

verging on one side (i.e. when a gradient of ISMF is running between the lobes) the

model of Emax does not affect significantly the degree and the pattern of asymmetry

of the remnant morphology.
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Figure 4.33. Azimuthal profiles of the synchrotron X-ray (blue lines) and IC γ-ray (green) surface
brightness (for angles φB = 900 and φ∇B = 00) synthesized from run Grad-BZ-g1 with quasi-
perpendicular (top) and quasi-parallel (bottom) injection, and for η = 1 (solid) and η = 30
(dotted). The model of Emax is time-limited.

Dependence on the gyrofactor. In the case of synchrotron X-ray emission,

Reynolds [303] has shown that the value of gyrofactor η determines the enlargement

of the zone containing the most energetic particles and consequently of the emitting

regions (see Fig. 3.4). We expect therefore that, in our model, η influences the

azimuthal thickness of X-ray and IC γ-ray lobes but not the degree nor the pattern

of asymmetry of the remnant morphology due to a nonuniform ISMF. This issue

has been investigated by comparing simulations with different η. As an example,

Fig. 4.33 shows the azimuthal profiles of both X-ray and IC γ-ray surface brightness

synthesized from run Grad-BZ-g1 when the gyrofactor is either η = 1 or η = 30.

For the parameters we explored, the gyrofactor slightly influences X-ray and γ-

ray azimuthal profiles and has virtually no effect on the degree nor the pattern of
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asymmetry of the remnant morphology, although the different brightness of the two

lobes in the upper panel of Fig. 4.33 is reduced for higher values of η.

Dependence on the orientation of ISMF gradient. As expected, the degree

of asymmetry of the remnant morphology depends on the orientation of ∇B with

respect to the plane of the sky. In the case of run Grad-BZ-g1, Fig. 4.34 shows the

azimuthal intensity ratio Rmax and the azimuthal distance θD vs. the angle φ∇B,

for an aspect angle φB = 900. The asymmetries are the largest when ∇B lies in

the plane of the sky (i.e. φ∇B = 00), whereas no asymmetries are present when

∇B is along the LoS (i.e. φ∇B = 900). In all the intermediate cases, the degree of

asymmetry is determined by the component of ∇B lying in the plane of the sky.

Note that the remnant morphology shows only one kind of asymmetry when the

injection is quasi-perpendicular or quasi-parallel and the aspect angle is φB = 900.

On the other hand, the lobes have different brightness in radio and non-thermal

X-rays and are converging in IC γ-rays when the injection is isotropic due to the

"limb-inverse" property.

When the ∇B is not aligned with the average ambient magnetic field (for instance

in the case of run Grad-BZ-g1), the projection of the ∇B in the plane of the sky

has (for generic values of φB and φ∇B) a component perpendicular to the projected

lobes and one running between them. In this case both kind of asymmetries (lobes

converging on one side and with different brightness) are expected in the remnant

morphology. As an example, Fig. 4.35 shows the synchrotron radio, X-ray, and IC

γ-ray images synthesized from run Grad-BZ-g1, for different injection models, and

assuming time-limited Emax. The relevant angles are φB = 450 and φ∇B = 450.

4.4.3. Summary. We developed a numerical code to synthesize the synchrotron

radio, X-ray, and IC γ-ray emission from MHD simulations, in the general case of

a remnant expanding through a nonuniform ISM and/or a nonuniform ISMF. As a

first application of the code, we coupled the synthesis code to the MHD model dis-

cussed in Sect. 4.3 and investigated the effects of a nonuniform ISMF on the remnant

morphology in the X-ray and γ-ray bands. Our findings lead to several conclusions:
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Figure 4.34. Azimuthal intensity ratio Rmax (i.e. the ratio of the maxima of intensity of the two
lobes around the shell) and azimuthal distance θD (i.e. the distance in deg of the two maxima of
intensity around the shell) vs. the angle between ∇B and the vertical line passing through the
remnant center φ∇B, for an aspect angle φB = 900. The run is Grad-BZ-g1.
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Figure 4.35. Maps of synchrotron radio (left), X-ray (center), and IC γ-ray (right) surface bright-
ness synthesized from run Grad-BZ-g1, assuming quasi-perpendicular (top), and quasi-parallel
(bottom) injection models. The model of Emax is time-limited and the gyrofactor is η = 1. The
relevant angles are φB = 450 and φ∇B = 450. The angle between 〈B〉 and ∇|〈B〉| is 900.

– A gradient of ISMF strength induces asymmetries in both the X-ray and γ-ray

morphology of the remnant if the gradient has a component perpendicular to

the LoS. In general, the asymmetries are analogous to those found in Sect. 4.3

in the radio band, independently from the models of electron injection and of

maximum energy of electrons accelerated by the shock. In the γ-ray band, the

asymmetry in the remnant morphology is inverted with respect to those in the

radio and X-ray bands if the model of Emax is loss-limited: the brightest γ-ray

lobe is located where both the radio and the X-ray lobes are the faintest.

– The non-thermal lobes are characterized by different brightness when a gradient

of ISMF strength is perpendicular to the lobes; they are converging on one side

when a gradient of ISMF is running between them. In the general case of a

gradient with components parallel and perpendicular to the lobes, both kinds of

asymmetry may characterize the remnant morphology.
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– The non-thermal X-ray emission is confined in very thin limbs because of the

large radiative losses at high energy and is the most sensitive to nonuniform

ISMF. In fact the remnant morphology in this band shows the highest degree

of asymmetry among the images synthesized in the three bands of interest (i.e.

radio, X-ray, and γ-ray).

– The IC γ-ray emission is weakly sensitive to the nonuniform ISMF, the de-

gree of asymmetry being the lowest in the three bands considered. The rem-

nant morphology is almost ring-like for quasi-perpendicular injection, shows the

“limb-inverse” property discussed in Sect. 4.1 for isotropic injection (i.e. bright

γ-ray lobes correspond to dark radio and X-ray areas), and is bilateral for quasi-

parallel injection. The “limb-inverse” property implies, for instance, that γ-ray

lobes are symmetric and converging on one side when radio and X-ray lobes

have different brightness (see Fig. 4.28). Note that the γ-ray morphology of the

SNRs RX J1713.7-3946 [45] and RX J0852.0-4622 [38] could be reproduced in the

equatorial-belt scenario (the injection is either quasi-perpendicular or isotropic),

whereas the morphology of SN 1006 [28] is compatible with that predicted in the

polar-caps scenario (quasi-parallel injection).

We approach the effect of shock modification by considering different values of

the adiabatic index γ (namely, 5/3, 4/3, 1.1). The main effect of γ is to change the

compression ratio of the shock and the distance of the contact discontinuity from the

blast wave position. In the simplest case considered here, namely the modification

on γ is isotropic with no dependence on the obliquity angle, we found that the

modified γ influences the absolute values of non-thermal emission but not the large

scale morphology of the remnant and the pattern of asymmetries induced by a

nonuniform ISMF. Conversely, we expect a significant effect of the modified γ on

the remnant morphology if the shock modification depends on the obliquity. This

issue deserves further investigation in future studies.
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4.5. Conclusions

Section deals with modeling and analysis of surface brightness distribution in

adiabatic SNRs resulting from leptonic component of accelerated CRs. Maps of

SNRs produced by emission of CRs in radio, X-rays and γ-rays are synthesized. In

order to understand the role of different factors on patterns of brightness, SNRs in

uniform ISM and ISMF are modeled. Then, the influence of nonuniform ISM and/or

nonuniform ISMF on SNR images are considered.

1. The synchrotron radio and X-ray as well as IC γ-ray maps of adiabatic SNRs

in uniform ISM and ISMF are synthesized. The properties of images in these dif-

ferent wavelength bands are compared, with particular emphasis on the location of

the bright limbs in bilateral SNRs. Nonthermal maps are synthesized for different

assumptions about obliquity variations of the injection efficiency, MF and maximum

energy of accelerated electrons.

a) The azimuthal variation of the synchrotron X-ray and IC γ-ray brightness is

mostly determined by variations of ς , σB and Emax, of the radio brightness by ς and

σB only. In general, higher B increases X-ray and decreases IC γ-ray brightness.

Really, higher MF is a reason of larger losses of emitting electrons (i.e. decrease of

their number) and thus of the smaller brightness due to IC process. In contrast,

X-rays are more efficient there because Sx ∝ B3/2. The radial profiles of brightness

in all three bands depend on a number of factors. They are quite sensitive to the

adiabatic index: γ < 5/3 makes plasma more compressible. Therefore, the bright-

ness profile is thinner due to larger compression factor, larger gradient of density

and MF downstream of the shock and larger radiative losses. The radial profiles of

synchrotron X-ray and IC γ-ray brightness (e.g. thickness of rim) depend on the

photon energy. They are radially thinner at larger photon energies, as expected.

b) In case if Emax is constant over the SNR surface, we found an opposite behavior

of azimuthal variation of surface brightness in radio and IC γ-rays, in case if injection

is isotropic and the aspect angle is larger than ≃ 60o. Namely, the line crossing the
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two limbs in radio are perpendicular to the ISMF while they are parallel in IC γ-

rays. In particular, bright radio limbs correspond to dark IC areas, in disagreement

with X-ray and HESS observations of SN 1006. This happens because IC image is

affected by large radiative losses of emitting electrons behind perpendicular shock

while the larger magnetic field increases the radio brightness there. Variation of

Emax over SNR surface may (to some extent) hide this effect. The maximum energy

should increase with obliquity in this case. In case of the polar-cap model of SNR

(quasi-parallel injection), the maxima in surface brightness are expected to coincide

in radio and IC γ-rays (in agreement with HESS observation of SN 1006), unless

increase of Emax with obliquity will be very strong, which is unlikely in case of

SN 1006 because the cut-off frequency is larger at limbs which are at parallel shock

in this injection model.

c) The radio and IC γ-ray limbs may coincide in location if: i) injection is isotropic

but the variation of the maximum energy of electrons is rather quick to compensate

for differences in magnetic field; ii) obliquity dependence of injection (either quasi-

parallel or quasi-perpendicular) and the electron maximum energy is strong enough

to dominate magnetic field variation. In the latter case, the obliquity dependence of

the injection and the maximum energy should not be opposite.

2. Approximate analytical formulae for the azimuthal and radial profiles of the

synchrotron radio and X-ray as well as the inverse-Compton γ-ray brightness are

derived. They reveal the main factors which influence the pattern of the surface

brightness distribution due to leptonic emission processes in shells of adiabatic SNRs.

They accurately represent numerical simulations close to the shock and are able to

account for some non-linear effects of acceleration if necessary. These approximations

provide observers and theorists with a set of simple diagnostic tools for quick analysis

of the non-thermal maps of SNRs due to emission of accelerated electrons.

3. It is investigated whether the assymetrical morphology of bilateral supernova

remnants observed in the radio band is determined mainly either by a nonuniform

interstellar medium (ISM) or by a nonuniform ambient magnetic field. The 3-D

MHD simulations of a spherical SNR shock propagating through a magnetized ISM
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is performed. From the simulations, the synchrotron radio emission, making different

assumptions about the details of acceleration and injection of relativistic electrons

is synthesized. It is found that asymmetric BSNRs are produced if the line-of-sight

is not aligned with the gradient of ambient plasma density or with the gradient

of ambient magnetic field strength. Useful parameters to quantify the degree of

asymmetry of the remnants are derived that may provide a powerful diagnostic of

the microphysics of strong shock waves through the comparison between models and

observations. BSNRs with two radio limbs of different brightness can be explained

if a gradient of ambient density or, most likely, of ambient magnetic field strength

is perpendicular to the radio limbs. BSNRs with converging similar radio arcs can

be explained if the gradient runs between the two arcs.

4. Even a very small gradient of the ISMF can influence significantly the non-

thermal remnant morphology. A gradient of the ambient magnetic field strength

induces asymmetric morphologies in both X-ray and γ-ray bands independently

from the model of electron injection if the gradient has a component perpendicular

to the line-of-sight. The degree of asymmetry of the remnant morphology depends

on the details of the electron injection and acceleration and is different in the radio,

hard X-ray, and γ-ray bands. In general, the non-thermal X-ray morphology is the

most sensitive to the gradient, showing the highest degree of asymmetry. The IC

γ-ray emission is weakly sensitive to the nonuniform ISMF, the degree of asymmetry

of the remnant morphology being the lowest in this band.
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CHAPTER 5

EXPERIMENTAL CONSTRAINTS ON MODELS OF COSMIC

RAYS IN SN 1006

Simulations of nonthermal emission from SNRs which is based on basic theoreti-

cal principles (previous Section) is a necessary step toward understanding behavior

of CRs in vicinity of strong nonrelativistic shocks. Nevertheless, another direction

in studies is also of importance. Namely, analysis of experimental data as well as

model-independent methods for derivation of characteristics of SNRs and CRs from

observations. Radio, X-ray and γ-ray observations keep unique information about

processes in magnetized cosmic plasma, about motion and emissivity of CRs.

Therefore, next sections of the present thesis are devoted to experimental meth-

ods of exploration of CRs. Namely, a certain SNR, SN 1006, is investigated. In

particular, Sect. 5.1 presents observations of SNR in radio and X-ray bands which

we analyse; its γ-ray data are reported by the HESS collaboration in [28]. SN 1006

is one of the most interesting objects for studies of Galactic cosmic rays. The pre-

cise knowledge of its age, its quite symmetrical, rather simple bilateral (two opposed

bright limbs characterized by non-thermal emission separated by a region of low sur-

face brightness) morphology in radio (Sect. 5.1.1), nonthermal X-rays (Sect. 5.1.2)

and TeV γ-rays [28]. Its prominent feature is the positional coincidence of the two

bright nonthermal limbs in all these bands, including TeV γ-rays.

In the following, new methods for 1) prediction of the γ-ray image of SNR from

its radio and X-ray maps (Sect. 5.2) and 2) determination of the three-dimensional

orientation of ISMF from a radio map (Sect. 5.3) are presented; both methods are

applied to SN 1006. In Sect. 5.4, radio, X-ray and γ-ray data are used to determine

some properties of SN 1006 and accelerated CRs.

Results presented in this chapter are published in [250, 281, 283, 284].
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5.1. Radio and X-ray observations of SN 1006

The X-ray thermal emission, compared to the non-thermal, is more uniformly

distributed over the entire remnant [321]. Despite the importance of thermal X-

rays to the study of shock acceleration processes, the physical origin of the thermal

emission is still uncertain and the spatial distribution of its properties has not yet

been studied. Several studies have shown that thermal X-rays in SN 1006 cannot

be uniquely associated with solar-abundance shocked plasma (e. g. [134]). X-ray

emitting ejecta have been observed in the north-western and south-eastern rims of

the remnant [29] and even Fe K lines emission has been detected in the interior

of the shell, where an iron overabundance has been revealed [373]. The presence of

significant X-ray emission from the shocked ISM and the value of its temperature

remain controversial. Authors of [29] modeled the X-ray emission of their spectral

regions with one non-thermal component plus two thermal components (ejecta for

the soft emission and ISM for the hard emission). However, they found that the

shocked ISM component (with kTISM ∼ 1.5− 2 keV) is almost not needed from a

statistical point of view, since the quality of the fits does not change by associating

the thermal emission only with the ejecta. In [373], instead, authors used three

thermal components to model the SUZAKU thermal emission of very large regions

of SN 1006, by associating the soft component with the shocked ISM (kTISM ∼ 0.5

keV), and the hot components with the ejecta. Nevertheless they could not exclude

that the O line complexes, which dominate the soft component, originate in the

ejecta.

Since a spatially resolved study of the emission at the rim of SN 1006 has not

yet been performed, here we present our analysis of archive radio VLA and X-ray

XMM-Newton observations of SN 1006. As to the γ-rays, SN 1006 was detected as

a TeV γ-ray source by HESS; results of these observations, including spectrum in

photons with energies 0.2-20 TeV, azimuthal and radial profiles of brightness as well

as an image of SNR are published in [28].
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We focus mostly on maps of SNR, on the rim of the remnant to study the az-

imuthal variations in radio, thermal and non-thermal X-ray emission immediately

behind the main shock front. We aim to obtain detailed information about the nature

of the X-ray and γ-ray emission and study its link with the shock acceleration pro-

cesses. We also use an X-ray Chandra archive observation of the north-eastern limb

of SN 1006 taking advantage of its larger spatial resolution to test our conclusions.

5.1.1. Radio data. A new radio image of SN 1006 at λ ∼ 20 cm was pro-

duced on the basis of archival VLA1 data obtained in October 1991, February 1992

and July 1992 in the hybrid AnB, BnC and CnD configurations, respectively. The

observations in the AnB configuration were carried out at 1370 and 1376 MHz, while

the observations in the BnC and CnD arrays were performed at 1370 and 1665 MHz.

The data corresponding to the more compact configurations of the VLA, BnC and

CnD, were published as a part of an expansion study of SN 1006 [257], but not

the data from the AnB configuration, which provides the highest angular resolution

of southern sources. The new interferometric image is produced on the basis of 4

hours per configuration (the maximum possible taking into account the elevation re-

strictions for this source when observed from the northern hemisphere) and recovers

emission from all spatial structures with angular scales between a few arcsec and 15

arcmin.

All data were processed using the MIRIAD software package. To avoid the diffrac-

tion effects produced by point sources present in the field, for each of the brightest

sources we imaged a small region around, and the clean components were Fourier

transformed and subtracted from the visibilities. The residual visibilities, containing

all the source structure except for the offending point sources were then imaged and

the point sources were added back into the SN 1006 image in the image plane. To

recover flux density contribution from structures on angular scales larger than 15

arcmin (which is important in this case since SN 1006 is ∼30 arcmin in diameter)

we added single dish observations acquired in 2002 with the Parkes 64 m radiotele-

1The Very Large Array of the National Radio Astronomy Observatory, USA.
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Figure 5.1. Radio image of SN 1006, in linear scale (galactic coordinates). Axes outline regions
I and II used in our analysis.

scope placed in Australia. Also, since the primary beam of the VLA (the half-power

beamwidth of a single VLA antenna) at λ20 cm is 32 arcmin, comparable to the

size of the source, a correction was applied to the interferometric data taking into

account the attenuation introduced near the primary beam edge.

The final image has a synthesized beam of 7′′.7 × 4′′.8, position angle 8◦.3, and

an rms noise of 1 × 10−4 Jy/beam. When combined with Parkes single-dish data,

the total recovered flux is S=14.9 Jy, in excellent agreement with previous estimates

from Green’s catalogue of SNRs [172]. The new image is presented in Fig. 5.1.

5.1.2. X-ray data processing. We consider all the XMM-Newton EPIC

archive observations of SN 1006 available. All the observations that we analyze were

performed with the Medium filter by using the Full Frame Mode for the MOS cam-

eras [351] and the Extended Full Frame Mode for the pn camera [341]. The relevant

information about the XMM-Newton observations presented here are summarized

in Table 5.1. We process the data by using the Science Analysis System (SAS).
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Table 5.1
Relevant information about the data.

OBS_ID Date MOS-pn texp (ks)∗ RA, J2000 DEC, J2000

0111090101 2000-08-20 7-3 15h03m50s −41◦47′00′′

0111090601 2001-08-08 7-3 15h03m30s −42◦01′00′′

0077340101 2001-08-10 30-21 15h01m51s −41◦49′00′′

0077340201 2001-08-10 24-19 15h04m07s −41◦52′32′′

0143980201 2003-08-14 16-11 15h03m30s −41◦48′12′′

0202590101 2004-02-10 26-17 15h02m35s −42◦04′37′′

0306660101 2005-08-21 11-4 15h03m35s −42◦04′20′′

* Unscreened/Screened exposure time.

We produced the images of the entire remnant by superimposing (using the

EMOSAIC task) the MOS1, MOS2, and pn images of the pointings shown in

Table 5.1. Spectral analysis was performed in the energy band 0.5 − 5 keV using

XSPEC, for each of the spectral regions presented in Sect. 5.1.3. To check the valid-

ity and the robustness of our result we adopted two different procedures for spectral

extraction and background subtraction. Details are desribed in [250].

We here present the results obtained with method 1, since it allows us to use also

the pn data. We verified that the results obtained are perfectly consistent with that

produced with method 2.

We also used a Chandra archive observation of SN 1006 to perform the test

described in Sect. 5.1.4. In particular, we used the observation of the NE limb of

SN1006 with ID 732, taken on 7 Jul 2000, which has an exposure time of 69 ks.

5.1.3. X-ray data analysis.

Spatially resolved spectral analysis. Figure 5.2 shows the mosaiced EPIC

images of SN 1006 in the 0.8 − 2 keV band, 0.5 − 0.8 keV band (“oxygen band”,

central panel), and in the 2 − 4.5 keV band (“hard band”, lower panel). Since we

aim to study the effects of the acceleration process, we select our spectral regions

at the border of the shell. The set of 30 regions selected for the spatially resolved

spectral analysis is shown (in white) in the upper panel of Fig. 5.2. All the regions
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cover the same area in the plane of the sky and they extend in the radial direction

to 1.5′ (i. e., ∼ 10% of the SNR radius), corresponding to ∼ 1 pc at 2.2 kpc. Our

approach is similar to that followed by [321], although we also focus on the thermal

emission.

There are striking differences between the 30 spectra. Figure 5.3 shows the pn

and MOS spectra extracted from region 29 (upper panel), where several emission

line complexes are visible, and, for comparison, from region 23 (lower panel), lo-

cated in the bright north-eastern non-thermal limb, where the emission is com-

pletely featureless. Despite these differences, we plan to describe all the spectra

with a unified model, so as to explain the different spectral properties in terms of

azimuthal variations in the best-fit parameters. We then use an isothermal model

of optically thin plasma in non-equilibrium of ionization and with free abundances

(VPSHOCK model in XSPEC, [93]) to describe the thermal component, plus a

synchrotron emission from an electron power law with exponential cut-off (SRCUT

model in XPSEC, [312]) to model the non-thermal component. We verify that the

quality of the fit does not improve by adding another thermal component. Moreover,

an additional thermal component introduces too many free parameters (considering

the available statistics) and this generates entanglements between the best-fit val-

ues, thus determining large errors and useless results. We therefore consider only one

thermal component. Our model of the thermal emission differs therefore from the

two-temperatures model adopted by [29] for the north-eastern and south-western re-

gions of the shell and it is simpler than the three-temperatures model used by [373],

where much larger and less uniform extraction regions are considered. We fix the

NH parameter to 7× 1020 cm−2, in agreement with [132].

We constrain the normalization of the non-thermal component (i. e., its flux at 1

GHz) by extracting the radio flux from the same regions defined in the X-ray map.

The spectral index α is free parameter in our analysis, at variance with [321], who

fix α = 0.6. The determination of the chemical abundances and other details of

the spectral fitting may be found in [250]. The results of our spectral analysis are

summarized in Fig. 5.4.
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Figure 5.2. Upper panel : mosaiced count-rate images (counts per second per bin) of SN 1006 in
the 0.8− 2 keV band. The bin size is 8′′ and the image is adaptively smoothed to a signal-to-noise
ratio 10. The 30 regions selected for the spectral analysis of the rim (in white) and the 8 regions
selected for the study of the ejecta emission measure (in red, see Sect. 5.1.4) are superimposed.
Central panel: same as upper panel in the 0.5 − 0.8 keV energy band. A contour level at 10% of
the maximum is superimposed. Lower panel : same as upper panel in the 2− 4.5 keV energy band.
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Figure 5.3. Upper panel : pn spectrum (upper, in black) and MOS1,2 (lower, in red and green)
spectra of region 29 of Fig. 5.2 with the corresponding best-fit model and residuals. The best-fit
thermal+non-thermal model described in Sect. 5.1.3 is shown as a continuous line, while individu-
als components are shown as dashed black lines for the pn spectrum only. Relevant emission lines
are also indicated. Lower panel : same as upper panel for region 23.

Non-thermal emission. As shown in Fig. 5.4, the azimuthal profile of the

synchrotron cut-off frequency νbreak presents a trend that is perfectly consistent

with that derived by [321], the cut-off frequency increasing in the non-thermal limbs.

However, our break frequencies are systematically lower than their ones (by a factor

of ∼ 10). This discrepancy is due to the value of the radio spectral index α. In

fact, we here derive α ∼ 0.50 ± 0.04 from our spectral fittings in the non-thermal

regions2, while [321] do not measure α, and assume α = 0.6. The lower values of the

spectral index naturally imply lower cut-off frequencies. Notice that, as shown by

the green points in Fig. 5.4, we obtain also α ∼ 0.5 by using the method 2 for the

analysis of the background, as described in Sect. 5.1.2. Our best-fit value α ∼ 0.5

and our cut-off frequencies are in agreement with the results obtained by [54].

2In the thermal regions we therefore fix α = 0.5, as shown in Fig. 5.4.
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Figure 5.4. Best-fit parameters for the 30 regions shown in the upper panel of Fig. 5.2 (in
black) and for the 8 regions of the upper panel of the same figure (in red). The model consists
in a non-equilibrium of ionization isothermal component plus a synchrotron SRCUT model. The
blue crosses indicate where the parameters are fixed. The errors are at 90% confidence level. The
chemical abundances are tied to those of region NW, for regions 8 − 22, and to those of region
SE, for regions 23 − 7. For comparison, the best-fit values of α obtained by using the method 2
for the analysis of the background (Sect. 5.1.2) are shown as green stars.
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Thermal emission. Figure 5.4 clearly shows that the emission measure per

unit area, EM , of the thermal component significantly decreases in the bright non-

thermal limbs (we obtain the same trend by also analyzing the spectra with the

ESAS method described in Sect. 5.1.2). In the North-East (regions 19-23) and at

South-West (regions 6-10), in particular, EM is a factor of >∼ 4 lower than in the

North-West or South-East, and in regions 9 and 19 it is consistent with being zero.

This is quite surprising because one would expect EM to be large in the non-thermal

limbs, where the particle acceleration is supposed to be more efficient.

The temperature of the ejecta is not uniform and in the north-western part

of the rim, in particular (regions 13-18 in Fig. 5.4), the temperatures are clearly

lower. Unfortunately, in the non-thermal limbs, the determination of temperature is

affected by large errors, because of the low EM .

5.1.4. Procedure to extract the pure thermal image of SN 1006. Since

the thermal emission is completely dominated by the shocked ejecta, it is interesting

to study their spatial distribution and obtain an image of their X-ray emission.

Authors of [63] suggested that there are differences in the spatial distribution of

thermal and non-thermal emission in the north-eastern region of SN 1006. Cassam-

Chenäi et al. [106] assumed that (in the south-eastern quarter of the shell) the

X-ray emission in the “oxygen band” (0.5− 0.8 keV) is completely associated with

the ejecta. Indeed, even in this soft band, there is a non-negligible flux associated

with the non-thermal component, especially in the non-thermal limbs (see Fig. 5.3).

We use our results for the non-thermal component to estimate this contribution.

The spectral properties of the SRCUT component are very robust. They do not

depend strongly on the model adopted for the thermal component, since the nor-

malization of the synchrotron emission is derived from the radio data and the values

of α and the azimuthal profile of the roll-off frequency are in good agreement with

those reported in literature. Using our result, we calculate that in only one third of

the rim (regions 28− 2 and 18− 22) the contribution of the thermal emission in the

oxygen band is larger than 80% of the total flux, while in fifteen regions (4−11 and
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19− 25) it is ≤ 50%. This means that the 0.5− 0.8 keV map of SN 1006 shown in

the central panel of Fig. 5.2 cannot be used as a proxy of the ejecta.

We developed the procedure to produce the image of the thermal emission in the

0.5− 0.8 keV band (we call this image TH). The scheme of the procedure consists

of three steps: A) we assume the emission in the 2− 4.5 keV band to be completely

associated with the non-thermal component; B) we extrapolate the 2−4.5 keV image

to produce an image of the non-thermal component in the 0.5− 0.8 keV band, (we

call this image NONTH) by using the results of our spatially resolved spectral

analysis; and C) we subtract NONTH from the total image in the 0.5 − 0.8 keV

band, thus obtaining the thermal image.

Step A. We assume the thermal emission to be negligible in the 2 − 4.5 keV

band. The results of our spatially resolved spectral analysis show indeed that this

assumption is strictly valid in the non-thermal limbs (where the non-thermal flux

is >∼ 99% of the total), while it does not hold in the thermal regions (e.g. regions

28 − 2), where about 50% of the flux in the 2 − 4.5 keV is associated with the

thermal component. Nevertheless, we can show that this problem does not generate

significant effects. In fact, even if we overestimate the contribution of the synchrotron

emission in the thermal region (by a factor of a few) this contribution remains small

in the 0.5−0.8 keV band: for example we verified (after step B) that it is ∼ 10% and

∼ 6% of the total flux in the oxygen band in region 0 and region 16, respectively. This

means that, when we produce TH, the flux in the thermal regions is not significantly

underestimated, while that in the non-thermal region is correct. In conclusion, we

can say that our assumption holds where it is more necessary.

Step B. From the 2− 4.5 keV image, we can produce NONTH by considering

a given spectral shape of the synchrotron emission (i. e., a given value of α and a

given value of the roll-off frequency νbreak) in each pixel. Since we found that in the

entire rim the photon index is fairly uniform (see Fig. 5.4), we can assume that in

each point of the image in the hard band the spectrum has a photon index α = 0.5.

As for νbreak, we found in Sect. 5.1.3 that it depends on the azimuthal angle θ at the

rim. We then interpolate the values of νbreak shown in Fig. 5.4 by using a Fourier
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Figure 5.5. Break frequency νbreak azimuthal profile.
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Figure 5.6. Left panel: map of the cut-off frequency derived according to the procedure described
in Step B. The 30 regions selected for the spectral analysis of the rim are indicated in black. Rigth

panel: image of the non-thermal emission in the 0.5− 0.8 keV band.

series (up to the 6th order) and we assume that the azimuthal trend of νbreak(θ) at

the rim is given by this interpolating function at angular distances from the center

R > Rint(θ), where Rint(θ) = 11.7′ for regions 13−17 and Rint(θ) = 13.5′ elsewhere

(Fig. 5.5). As for the radial profile of νbreak(R) for R < Rint(θ), we follow [321] and

assume that: i) in the center (R < 7′), the cut-off frequency is uniform and its value

is equal to the minimum νbreak found in the rim and ii) for 7′ < R < Rint(θ), the

cut-off frequency increases exponentially with R, going from its minimum value (at

the center) to the corresponding value at the rim. In this way, we produce the map

of νbreak shown in Fig. 5.6. Since we know the spectral shape of the synchrotron

emission in each pixel of the 2 − 4.5 keV image, we can produce the image of the
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Figure 5.7. Pure thermal image (counts per second per bin) of SN 1006 in the 0.5 − 0.8 keV
band. The contribution of the non-thermal emission in the soft energy band has been subtracted.
The bin size is 8′′ and the image is adaptively smoothed to a signal-to-noise ratio 10. The same
contour level shown in the central panel of Fig. 5.2 is overimposed for comparison.

non-thermal emission in the 0.5 − 0.8 keV band. This image is shown in the right

panel of Fig. 5.6.

Step C. Once NONTH has been produced, we simply subtract it from the total

image in the oxygen band, thus obtaining the pure thermal image in the 0.5− 0.8

keV band shown in Fig. 5.7. The map shown in Fig. 5.7 presents striking differences

from the total image in the same band (central panel of Fig. 5.2), especially in the

non-thermal limbs, where the emission of the ejecta is negligible. This differences

are important for procedure of determination of position of the contact disconti-

nuity used in a number of papers (e.g. [106]) as an evidence about efficient CRs

acceleration.

5.2. Model-independent method for synthesis of the gamma-ray

image of SNR due to inverse Compton emission

Hadronic γ-rays arise at the location of the target protons. Rather large density

of target protons – as e.g. in molecular clouds – is the condition for the effective

hadronic emission in SNRs with high TeV γ-ray fluxes. The morphology of this type

of emission in such SNRs is expected to follow the structures of regions of enhanced
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density of target protons, not the structures in the SNRs where initial protons are

accelerated. In SNRs which are bright in γ-rays, surface brightness distribution

of proton-origin γ-ray emission may not therefore be expected to follow the radio

and/or nonthermal X-ray images of SNRs, like it is observed in IC443, W28 or

CTB 37B.

In contrast, the TeV γ-ray and hard X-ray morphologies are observed to be well

correlated in the cases of RX J1713.7-3946, Vela Jr., SN 1006 and possibly RCW86.

Thus it could be that TeV γ-rays reflect the same structures where the radio and

nonthermal X-ray emission arise. In this scenario, electrons with energies of tens

TeV may be responsible both for the (synchrotron) X-rays with energies of few keV

and for the inverse-Compton γ-rays with energies of few TeV which are observable

by HESS.

The HESS image of SN 1006 reported recently [28] reveals a very good correlation

between X- and γ-ray maps (Fig. 1.8). Can the correlation between IC γ-ray and

synchrotron X-ray images really be an argument for leptonic origin of TeV γ-ray

emission? In the present section, we make use of the spatially resolved analysis of

the radio and X-ray data of SN 1006 to generate images with the possible appearance

that this SNR would acquire if the whole TeV γ-emission were due to leptonic IC

process.

Since the purpose of the present analysis is to be as much model independent

as possible, our work is mostly based on experimental results, without involving

models of SNR dynamics, electron kinetics and evolution, etc., contrary to what

has been carried out in previous approaches to the problem ( [157, 303, 305] and

Chapter 4). Radio and nonthermal X-ray emission contain information about the

accelerated electrons, their distribution inside SNR, maximum energies, etc. The

method we propose extracts most of the important properties, which are needed to

synthesize an IC γ-ray image, from the radio and X-ray data. The major exception

is the magnetic field (MF). In the absence of observational information about it, we

consider three cases of possible MF configurations.
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5.2.1. Description of the method. Let us assume that the energy spectrum

of electrons holds the following relation

N(E) = KE−s exp(−E/Emax). (5.1)

where N(E) is the number of electrons per unit volume with arbitrary directions of

motion,E the electron energy,K the normalization of the electron distribution, s the

power law index andEmax the maximum energy of electrons accelerated by the shock.

This equation neglects small concave-up curvature of the spectrum predicted by

efficient shock acceleration but allows us to be in the framework of the methodology

of the X-ray spectral analysis (srcut model was used, Sect. 5.1.3). The concavity

results in a small bump around Emax which leads mainly to some increase of the IC

flux, which we are not interested in. It is not expected to affect the pattern of the

gamma-ray brightness obtained with our method. Simpler spectrum N(E) = KE−s

is valid for the radio emission. The emissivity due to synchrotron or IC emission is

q(ε) =

∫

dEN(E)p(E, ε, [B]) (5.2)

where p is the radiation power of a single electron with energy E, ε is the photon

energy. The strength of magnetic field B is involved only in the synchrotron emission

process.

The simplest way to reach our goal is to use the delta-function approximation of

the single-electron emissivities applied to spectrum Eq. (5.1). Namely, the special

function F appeared in the theory of synchrotron radiation is substituted with

F
(

ν

νc

)

= δ

(

ν

νc
− 0.29

)

∞
∫

0

F (x)dx (5.3)

where ν is the frequency, νc(B,E) = c1BE
2 is the characteristic frequency, c1 =

6.26 × 1018 cgs. This results in synchrotron radio and X-ray emissivities with the

following dependencies:

qr ∝ ν−(s−1)/2
r KB(s+1)/2 (5.4)

qx ∝ ν−(s−1)/2
x KB(s+1)/2 exp

[

−
(

νx
νbreak

)1/2
]

(5.5)
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where νbreak is

νbreak = νc(B,Emax). (5.6)

With Eq. (5.4) and Eq. (5.5), we approximate the relation between the radio and

X-ray synchrotron emissivities:

qx = qr

(

νx
νr

)−(s−1)/2

exp

[

−
(

νx
νbreak

)1/2
]

. (5.7)

However, exponentially cut off electron distribution Eq. (5.1) convolved with the δ-

function approximation for the single-particle emissivity, Eq. (5.5), underestimates

the synchrotron flux from the same electron distribution convolved with the full

single-particle emissivity, Eq. (5.2), at frequencies ν > 30νbreak (see Fig. 3 in [303],

νbreak is marked as νm there).

In this section, we use νx = 2.4 keV = 5.8 × 1017Hz. The range of νbreak in

SN 1006 is found to be (0.06 ÷ 1) × 1017Hz (Sect. 5.1.3). Thus, we are working

with νx ≈ (6÷100)νbreak. Using Eq. (5.7) , we may therefore underestimate the real

X-ray flux in ∼ 10 times in regions where νbreak is small. Thus, as it is pointed out

by Reynolds [312], the approximate Eq. (5.7) is not robust at highest frequencies.

We suggest therefore an empirical approximation of the numerically integrated

synchrotron emissivity Eq. (5.2), i.e. emissivity of the exponentially cut off electron

distribution convolved with the full single-particle emissivity:

qx = qr

(

νx
νr

)−(s−1)/2

exp

[

−βx
(

νx
νbreak

)0.364
]

(5.8)

where βx = 1.46 + 0.15(2− s). This approximation is quite accurate. Its errors are

less than 18% for s = 1.8÷ 2.5 and νx ≤ 103νbreak.

We assume that TeV γ-ray emission from SN 1006 is due to IC process in the

black-body photon field of the cosmic microwave background. The convolution of

the electron distribution Eq. (5.1) with the δ-function approximation for the single-

particle IC emissivity is also inaccurate to describe the γ-ray radiation of electrons

with energies around Emax. Therefore, like in the case of the synchrotron radiation,

we use an approximate formula for the IC emissivity, too.
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Let us consider IC emission at 1TeV. We developed an approximation for the

numerically integrated IC emissivity (5.2) of electrons with the energy spectrum

(5.1) at γ-ray energy 1TeV:

qic@1 ∝ K exp
(

−βicE−0.75
max

)

(5.9)

where βic = 15 for 2 ≤ s ≤ 2.5 and βic = 15 + 2(2− s) for 1.8 ≤ s < 2. The error

of this approximation is less than 25% for Emax ≥ 0.3TeV. This approximation

accounts for the Klein-Nishina decline where necessary.

The maximum energy is related to νbreak by Eq. (5.6) :

Emax = C1ν
1/2
breakB

−1/2 (5.10)

where C1 = c
−1/2
1 . Substitution of Eq. (5.9) with this Emax and K from Eq. (5.4)

results in

qic@1 ∝ qrB
−(s+1)/2 exp



−βic
(

B1/2

C1ν
1/2
break

)0.75


 . (5.11)

This expression relates the radio emissivity and the IC γ-ray emissivity at 1 TeV

with only one unknown, B. It may be used in the same cases where the srcut model

is applicable, that is, if the spectrum of electrons may be approximated by Eq. (5.1)

with s assumed constant from the radio to X-ray emitting electrons.

The idea of our method is represented by Eq. (5.11). Namely, this expression may

be used in a small region (“pixel”) of a SNR projection in order to relate the surface

brightness in radio band and IC γ-rays. Having this relation applied to all “pixels”,

we may predict the main features of the γ-ray morphology of SNR originated in an

IC process. This procedure ‘converts’ the radio image to an IC one.

Another possibility is to start from the hard X-ray map and ‘translate’ it into

the γ-ray image in a similar fashion. Namely, substitution Eq. (5.11) with qr from

Eq. (5.8) yields

qic@1 ∝ qxB
−(s+1)/2 exp



−βic
(

B1/2

C1ν
1/2
break

)0.75

+ βx

(

νx
νbreak

)0.364


 . (5.12)

However, an X-ray image can be used only if it is dominated everywhere by the

nonthermal emission.
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Eqs. (5.11) and (5.12) relate emissivities of the uniform plasma. We use these

equations to deal with surface brightnesses that are superpositions of the local emis-

sivities along the line of sight. Strictly speaking, this may be done only for the thin

rim around SNR edge where plasma is approximately uniform along the line of sight.

However, this approach may also be extended to deeper regions of SNR projection

(see Appendix C.1). Since X-ray limbs are (and γ-ray ones are expected to be) quite

thin and close to the edge, our method is able to correctly determine the location of

the bright limbs in the IC γ-ray image of SN 1006. In the interior of SNR projection,

we consider B and νbreak as ‘effective’ values for a given ‘pixel’.

It is interesting to note that Eq. (5.11) [or Eq. (5.12)] may be solved for the value

of B. In this way, the method proposed here may be used for deriving the effective

(line-of-sight averaged) MF pattern in SNR from its radio [or synchrotron X-ray]

and IC γ-ray maps. The distribution of νbreak may be obtained from the radio (qr)

and synchrotron X-ray (qx) images by solving Eq. (5.8), without the need of the

spatially resolved X-ray analysis.

5.2.2. Application to SN 1006. Experimental data and models of mag-

netic field. In order to make use of Eq. (5.11) or Eq. (5.12), one needs: i) an ini-

tial image, i.e. the map of distribution of the synchrotron radio (or X-ray) surface

brightness, ii) the distribution of νbreak obtained from the spatially resolved spectral

analysis of X-ray data and iii) the distribution of the effective magnetic field over

the initial image.

We use the high resolution radio image of SN 1006 at λ ∼ 20 cm (Fig. 5.8),

produced on the basis of archival Very Large Array data combined with Parkes

single-dish data presented in Sect. 5.1.1.

As for the X-ray image, we use the 2.0-4.5 keV XMM-Newton EPIC mosaic ob-

tained in Sect 5.1.3, shown in Fig. 5.9. A contour plotted on the images delineates the

boundary of SN 1006. It corresponds to the level of 10% of the maximum brightness

in the soft (0.5− 0.8 keV) X-ray map of SNR (see Fig. 5.2).

The image of the break frequency (Fig. 5.10) was derived on the basis of spatially
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Figure 5.8. Radio image of SN 1006 at λ ∼ 20 cm. The color scale is in units Jy beam−1. The
white contour denotes the boundary of SN 1006.
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Figure 5.9. X-ray image of SN 1006 in 2−4.5 keV. The pixel size is 8′′. The color scale is in units
MOS1 counts s−1 pixel−1.

resolved X-ray spectral fitting results (Sect. 5.1.4). The spectral fits show that α,

the radio spectral index, is between 0.47 and 0.53 everywhere around the shock

(Fig. 5.4). Therefore, we take s = 2α+ 1 = 2 to be constant in SN 1006.

We consider three models for magnetic field inside SNR. SN 1006 is rather sym-

metrical. In the procedure of MF map simulation, SNR is assumed to be spherical,

with the radius equal to the average radius of SN 1006. For technical reasons, MF

is fixed to the postshock value also outside the boundary of the spherical SNR

(Fig. 5.11). This allows us to deal correctly also with regions of SN 1006 which are

larger than the average radius.

Classical MHD description corresponds to the unmodified shock theory. It takes
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Figure 5.10. Break frequency νbreak image (the color scale is in units of Hz).

into account the post-shock evolution of MF and the compression factor which in-

creases with the shock obliquity. In this case, two possible orientations of ISMF are

considered. Namely, NW-SE (Fig. 5.11) in model MF1 (equatorial, or barrel-like,

model) and NE-SW in MF2 (polar caps model). ISMF is assumed to be constant

around SN 1006 with the strength Bo = 10µG. This value is choosen to give, in mod-

els MF1 and MF2, the postshock magnetic field 20÷ 40 µG, a value which follows

from estimations for downstream MF strength [362] and reported γ-ray flux [28].

Such ISMF looks to be unrealistic at the position of SN 1006 far above the Galac-

tic plane. A possibility to provide tens of µG upstream of the shock would be the

magnetic field amplificaion as an effect of efficient cosmic ray acceleration, which is

out of the scope of this study. It should be noted however that the absolute value

of the upstream field plays no role for the purpose of this section. The aspect angle

between ISMF and the line of sight is taken to be 70o for MF1 (Sect. 5.3) and, for

simplicity, also for MF2 (we shall see below that the actual value of the aspect angle

is not crucial for the purpose of the present section, because even different models

of MF lead to quite similar γ-ray pattern).

The procedure of generation of the average MF maps for MF1 and MF2 models

is as follows. First we calculated numerically MHD model of Sedov SNR [13,21,303].

This gives us three-dimensional distribution of MF inside SNR. An effective MF in

a given ‘pixel’ of SNR projection is taken as a straight average for this 3-D MF

distribution along the line of sight, accounting for the azimuthal orientation and
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Figure 5.11. Map of effective MF used in calculations for the model MF1. ζ = 0.9. This map is
rotated on 90o for the other scenario, MF2. The color scale is in units of Bo.

an aspect angle of the ambient MF in respect to the observer as well as the fact

that most of emission arise right after the shock. Really, in order to generate map of

effective MF one should calculate the emissivity-weighted average. Such an approach

requires however the knowledge of 3-D distribution of emitting electrons within

SNR which is unknown until one makes the full modelling from basic theoretical

principles. In contrast, the scope of the present section is to ‘extract’ the structure

of radiating material from the observational data. Therefore, our procedure consists

in approximate calculation of emissivity-weighted MF, without considering the 3-D

distribution of relativistic electrons. In fact, most emission comes from a rather thin

shell with thickness ∼ 10% of SNR radius. Therefore, in calculations of the average

magnetic field, we consider only this part of SNR interior, namely the integration

along the line of sight is within regions from ζR to R, with ζ < 1 (Fig. 5.11).

A choice of ζ is rather arbitrary. It is apparent from calculations that contrasts

between the outer regions and the interior of the IC image depend on this choice.

The preference to the value of ζ does not alter, however, the main features of the

predicted IC morphology of SNR. Note that the azimuthal variation of the brightness

is not affected at all by ζ for radii of SNR projection ≥ ζR. In other words, the

position of the limbs on the synthesized IC γ-ray image may not be altered by the

particular choice of ζ. Nevertheless, in order to determine the most appropriate value
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of ζ, we made the full MHD simulations of Sedov SNR with model of evolution

of the relativistic electrons in the SNR interior from [303]. Then the map of the

emissivity-weighted average MF was produced from these simulations and compared

with our maps of effective MF derived for different ζ. In this way, we found that

the value ζ = 0.9 provides the good correspondence between MF maps in these two

approaches.

The third model of MF is relevant to the nonlinear acceleration theory with

the time-dependent MF amplification and the high level of turbulence (Bohm limit;

[361]). The quasi-parallel theory assumes in this case that the turbulence is produced

ahead of the shock, not downstream. The compression of the (already turbulent)

magnetic field then does not depend on the original obliquity [75,363]. Rakowski et

al. [299] argue that shocks of different initial obliquity subject to magnetic field am-

plification become perpendicular immediately upstream. ISMF is therefore assumed

to increase on the shock by a large factor (due to compression and amplification),

the same for any obliquity. In addition, in model MF3, we assume MF to be approx-

imately uniform everywhere inside SNR [77], with the strength 150µG [219].

Theoretical work on magnetic-field amplification starting with [70] focuses on

shocks which are originally parallel far upstream, with some implications that the

process is less effective for (initially) perpendicular shocks. In this scenario, obliquity

dependence of the post-shock MF would be opposite to the classical one. Really, MF

amplification is expected to follow acceleration efficiency which decrease with the

obliquity. If so, limbs in SN 1006 should correspond to the largest post-shock MF.

Such MF morphology is qualitatively represented by MF1 model (Fig. 5.11).

Some other notes to our methodology are in order. All initial maps were homog-

enized to the same size, orientation, resolution and pixel size. Eq. (5.11) is applied

to each pixel of the initial images. The maximum brightness on images is fixed at

the maximum value in the histogram distribution which has at least 10 pixels. The

minimum is fixed at the level 1/100 of the maximum value. This is true for all the

images, including the synthesized images, the observed X-ray and radio ones, and

excluding the MF and νbreak maps.
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Figure 5.12. Radio image of SN 1006 at λ ∼ 20 cm, from Fig. 5.8, smoothed with Gaussian with
2′ sigma.
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Figure 5.13. X-ray image of SN 1006 in 2-4.5 keV, from Fig. 5.9, smoothed with Gaussian with
2′ sigma.

Some images are smoothed to fit the resolution of HESS. The resolution used is

FWHM = 4.75′ [37], so the Gaussian sigma is 2′. The role of smoothing is visible

on Figs. 5.12, 5.13, to be compared with radio and X-ray images on Figs. 5.8, 5.9.

5.2.3. Synthesized images and HESS observations of SN 1006. To

check our approach, we made use of Eq. (5.8) to generate the X-ray image of SN 1006

starting from the radio one. We stress that we do not need any assumption about MF

configuration for this test, everything needed for radio to X-ray conversion may be

taken from observations. Really, we need just the input radio image (Fig. 5.8), and

the distribution of the break frequency (Fig. 5.10). The resulting image is presented

on Fig. 5.14. It shows good correlation with the hard X-ray observations (Fig. 5.13),
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Figure 5.14. X-ray image of SN 1006 at 2.4 keV generated from the radio one (Fig. 5.8) with the
use of Eq. (5.8) and smoothed to 2′ Gaussian sigma. The color scale is normalized to the maximum
brightness.

confirming that the proposed method works well. It restores the main properties

of the observed hard X-ray image: essential decrease of the thickness of the two

bright synchrotron limbs in X-rays comparing to the radio band (Fig. 5.12), correct

position of the limbs and negligible emission from the interior. Therefore, the method

is reliable to be used for simulation of the γ-ray images of SNRs3.

Synthesized TeV γ-ray images of SN 1006 due to IC process are presented on

Fig. 5.15 (model MF1, barrel-like SNR in classical MHD or polar caps in non-

linear approach), Fig. 5.16 (MF2, polar-caps in classical MHD) and Fig. 5.17 (MF3,

uniform MF in the SNR interior for Berezhko et al. [75] non-linear model). Images

presented on the left panels were obtained from the radio map as initial model,

while those shown in the right panels have the hard X-ray map as the starting

point. Middle panels represent ‘radio-origin’ γ-images of the left panels smoothed

to the resolution of HESS.

Let us first consider the γ-ray morphologies obtained from the radio image. Two

arcs dominate in all three MF configurations. Their locations correspond to limbs in

3The agreement between the observational and the synthesized X-ray maps is not perfect because the ‘effective’

resolution of the synthesized X-ray image cannot be better than the ‘resolution’ of the image of νbreak. The effective

resolution of νbreak image is defined by the size of 30 rim regions used for spectral analysis (see Fig. 5.2) that in

turn is determined by the photon statistics. Namely, the radial resolution in the image of νbreak is limited, since

the radial profile of the cut-off frequency is assumed to be constant inside the rim regions. Note that the azimuthal

‘resolution’ is better than radial (see profile of νbreak on Fig. 5.5).
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radio and X-ray images. This confirms that correlation between TeV γ-ray and X-

ray/radio morphologies may be considered as direct evidence that the γ-ray emission

of SN 1006 observed by HESS is leptonic in origin.

Geometry of MF essentially different from those we considered might result in

different predicted γ-ray images of SNR. Nevertheless, our results demonstrate that if

MF strength varies within factor ∼ 3 around the shock (Fig. 5.11), any configuration

of MF results in double-limb IC γ-ray image of SN 1006. The reason, in accordance

with Eq. (5.11), is the contrasts in (radio or X-ray) brightness and νbreak which

dominate any moderate azimuthal variation of MF. The use of the observed ratios

of the radio surface brightness and the break frequency between NE and SE regions

in Eq. (5.11) shows that a variation of MF BNE/BSE larger than a factor of 4 may

reverse the location of bright IC limbs.

For areas with the same radio surface brightness, higher MF implies lower IC

γ-ray brightness, Eq. (5.11). We have therefore different azimuthal contrasts (i.e.

the ratio of maximum to minimum brightness around the rim) in γ-ray images for

different models of MF. In particular, in model MF1 the strength of the postshock

MF is maximum in NE and SW regions (Fig. 5.11) where the radio brightness has

maxima. At the same time, MF is smaller in faint NW and SE regions. This leads

to small azimuthal contrast of brightness between bright and faint regions in γ-ray

image (Fig. 5.15, left). In the opposite model MF2 the strength of the postshock MF

is maximum in the faint NW and SE regions, that results in the largest brightness

contrast (Fig. 5.16, left). Two arcs are therefore more pronounced in the γ-ray image

for models MF2 and MF3.

The differences in γ-images for three models of MF are not so prominent after

smoothing them to the resolution of HESS. In all three cases (Fig. 5.15-5.17, center

panels), there are two bright limbs in the same locations corresponding to limbs on

the smoothed X-ray map shown in Fig. 5.13. The synthesized images can be also

directly compared to the HESS map of SN 1006, Fig. 1.8, [28]. Good correlation

between the synthesized and the observed images allows us to prefer leptonic origin

of TeV γ-ray emission of this SNR. The uncertainties introduced in our method by
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Figure 5.15. Predicted IC morphology of SN 1006 at photons with energy 1TeV, for the model
MF1. IC image generated from the radio map (left); the same smoothed to 2′ Gaussian sigma to fit
the HESS resolution (centre); IC image generated from X-ray map and smoothed to 2′ Gaussian
sigma (right). The color scales are normalized to the maximum brightness.
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Figure 5.16. The same as on Fig. 5.15 for the model MF2.
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Figure 5.17. The same as on Fig. 5.15 for the model MF3.

the lack of knowledge of the real MF inside the remnant do not alter this correlation,

as it is clearly seen from our synthesized images.

TeV γ-ray images obtained from the initial hard X-ray map (Fig. 5.15-5.17, right
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panels) are quite similar to those from the initial radio map, except for the config-

uration MF1. This fact reinforce the goodness of our method. The reason of differ-

ences between the ‘radio-origin’ and the ‘X-ray-origin’ γ-ray images in the MF1 case

(Fig. 5.15right) is the contribution of the thermal X-ray emission to the hard X-ray

image which was used, in the SE and NW regions of SN 1006. Namely, our fitting

show that the fraction of thermal emission in the overall 2-4.5 keV flux in the SE re-

gion is about 50% [250]. The prominent but localized NW bright spot is completely

dominated by the thermal X-ray emission [356]. So, the γ-ray brightness in these

regions is overestimated in our synthesized images. This effect is not prominent for

MF2 and MF3 configurations because MF is large enough in SE region to visually

decrease the brightness there. Thus, the X-ray map may be used as initial one in our

method only if it is completely dominated everywhere by the nonthermal emission.

5.3. Injection model and orientation of ISMF in SN 1006

The interstellar magnetic field creates different obliquity angles with the shock

normal in different places of the SNR surface. Efficiencies of injection and accelera-

tion, compression and/or amplification of ISMF may depend on the shock obliquity.

Therefore, in order to model non-thermal emission, it is important to make assump-

tions about ISMF orientation around these objects.

In many cases the ISMF, galactic in origin, may be assumed to be rather uniform

on the scales of SNR sizes. Bilateral supernova remnants [159,212]) with symmetric

structure in radio images limit the orientation of the ISMF component in the plane

of the sky. In the case of the BSNR archetype SN 1006, for instance, the ISMF may

be parallel to the symmetry axis, spanning from SE to NW, or be perpendicular to

it, running from NE to SW. The former corresponds to barrel-like (equatorial belt)

structure and the latter to polar-cap structure [321]. However, in order to draw

reliable conclusions about the shock obliquity, it is also necessary to consider the

aspect angle – the angle between ISMF and the line of sight – which is still unknown.
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Figure 5.18. Surface brightness distributions (in linear scale) of the radio emission of adiabatic
SNR for different aspect angles: φo = 0o (a), 60o (b), 90o (c). Uniform ISM, uniform ISMF and
isotropic injection are assumed. In cases (b) and (c), the component of ISMF in the plane of the
sky is parallel to the horizontal axis. In all three plots, the levels of brightness are spaced in the
same way.

In the present section, we propose a new method for determination of the aspect

angle. We extract the azimuthal profiles of the synchrotron surface brightness dis-

tribution in a given SNR and compare the observed profiles with those synthesized

from theoretical models, making different assumptions on the aspect angle and/or

on the details of injection and acceleration of electrons. The “true” aspect angle is

that of the best-fitting model. As a first application of the method, we analyzed

SN 1006.

5.3.1. Aspect angle in bilateral SNRs: the method. The method to de-

termine the aspect angle φo between ISMF and the line of sight on the basis of radio

emission in SNRs, can be deduced from the simulated radio maps produced for a

Sedov SNR expanding through a uniform ISM and ISMF, presented in Fig. 5.18.

As shown in the figure, the azimuthal profile of the surface brightness is sensitive to

the aspect angle: it is constant for φo = 0o (Fig. 5.18a: ISMF is directed towards

the observer) and it is steepest for φo = 90o (Fig. 5.18c: ISMF is in the plane of

the sky). Thus, comparison of an observed azimuthal profile with theoretical ones

allows one to conclude about the aspect angle.

The radio surface brightness S at some ‘point’ of SNR image is
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S ∝
∫

KB(s+1)/2dl (5.13)

where the integration is along the line of sight within the volume of SNR. The post-

shock magnetic field is generally a subject of compression, and under conditions of

efficient cosmic ray acceleration, amplification. The magnetic field can be expressed

as Bs = AB(Θo)Bo where AB is a product of the compression factor σB and an ampli-

fication factor. Since it is unknown whether magnetic field amplification depends on

the shock obliquity, we assume it to be independent of Θo. In this case, the variation

of the post-shock MF with obliquity is only determined by the compression [303],

Bs ∝ σB(Θo)Bo, where

σB(Θo) =

(

1 + σ2 tan2Θo

1 + tan2Θo

)1/2

, (5.14)

σ = 4 is the shock compression ratio for unmodified shocks (changes in this pre-

scription and our results due to the shock modification are discussed in Sect. 5.3.3).

At the shock, the normalization, Ks ∝ ς(Θo) where ς is the injection efficiency

defined as the fraction of accelerated electrons. There are three alternatives for

dependence of injection efficiency ς on obliquity of the shock typically considered

in the literature: isotropic injection (i.e. ς independent of Θo), quasi-parallel (ς ∝
cos2Θs) or quasi-perpendicular (ς ∝ sin2Θs) injection [157]. Therefore, the injection

efficiency either decreases (quasi-parallel) or increases (quasi-perpendicular) with

increasing obliquity, or it is independent of Θo. The MF compression factor increases

with Θo.

There are theoretical expectations that injection is higher at parallel shocks

[137, 363]. In contrast, observational evidence seems to argue for isotropic or quasi-

perpendicular injection in SNRs [157, 264]. We consider all three possibilities.

In symmetric, bilateral SNRs (like SN 1006), the possible orientations of the

ISMF in the plane of the sky are limited. Namely, ISMF may be parallel to the

symmetry axis or perpendicular to it. For example, in SN 1006, if the injection

is isotropic or quasi-perpendicular, the bright limbs correspond to the magnetic
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“equator” (equatorial belt) and ISMF should be oriented in SE-NW direction. If

injection prefers quasi-parallel shocks, the bright limbs of SN 1006 are two polar

caps and MF should be oriented in the NE-SW direction. In other words, the model

of injection determines the orientation of the plane-of-the-sky component of ISMF.

We synthesized a number of radio surface brightness maps of a Sedov SNR evolv-

ing in a uniform ISM and uniform ISMF.

Radio maps of the model SNR were calculated for a range of indices: s from 2

to 2.2, b from −3/2 to 2, β from 0 to 2. For each set of parameters, we produced a

series of images by changing the aspect angle φo from 0 to π/2. For the image with

φo = π/2 in each series, we found the radius of projection ̺Smax which corresponds

to the position of the maximum brightness Smax = S(̺Smax, ϕSmax) (by definition

ϕSmax = π/2 for this position)4. We then traced the surface brightness S(̺Smax, ϕ)

at this ̺Smax for azimuthal angles ϕ from 0 to π/2 and plotted these distributions

normalized by the brightness S(̺Smax, ϕSmax).

Fig. 5.19 shows the plots for different aspect angles, assuming b = 0, β = 0,

s = 2.2, and considering the three models for obliquity dependence of injection

efficiency. We found a reasonable result, namely that all the azimuthal profiles of

surface brightness which we obtained are almost insensitive (within 10 − 20%) to

the values of s, b and β (at least in the case of uniform ISM and uniform ISMF

assumed here). That means the azimuthal profiles of radio brightness are almost

independent of the shapes of the distributions of relativistic electrons and magnetic

field downstream of the shock, in a full agreement with approximate formulae from

Sect. 4.2. Such stability allows one to safely use the method proposed here for

determination of the aspect angles from radio maps of SNRs if the ISM and ISMF

in which SNR expands can be considered to be mostly uniform.

5.3.2. Application to SN 1006. The method is applicable to SNRs expand-

ing in almost uniform ISM and ISMF. BSNRs, particularly SN 1006, are ideal candi-

4The radius ̺Smax is almost the same for any aspect angle, except for φo < 30o in the quasiparallel model. In

the case of quasiparallel injection, the angle φo = 30o roughly separates cases with a centrally peaked morphology

(φo < 30o) and a bilateral one (φo > 30o).
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Figure 5.19. Azimuthal variation of the radio surface brightness S(̺Smax, ϕ) for different aspect
angles φo. Numerical results (solid lines) are normalized to S(̺Smax, π/2). Calculations are done
for b = 0, β = 0, s = 2.2; the plots however are almost the same for different values of b, β
and s. The models of injection are quasi-parallel (a), isotropic (b) and quasi-perpendicular (c).
¯̺Smax = 0.98 (a) and ¯̺Smax = 0.97 (b, c). Experimental data for SN 1006 are shown for region I
(dark) and II (light). They are measured at 1.5GHz between 12 and 14 arcmin from the centre and
are normalized to the maximum value of 1-σ errors. Azimuthal profiles given by the approximate
formula (5.15) are shown by dashed lines.

date targets of this study. In this SNR, uniform conditions are likely to be achievable

since SN 1006 is located over 500 pc above the galactic plane. In addition, the SE

edge of the SNR exhibits a near-spherical shape, a good argument for expansion of

the shock into a uniform ISM.

To determine the MF orientation we only considered the SE half of SN1006 (re-

gions I and II on Fig. 5.1) because this part is quite spherical and therefore is more

appropriate for comparison with the numerical results obtained in Sect. 5.3.1 for

a SNR in uniform ISM. From the radio map of SN 1006, we extracted the radial

brightness profiles (along radii of the SNR projection separated on ∆ϕ = 12 de-

grees). The experimental radial distributions are subject to pixel-to-pixel variations.

In order to lower the possibility of error due to fluctuations in observational data,

we calculated the averages of brightness and 1-σ errors within 12 to 14 arcmin from

the centre of SN 1006 (where the maximum in radial distribution of the surface

brightness is located).

Experimental data are compared with the theoretical results on Fig. 5.19. The

estimated aspect angle φo differs much for the polar-cap and the equatorial-rim

models of SN 1006. From the numerical simulations, the best-fitted aspect angle

is φo = 70o ± 4.2o for isotropic injection, φo = 64o ± 2.8o for quasi-perpendicular
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injection and φo = 11o ± 0.8o for quasi-parallel injection. Considering an isotropic

injection and equatorial-rim model for SN 1006, Reynolds [302] found a similar

aspect angle, φo = 60o.

5.3.3. Implications for model of injection. We found that the azimuthal

profiles of the radio surface brightness of the Sedov SNR are almost independent of

the shapes of the distributions of relativistic electrons and magnetic field downstream

of the shock. Close to the shock, the azimuthal variations of the radio brightness of

the SNR may be approximately described as (Appendix C.2):

S̺(ϕ) ∝ ς(Θo,eff(ϕ, φo)) AB(Θo,eff(ϕ, φo))
(s+1)/2 (5.15)

In order to compare the approximate azimuthal profiles given by this formula with

the numerical results, we plotted them on Fig. 5.19 with dashed lines. This figure

shows that (5.15) can be used as an approximation for the azimuthal distributions

of the radio surface brightness in SNRs evolving in uniform medium and uniform

magnetic field.

It is worth emphasizing that our analysis may have some implications for the

model of injection efficiency.

Our argument against the quasi-parallel injection is the morphology of SN 1006 it

should have in uniform ISM and uniform ISMF. Fig. 5.20 shows an image of SN 1006

in case of the quasi-parallel injection (ς ∝ cos2Θs) and aspect angle φo = 11o.

Since the ambient magnetic field should be almost aligned with the line of sight

and injections prefer parallel shocks (‘polar caps’ directed toward and away from

observer), the brightness distribution of SN 1006 should be centrally brightened

(with one or two radio ‘eyes’ within thermal X-ray rim), contrary to what is observed.

Our argument seems therefore to disagree with polar-cap morphology, and favour

a NW-SE orientation of interstellar magnetic field around this SNR.

Rothenflug et al. [321] suggested a criterion, which is considered as an argument

on behalf of the polar-cap model for SN 1006. Namely, if SN 1006 has an equatorial

rim the observer should see some emission between the bright limbs. Numerically,

the value of the parameter Rπ/3 defined as a ratio between total power coming from
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Figure 5.20. Surface brightness distribution (in linear scale) of SNR with the same parameters as
on Fig. 5.19. The surface brightness distribution is calculated assuming the quasi-parallel model of
injection and the aspect angle φo = 11o. The component of ISMF in the plane of the sky is parallel
to the horizontal axis. The levels of brightness are spaced in the same way as on the Fig 5.18.

the interior and that from the limbs should be Rπ/3 > 0.5 if SN 1006 is a barrel.

The most likely explanation for the smaller value of Rπ/3 is that the visible limbs

are polar caps [321]. The value of this ratio is Rπ/3 ≈ 0.7 in radio [321]. Therefore,

based on the Rπ/3 criterion alone, the radio data itself cannot give preference neither

to equatorial-rim nor to polar-cap model of SN 1006. However, Rπ/3 ≤ 0.3 in X-

rays [321], prefering therefore the latter model.

To this end, our argument against polar caps are in contradiction with Rπ/3-

criterion applied to X-ray data. Note, that the Rπ/3-criterion is obtained for cylin-

drical source of isotropic emission. It would be interesting to see how deviations

from this assumption may affect the criterion. Our models assume a uniform ISM

and uniform ISMF. Could it be possible to reproduce the bilateral morphology (i.e.

to obtain φo > 30o) with quasiparallel injection if one considers a gradient in the

ISMF? Assuming the contrast of the ISMF between the NE and SE regions can be

determined by the relationship BSE/BNE ≃ (SSE/SNE)
2/3, a ratio of 4 for φo = 45o,

and 20 for 60o, could make the azimuthal profile of radio emission comparable to

the observed one. Further investigation, including multi-dimensional modeling of

SN 1006, as recent VHE γ-ray data could help us to understand the nature of mor-

phology of this SNR.
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5.4. Observational constraints on SN 1006

The question of the origin of TeV γ-rays is closely related to the problem of the

presence and the role of non-linear effects of cosmic ray acceleration by the forward

shock. One of the key parameter distinguishing these two possibilities is the strength

(and thus the nature) of the post-shock magnetic field. Classical picture considers

only compression of typical ISMF Bo ∼ 3µG to downstream values of order of

tens micro Gauss. Model including non-linear acceleration (NLA) predicts ISMF

to be first amplified upstream due to the back reaction of accelerated protons to

Bo ∼ 30µG and then compressed above hundred micro Gauss. In the former case

the IC emission of electrons would be responsible for the most of TeV γ-rays, in the

latter case the proton-origin TeV γ-radiation is expected to be dominant.

The spectrum of SN 1006 may be explained in these two scenarios. One limiting

possibility (we call it ‘extreme NLA model’), namely the case of ISMF amplified

and compressed to Bs ≈ 150µG is considered in details by Berezhko et al. [83].

The model successfully fits the broadband nonthermal spectrum from SN 1006 and

the sharpest radial profile of the X-ray brightness. TeV γ-rays are shown to be

produced in both the inverse-Compton mechanism and the pion-decay one, the latter

is dominant.

We present a new way to compare model and observations, namely, our goal is to

investigate the formation of the patterns of the nonthermal images in radio, X-rays

and γ-rays. At present time, this may be done only with the use of the classic MHD

and acceleration scenario. Therefore, the questions behind the present section are:

may a classical model explain the radio to TeV γ-ray observations of SN 1006 and

can one put observational constraints on some properties of particle kinetics and on

MF?

In the present section, such ‘classic’ model of SN 1006 is described and we use

the spatial distribution of the observational data to estimate some parameters of

the model. The subsection order is determined by the order of parameters determi-
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nation. Namely, the radio azimuthal and radial profiles are analysed in Sect. 5.4.1,

variation of the break frequency in Sect. 5.4.2, the broadband spectrum of SN 1006 is

calculated in Sect. 5.4.3 to check consistency of our model and to determine the av-

erage MF, X-ray and γ-ray brightness are subject to Sect. 5.4.4. Sect. 5.4.5 presents

critical discussion about both our ‘cassical’ and NLA models of SN 1006.

5.4.1. Radio maps. Let us consider an SNR in uniform ISM and uniform

ISMF, in the adiabatic stage of evolution. The Sedov solution is therefore applied

for hydrodynamics. We consider ideal gas with the adiabatic index γ = 5/3. MF

behaviour is classic, without amplification. Classic (unmodified) shock creates the

energy spectrum of relativistic electrons in the form N(E) = KE−s exp(−E/Emax).

Azimuthal profiles. Symmetrical bright limbs in SN 1006 limit possible ori-

entations of ISMF in the plane of the sky (Sect. 5.3). Close to the shock, the az-

imuthal distribution of the radio surface brightness Sr is mostly determined by

Sr(ϕ) ∝ ς(ϕ) σB(ϕ)
(s+1)/2. If injection is isotropic, ς(Θo) = const, Θo the obliq-

uity angle, (or prefers quasi-perpendicular shocks) then the bright radio limbs corre-

spond to projection of the equatorial belt with NW-SE orientation of ISMF (BarMF

or barrel-like model). If injection prefers quasi-parallel shocks, the bright limbs of

SN 1006 are two polar caps and ISMF should be oriented in the NE-SW direction

(model CapMF). ISMF creates an aspect angle φo with the line of sight. The com-

parison of the experimental azimuthal profiles of the radio brightness with profiles

from theoretically synthesized radio images allows us to determine an aspect angle.

It is φo = 70o for BarMF. For a sake of generality, in the next subsection, we explore

also the CapMF model with φo = 70o (in the polar caps morphology, the aspect

angle larger than ≃ 50o keeps the two radio limbs in the observed locations).

Radial profiles. The post-shock value of the normalization Ks is proportional

to the injection efficiency ς (the fraction of accelerated electrons in the total post-

shock electron density nes). Injection efficiency may vary with the shock strength.

We assume that Ks ∝ V −b where V is the shock velocity, b is a parameter.
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It may be shown (Appendix E.1) that the surface brightness distribution of Sedov

SNR in the radio band is

Sr = const Sr(ρ̄, ϕ;φo, b) ν
−(s−1)/2Ks‖B

(s+1)/2
o R (5.16)

where ρ̄ = ρ/R, ρ is the coordinate along radius of SNR. For fixed ϕ, Sr(ρ̄) is a

universal profile which, for a given dependence of ς(Θo), aspect angle φo and index

s, depends only on the parameter b5.

Let us use the experimental radio image of SN 1006 [281] for determination of b.

We extract the radial profiles of the radio brightness along a number of the regions

shown on Fig. 5.21. They are presented on Fig. 5.22 together with the theoretical

profiles Sr(ρ̄; b) calculated numerically for three values of b = −1, 0, 1. Close to the

shock front, the experimental profiles seems to be between theoretical ones calculated

for b = −1 and b = 0.

However, Fig. 5.22 demonstrates that theoretical profiles of the radio brightness

calculated for Sedov SNR in uniform ISM/ISMF do not follow the experimental

data to larger extend, namely for ρ < 0.94R. The reason of such behavior could

be nonuniformity of ISMF (or ISM). The radio profiles from SW limb support such

scenario: they monotonically increase from the shock to ≃ 0.85R (Fig. 5.21) while

the maximum of the radio brightness in Sedov SNR should be located around ≃
0.97R. In the present study, we adopt b = 0.

5.4.2. Obliquity dependence of the maximum energy. Dependence of

Emax on obliquity angle Θo is represented with Emax(Θo) = Emax‖fE(Θo). Sect. 5.1

consider 30 small regions around the whole forward shock of SN 1006. Spectral fitting

of X-ray emission from these regions results in particular in azimuthal variation of

νbreak, a parameter in srcut model of XSPEC which is related to the maximum

energy of electrons as

Emax = c
−1/2
1 ν

1/2
breakB

−1/2
s . (5.17)

5Eq. (5.16) shows also that the universal azimuthal profile of the radio brightness Sr(ϕ) depends only on the

aspect angle φo because b is assumed to be independent of obliquity. This property allowed us to determine φo

from the radio map (Sect. 5.4.1)
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Figure 5.21. NE and SW limbs of SN 1006 in radio at λ ∼ 20 cm (top panels) and X-rays
with energy 2-4.5 keV (bottom panels) [250, 281]. The maximum value of brightness is 100 times
the minimum one, in the radio and X-ray images. Radio image is smoothed with Gaussian with
σ = 0.4′ to lower fluctuations. Color straight lines mark the regions used for extraction of the
radial profiles of brightness; length of regions shown is from 0.8R to 1.1R. Green lines represent
X-ray contours, linearly spaced.

Figure 5.22. Radial profiles of the radio brightness in NE limb of SN 1006. Experimental profiles
(from regions 1-5, Fig. 5.21) are in color. Theoretical profiles are in black, for b = −1 (dot), b = 0
(solid), b = 1 (dashed). They are calculated for s = 2, φo = 70o, isotropic injection and ϕ = 70o

(ϕ = 65o − 75o for the observational profiles).
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Figure 5.23. Variation of Emax (shown with vertical one-sigma errors) over the forward shock
in SN 1006, obtained from experimental data on νbreak and Eq. (5.17), for two models of ISMF:
BarMF (dark crosses), CapMF (light crosses). Aspect angle φo = 70o. Dashed light line: the
loss-limited model with η = 1 for CapMF. Solid dark line: the time-limited model with η = 1.5
for BarMF. Dashed dark line: the loss-limited model with η = 7.6 for BarMF. Dotted dark line:
the loss-limited model with η = 3.1 for BarMF and IC radiative losses of electrons included,
Bo = 0.65µG.

where Bs is the strength of the post-shock MF. We use this relation together with

the experimental data on νbreak to determine the function Emax(ϕ).

The azimuthal profiles of Emax determined with (5.17) for two models of ISMF

is shown on Fig. 5.23.

In the frame of the classical theory of acceleration, Reynolds [303] developed three

different theoretical models for surface variation of Emax. Namely, the maximum

energy of accelerated electrons may be determined 1) by the electron radiative losses,

2) by the limited time of acceleration and 3) by escaping of particles from the

region of acceleration. The third model results in constant Emax that contradicts

to Fig. 5.23. We do not consider it. The rest two models depend on the level of

turbulence reflected by the ratio η ≥ 1 of the mean free path of particle to its

Larmour radius.

Minimum of Θo happens in SN1006 at azimuth 0o for BarMF and at azimuth 90o

for CapMF. Therefore, Emax is expected to increase or decrease with obliquity for

BarMF and CapMF respectively (Fig. 5.23). In the loss-limited model of Emax, the

function fE(Θo) increases with increasing obliquity for η ≥ 3. In the time-limited

model, the function fE(Θo) increases with obliquity for any η. In contrast, Fig. 5.23

shows decrease of Emax from ϕ = 90o to 180o for CapMF (light crosses). Thus, the
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time-limited model and loss-limited with η ≥ 3 are not applicable if one considers

polar-caps morphology of SN 1006. In the loss-limited case, the fastest decrease with

obliquity is for η = 1 but it does not fit the experimental profile of Emax for model

CapMF (light dashed line on Fig. 5.23). To the end, the NE-SW orientation of ISMF

(CapMF, polar caps) is not able to explain observed azimuthal variation of νbreak,

under assumptions of uniform ISMF/ISM and classic MHD/acceleration. We tried

also other aspect angles, φo > 50o, with and without inclusion of IC radiative losses.

However, the conclusion remains unchanged.

In case BarMF (dark crosses), the function fE(Θo) for SN 1006 may be determined

by fitting experimental data with a model of [303]. The best-fit in the time-limited

model is reached for η = 1.5 ± 0.02 (χ2/dof = 12.7, solid dark line on Fig. 5.23).

The best-fit for the loss-limited model is for η = 7.6± 0.11 (χ2/dof = 25.8, dashed

dark line) but the shape of the fit does not follow well the observed one. The last

fit becomes better after inclusion of IC radiative losses of relativistic electrons: η =

3.1±0.02 (χ2/dof = 14.0, dotted dark line). ISMF in this case is lower,Bo = 0.65µG

that results in Emax about 120TeV in NE limb. Though so low pre-shock MF could

be relevant for the location of SN 1006 far above the Galactic plane, it looks to be

unreasonable to provide observed radially-thin X-ray limbs as well as synchrotron

and inverse-Compton spectra.

Thus, the azimuthal variation of νbreak may be explained in the frame of the classic

MHD/acceleration theories. It limits ISMF orientation to only BarMF configuration,

in agreement with the same conclusion obtained from azimuthal fits of the radio

surface brightness (Sect 5.3). If so, the efficiency of injection should be quasi-isotropic

(i.e. almost independent of obliquity) in the classical model of SN 1006. The time-

limited model of [303] with η = 1.5 is the most appropriate for Emax(Θo); we use

it the present section. In this model, the maximum energy of accelerated electrons

varies with time very slowly [303]. We assume therefore that Emax is independent of

the shock velocity.

Solid dark line on Fig. 5.23 shows thatEmax = 8.5(Bo/20µG)−1/2TeV at azimuth

ϕ = 0. Because the aspect angle φo = 70o, this value of Emax corresponds therefore
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to the obliquity Θo = 20o. It is smaller at the parallel shock, namely Emax ‖ =

0.644Emax for η = 1.5 [303]. Therefore,

Emax ‖ = 5.4

(

Bo

20µG

)−1/2

TeV. (5.18)

The same time-limited model predicts Emax⊥ = 3.25Emax‖.

5.4.3. Total radio, X-ray and TeV gamma-ray spectrum. In calcula-

tions of the synchrotron spectrum, the self-similarity of Sedov solutions allows us to

represent all the properties of the downstream evolution of the fluid elements, the

magnetic field and the relativistic electrons in the SNR interior by a universal con-

stant ζr and modification factor ηsyn; the former convolves the volume distribution

of the radio emissivity, the latter reflects the deviation of the X-ray spectrum from

the power-law (for more details see Appendix F.1). Namely, in a broad band (from

radio to X-rays), the synchrotron spectrum of the volume-integrated emission from

the whole SNR may be represented by (Appendix F.1)

Fsyn(ν) = Crζrν
−(s−1)/2ηsyn(ε̃; ǫf‖)B

(s+1)/2
o Ks‖R

3d−2 (5.19)

where Cr is a constant, d the distance to SNR, R the SNR radius.

The constant ζr is different for different models (Appendix F.1); it is ζr = 2.68

(for s = 2.0) or ζr = 2.77 (for s = 2.1) in our model of SN 1006, i.e. for the BarMF

model of MF and the isotropic injection (Sect. 5.4.2) and b = 0 (Sect. 5.4.1).

Reduced photon energy is defined as ε̃ = ν̃ = ν/νc(Emax‖, Bo), νc(E,B) =

c1 〈sinφ〉E2B is the synchrotron characteristic frequency:

ε̃ = 9.5 εkeV

(

Emax‖
10TeV

)−2(
Bo

20µG

)−1

, (5.20)

where εkeV is the photon energy in keV. With Eq. (5.18), this becomes ε̃ = 32.6εkeV.

The reduced fiducial energy ǫf = 637
(

B2
s tEmax

)−1
is one of the key parameter

for modeling the X-ray and γ-ray emission [303]. The energy ǫf is a measure of

importance of radiative losses in modification of the high-energy end of electron

spectrum and therefore of the X-ray and γ-ray spectra and images: radiative losses

are essential for ǫf < 1; if ǫf > 1, adiabatic losses are dominant even for electrons
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with E ∼ Emax [303]. With Eq. (5.18) and the age t = 1000 yrs,

ǫf‖ = 5.8

(

Bs‖
20µG

)−3/2

, (5.21)

ǫf⊥ is σ2
BEmax⊥/Emax ‖ = 52 times smaller because both Bs and Emax are larger at

the perpendicular shock.

The modification factor ηsyn(ν) shows how the synchrotron spectrum Fsyn(ν)

deviates from the power-low dependence ν−(s−1)/2. The modification factor is defined

to be ηsyn = 1 for the radio band; it is effective in the X-ray band and rather quickly

approaches unity with ν decreasing below νc(Emax, B).

In a similar fashion, the spectral distribution of the IC emission from the whole

SNR is (Appendix F.2)

Fic(ν) = CTζTν
−(s−1)/2ηic(ν, ǫf‖, Emax‖)Ks‖R

3d−2. (5.22)

where ηic is the modification factor and ζT the universal constant for IC γ-rays

(exact definitions are given in Appendix F.2). For our model of SN 1006 (isotropic

injection, b = 0), ζT = 0.81 for s = 2 and ζT = 0.79 for s = 2.1.

Fit to the radio spectrum. One choice for the spectral index α = (s − 1)/2

of the synchrotron spectrum could be α = 0.5; a value found during local fitting the

broad-band synchrotron emission [250]. The joint fit of the X-ray spectrum and the

radio flux was done for each of 30 small regions around the whole shock of SN 1006

where the most of the synchrotron emission arises. The value α = 0.5 is almost

within 1-σ error of the best-fit α = 0.6+0.08
−0.09 [54], obtained for the radio fluxes from

SN 1006 at 8 different radio frequencies (most of the fluxes are from [252]). The

best-fit (χ2/dof = 1.0) for these radio data and fixed α = 0.5 is

Fr,obs(ν) = 18.4 (ν/1GHz)−0.5 Jy. (5.23)

Another choice we consider is α = 0.55 (i.e. s = 2.1), a value successfully used in

the broad-band model of the synchrotron and IC spectrum of SN 1006 [28]. The

best-fit (χ2/dof = 0.56) for the same radio data and fixed α = 0.55 is

Fr,obs(ν) = 18.1 (ν/1GHz)−0.55 Jy. (5.24)
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Fit to the X-ray spectrum. The X-ray modification factor is compared with

the observations on Fig. 5.24. The use of the modification factor allows us to avoid

uncertainties in distance, SNR radius and density of emitting electrons. The exper-

imental modification factor ηx,obs is calculated with the use of the SUZAKU X-ray

spectrum Fx,obs from the whole SN 1006 (Fig. 6 in [64]) as a ratio of the observed

X-ray spectrum to the extrapolation of the radio spectrum to X-rays

ηx,obs(ν) =
Fx,obs(ν)

Fr,obs(ν)
. (5.25)

This definition and Eqs. (5.20) with (5.18) provides the modification factor ηx,obs(ν̃)

to be essentially independent of MF. Theoretical ηx(ε̃; ǫf‖), for fixed s, b, fK(Θo) and

fE(Θo), is a function of the reduced fiducial energy ǫf‖ only. This parameter reflects

the efficiency of the radiative losses on the evolution of electrons with energies around

Emax and therefore on the shape of the synchrotron X-ray spectrum. In SN 1006, it

is related to Bo with Eq. (5.21).

The strength of ambient MF Bo = 25µG together with s = 2.0 provide agree-

ment between the X-ray modification factors in our model and observations (Fig. 5.24

blue line). Smaller MF, Bo = 12µG fits SUZAKU spectrum if s = 2.1 (Fig. 5.24

green line). Thus, the radio and X-ray synchrotron spectrum from the whole SNR

may be fitted with few sets of Bo and s.

The value Bo = 25µG is close to that found in the extreme NLA model [83].

However, NLA model assumes that Bo is compressed by the shock to the level

B ≈ 150µG and such high strength is the same everywhere in the SNR volume. In

contrast, our model allows for the large compressed MF only close to the perpen-

dicular shock; an average MF in the classical model of SN 1006 is smaller than in

the extreme NLA case.

Fit to the TeV γ-ray spectrum. Fig. 5.25 compares the modification factor ηic

for γ-rays with observations. The experimental modification factor ηγ,obs is calculated

from TeV γ-ray spectrum Fγ,obs of SN 1006 [28]. It is evaluated as a ratio ηγ,obs =
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Figure 5.24. The modification factors ηsyn in our model of SN 1006 for a set (Bo = 25µG,
s = 2.0) is shown by the blue line and for a set (Bo = 12µG, s = 2.1) by the green line. The
modification factors calculated from SUZAKU data [64] are also shown for cases s = 2.0 (lower)
and s = 2.1 (upper).

Figure 5.25. The modification factor ηic for our model of SN 1006 (lines) and from the data of
( [28] shaded regions) for the parameter sets (Bo = 12µG, s = 2.1) and (Bo = 25µG, s = 2.0).

Fγ,obs/FT of the observed γ-ray spectrum to the extrapolation of the Thomson IC

spectrum to TeV γ-rays. The latter is found from the radio spectrum as FT =

(FT/Fr)theor Fr,obs where the ratio (FT/Fr)theor is calculated with Eqs. (5.19) and

(5.22) for ηsyn = ηic = 1. Thus,

ηγ,obs =
Fγ,obs
Fr,obs

Crζr
CTζT

B(s+1)/2
o . (5.26)

The transformation of the observational TeV spectrum Fγ,obs to the modification

factor ηγ,obs depends directly on the magnetic field strength. Note that this is not a

new way to estimate MF but just a different representation of the method used by

Berezhko and Volk [362].
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TeV γ-ray spectrum is almost restored by by the pure IC emission in the model

with Bo = 12µG and s = 2.1 (Fig. 5.25 green line). The model with 25µG and

s = 2.0 which is supported by the X-ray spectrum as well (Fig. 5.24) does not agree

with the TeV spectrum (Fig. 5.25 blue line) if the only leptonic γ-ray emission is

considered. Larger MF results in requirement of an additional component to fit TeV

spectrum, as it is in NLA model of [83] or in a mixed or hadronic models of [28].

Further in the present section, we consider the pure leptonic model for the TeV

γ-ray emission to see whether it satisfies other observational data on SN 1006; thus,

we assume Bo = 12µG. We would like to note the difference between the spectral

index stot = 2.1 for SN 1006 as a whole and the local indexes sloc = 2.0 representing

small regions covering the SNR edge [250]. We shall analyse the azimuthal and radial

profiles of the surface brightness extracted from regions located quite close to the

shock and use s = 2.0 for this purpose, a value found during the fits of the local

X-ray spectra around the shock. However, our calculations show that s = 2.1 results

in almost the same profiles of brightness.

5.4.4. X-ray and gamma-ray maps.

X-ray azimuthal profiles. It may be shown (Appendix E.1) that the distri-

bution of the surface brightness of Sedov SNR due to synchrotron emission may be

represented by

Sx = const Sx(ν̃, ρ̄, ϕ;φo, b, ǫf‖) E
1−s
maxKs‖BoR. (5.27)

The universal shape Sx of the radial (for fixed ϕ) and azimuthal (for fixed ρ̄) profiles

is determined just by one parameter, ǫf‖, if s, φo, b as well as an obliquity dependence

of the injection efficiency and a model for the maximum energy of electrons are fixed.

In case ǫf‖ ≫ 1 and/or ν̃ ≪ 1, the role of radiative losses on the downstream electron

distribution is negligible and the profiles of the brightness is then independent of

the fiducial energy:

Sx = const Sr(ρ̄, ϕ;φo, b) ν̃
−(s−1)/2E1−s

maxKs‖BoR, (5.28)
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Figure 5.26. Azimuthal profile of the X-ray brightness at fixed ρ̄ which corresponds to the
maximum of the radial distribution of brightness at ϕ = π/2. Calculations are done for B0 = 12µG
(solid line) and 25µG (dashed line); s = 2, ε = 1.2 keV. Experimental data are taken from the
hard X-ray image of SN 1006 (Sect. 5.1.3): profile from SE to SW is by circles, profile from SE to
NE is by diamonds.

that is the same as Eq. (5.16) for the radio brightness. On the other hand, cal-

culations show that the role of evolution of injection efficiency in time (which is

represented by b) is less important for X-rays than for the radio because radiative

losses (represented by ǫf‖) is dominant in determination of the downstream distri-

bution of X-ray emitting electrons.

In our model of SN 1006, even ǫf‖ is not already free parameter, because it is de-

termined through Eq. (5.21) by the strength of MF. Fig. 5.26 compares theoretical

and experimental results. Experimental data are derived averaging X-ray brightness

along radii within annuli centered on the remnant and covering maximum in limbs

(from 13.8′ to 14.8′ off the center for SE-NE and from 14.4′ to 15.2′ for SE-SW

profile). The hard X-ray image of SN 1006 (Sect. 5.1.3) was used. Synthesized az-

imuthal profiles of the X-ray brightness agree with the observations though the fit

is not ideal. Simulations reveal that the strength of MF is not important for the

azimuthal variation of X-ray brightness. In general, the azimuthal profile depends

also on the model of Emax and, in particular, on the gyrofactor η. However, in our

model they are already fixed (Sect. 5.4.2).

Another possibility to change the azimuthal variation of the synchrotron X-ray

surface brightness in a model is to consider the broader end of the electron spectrum,

e.g. N(E) ∝ exp (− (E/Emax)
α) with α = 0.5 [140]. However, such cut off makes
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the fit even worse. Really, the azimuthal distribution of the brightness is roughly

proportional to exp (−(Em(ϕ)/Emax(ϕ))
α) where Em is the energy of electrons which

give the largest contribution to emission at an observed frequency. Fig 5.26 assumes

α = 1; smaller α results in smaller contrasts between azimuth ϕ = π/2 and ϕ = 0

that is against of the observations.

The differences in the synthesized and observed profiles might be due to nonuni-

formity of ISMF and/or ISM.

X-ray radial profiles. The method for the MF strength estimation from the

radial profile of the X-ray brightness is described by [61, 78]. Radiative losses of

electrons with energy E is Ė ∝ E2B2. These losses are less important for electrons

emitting in radio but able to modify effectively the energy spectrum of electrons

radiating X-rays. Therefore, comparing to radio, the synchrotron rim is thinner

in X-rays (its maximum is located within few percents of the SNR radius from

the shock). The idea of the method is that relativistic electrons experience larger

radiative energy losses in the stronger magnetic field. This leads therefore to the

rapid decrease of the spatial distribution of electrons behind the shock and therefore

to thin maximum in the radial X-ray brightness profile. From the observational point

of view, the thinner the rim in X-rays the stronger the magnetic field is expected to

be.

Fig. 5.27 compares theoretical profiles Sx(ρ̄) with data from XMM and Chandra.

Simulated distribution with Bo = 12µG satisfy XMM data. In our model, the MF

compression factor is σB = 3.8 at the azimuth ϕ = 70o. The post-shock MF is

therefore Bs ≃ 45µG in both NE and SW limbs. This value could be considered as

an upper limit for an average MF within the limbs because some observed profiles are

a bit thicker than the theoretical one shown by thick green line. Strength Bo = 25µG

(long-dashed blue line) does not fit XMM radial profiles of X-ray brightness.

However, the sharpest Chandra profile (Fig. 4A in [232]) may not be explained

by 12µg field. Our model fits this profile if the post-shock field is Bs ≃ 95µG.

The same filament was used by [76] to deduce MF ≃ 130µG. Our estimate for the
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Figure 5.27. Radial profiles of the X-ray brightness in NE (left) and SW (right) limbs of SN 1006.
Experimental XMM-Newton profiles (from regions 1-5 and 6-10 respectively, Fig. 5.21) for the
photon energy range 2 ÷ 4.5 keV are in color. The sharpest Chandra radial profile (from Fig. 4A
in [232]) is shown by the histogram (photon energy is 1.2÷ 2 keV). Theoretical profiles are shown
by the thick blue dotted line (for Bo = 25µG, smoothed to the Chandra resolution by Gaussian
with sigma 0.2′′), and by the thick green solid line (for 12µG, smoothed to the XMM resolution
by Gaussian with sigma 2.6′′). They are calculated at 1.2 keV photons, for azimuth ϕ = 70o in
our model of SN 1006, s = 2. Theoretical profile for Bo = 25µG smoothed to the XMM-Newton
resolution is shown by the long-dashed blue line.

Figure 5.28. Radial profiles of the IC γ-ray brightness at 1 TeV in our model of SN 1006, for
azimuth ϕ = 0 (dotted lines) and ϕ = π/2 (solid lines), for two values of Bo; φo = 70o, s = 2.

thinnest filament is comparable but lower than in the NLA model. The reasons of

such discrepancy are in some differences between our and their models. Namely, in

our model, MF decreases downstream of the shock while the extreme NLA model

assumes uniform MF. In addition, we accept (following [303]) that accelerated elec-

trons are confined in the fluid element while [76] include diffusion.

In general, MF estimated from the radial profile of X-ray brightness reflects the

local conditions. The quite large strength of the downstream magnetic field, B ≃
130 − 150µG, adopted in the extreme NLA model, was assumed to be the same
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everywhere in the SN 1006 interior [83]. This value is reasonable for a thinnest NE

filament (Fig. 4A in [232]) as it is apparent from fitting of the radial profile of X-ray

brightness [76, 219]. However, the two close radial profiles are already thicker (Fig.

4B,C in [232]) suggesting therefore a smaller value of B even around the location of

the original sharpest filament.

An effective MF inside SN 1006 (i.e. which may be used to represent SNR as a

whole) is smaller. Our model yields 〈B〉v = 1.06Bo = 12µG (the volume average) or

〈B〉ev = 2.7Bo = 32µG (the radio-emissivity weighted volume average). The latter

is well in agreement with the strength 30µG in the leptonic model of [28] and with

an estimation ≈ 30µG obtained from Fig. 1 in [362] with the HESS spectrum.

A note on the gamma-ray brightness. The distribution of the IC brightness

at γ-rays with TeV energies is given by (Appendix E.2)

Sic = const Sic(ε, ρ̄, ϕ;φo, b, ǫf‖, Emax) Ks‖R. (5.29)

This formula shows which factors affect the shape of the azimuthal and radial profiles

and which determine their amplitudes. It is important that the strength of MF Bo

is related to Emax‖ with Eq. (5.18) and to ǫf‖ with Eq. (5.21). Therefore, once other

parameters are fixed, the nonthermal X-ray and γ-ray images of SN 1006 (namely,

the shapes S of the azimuthal and radial profiles in these bands) depend only on

the value of Bo.

SN 1006 is rather faint in TeV γ-rays to allow at present for the observational

azimuthal and radial profiles of the quality comparable to radio or X-ray bands.

However, we may check whether our model provide the observed location of the

bright γ-ray limbs. Fig. 5.28 shows the radial profiles of the γ-ray surface brightness

in our model of SN 1006. The bright limbs are located at the azimuth ϕ = π/2

in both cases, as observed. Note that such property is not universal; it depends on

the parameters of the model. For example, if an aspect angle would be 90o then the

observed location of the TeV γ-ray limbs may be possible only for ISMF strength

larger than ∼ 100µG.
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5.4.5. Discussion. Magnetic field strength in SN 1006 is one of the key param-

eter in the model. Being related to Emax‖ with Eq. (5.18) and to the the parameter

ǫf‖ (which regulates efficiency of the radiative losses of relativistic electrons) with

Eq. (5.21), it influences almost everything. It is demonstrated that it is important

in formation of the broad-band spectrum from the whole SNR. Nonthermal images

of SN 1006 is also affected by the value of Bo.

We consider a ‘classic’ model of SN 1006, i.e. model which is based on classic

MHD and acceleration theories. Since they are better developed compared to NLA

approach, they allow us to put observational constraints on the (test-particle) kinet-

ics and MF, to compare the azimuthal variations of the electron maximum energy

and the surface brightness in radio, hard X-rays and TeV γ-rays. At the present time,

such comparison may not be done in the frame of the NLA theory. We demonstrate

that the ‘classic’ model is in agreement with most of the observational data.

We try to fix free parameters of the model step-by-step, looking for observations

which is mostly sensitive to some of them (Table 5.2). In addition to the commonly

used broad-band spectrum, the properties of the nonthermal (radio, X-ray and TeV

γ-ray) images of SNR as well as spatially resolved spectral fits are considered.

In particular, the morphology and azimuthal profiles of the radio brightness may

determine the orientation of ISMF. Namely, the radio data may be fitted by the

model with uniform ISMF which is oriented perpendicular to the Galactic plane

under an angle 70o to the line of sight. If so, the injection efficiency should be

independent of obliquity. The radial distribution of the radio brightness depends

now only on the way the injection efficiency varies with time (K ∝ V −b). The

observations however may not definitively fix b. It is somewhere between −1 and 0

but accuracy of the data allow also for a bit wider range. Spatially resolved X-ray

analysis of regions around the forward shock demonstrate that distribution of νbreak

may be explained by the time-limited model of [303] with η = 1.5. The maximum

energy of electrons at the parallel shock is found Emax‖ = 7(Bo/12µG)−1/2TeV. It

is 3.25 times higher at the perpendicular shock.
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Table 5.2
Summary of the observables used for parameter determination and cross-checka

Observable Parameter Value

radio azumuthal profileb aspect angle φo = 70o ± 4.2o

injection type isotropic

orientation of ISMF and SNR morphology SE-NW, barrel-like

radio radial profile b in Ks ∝ V −b −1 <∼ b <∼ 0

local broad-band fits of spectrac local index sloc over shock sloc = 2.0 over most of SNR rim

νbreak azimuthal profilec model of Emax time-limited

ratio of the mean free path to Larmour radius η = 1.5

electron maximum energy at parallel shock Emax‖ = 7.0(Bo/12µG)−1/2 TeV

electron maximum energy at perpendicular shock Emax⊥ = 3.25Emax‖

radio and hard X-ray spectrum MF strength and index stot for the whole SNR (Bo = 25µG and stot = 2.0) or

(Bo = 12µG and stot = 2.1)

radio and TeV γ-ray spectrum γ-ray emission model, MF strength and index stot IC with Bo = 12µG and stot = 2.1

X-ray radial profiles post-shock MF strength in the limbs Bs⊥ ≃ 50µG

X-ray azimuthal profile MF strength OK

ISMF orientation and aspect angle OK

model of Emax OK

γ-ray limbs location MF strength, aspect angle OK

γ-ray emission model OK

a the model assumes uniform ISMF/ISM and γ = 5/3

b [281]

c [250]
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We obtain expressions for the radio, X-ray and γ-ray spectra from the whole SNR

in a form which clearly show which parameter of the model is responsible for the

amplitude of the spectrum and which one for its shape. The modification factor of

the synchrotron X-ray spectrum may well be explained by the classical model with

ISMF strength Bo = 25µG if s = 2.0 or with Bo = 12µG if s = 2.1. At the same

time, the TeV γ-ray modification factor prefers only the pair Bo = 12µG, s = 2.1

to have the whole TeV emission be due to IC process. Bo = 25µG requires an

additional component in the TeV γ-ray spectrum, from pion decays, as it is in the

model of [83]. Such scenario, requires however the proton injection to increase with

obliquity, in order to fit the observed azimuthal profiles of TeV γ-ray brightness (in

our model, ISMF is along the SE-NW symmetry axis). It is unclear if the electron

and proton injections may have so different dependences on obliquity in the same

SNR: isotropic for electrons and quasi-perpendicular for protons.

The extreme NLA approach [83] predicts Bo = 30µG immediately before the

forward shock and B = 150µG everywhere inside SNR. The radial profiles of X-ray

brightness obtained from XMM image agree with our model with an ambient MF

Bo = 12µG. Around the quasi-perpendicular shock, where the profiles are extracted

from, our model predicts the post-shock MF with strength Bs⊥ ≃ 50µG. However, in

the classic model of SN 1006, this is the value for MF immediately post-shock; after

then it rapidly decreases downstream. Therefore, an effective (emissivity weighted

average) MF within SN 1006 is estimated to be 2.7Bo ≈ 32µG that is in agreement

with estimates of [362] and [28]. MF in the sharpest Chandra profile is fitted in our

model with Bs = 95µG; it reflects the local conditions within this filament.

We found that the broad-band spectrum from the whole SN 1006 is better repre-

sented with the electron spectral index stot = 2.1 while local radio-to-X-ray spectra

over the SNR shock prefers sloc = 2.0 (Sect. 5.1.3). Difference between stot and

sloc are negligible for azimuthal and radial profiles of radio, X-ray and IC γ-ray

brightness.

Azimuthal profiles of the X-ray brightness in our model also agree with the obser-

vations though the fit is not ideal. Simulations show that the actual MF strength is



257

not important for azimuthal variation of X-ray brightness in SN 1006. The differences

in the synthesized and observed azimuthal profiles may be due to nonuniformity of

ISMF and/or ISM.

‘Classic’ model has also few difficulties. It does not agree with the criterion of

Rothenflug et al. [321]. Nevertheless, the polar-caps scenario, which is in agreement

with this criterion (and is adopted by the NLA model), is unable to explain the

observed azimuthal profiles of the break frequency νbreak, under assumptions that

ISMF/ISM are uniform and the obliquity variation of amplified/compressed MF

is similar to the classical one (i.e. increasing with obliquity). This conclusion is in

agreement with Sect. 5.3 where the polar-caps morphology was excluded also on the

base of the comparison of the observed azimuthal profiles of the radio brightness

with model of SNR in uniform ISMF/ISM.

The observed radio surface brightness of the regions deeper than 0.94R is higher

than in our synthesized images. This is also against of the ‘polar caps within uniform

ISMF’ scenario because there should be luck of the relativistic electrons, and thus

the luck of the radio emission, in the interior of the SNR projection. Could the

nonuniform ISMF/ISM be responsible for this radio ‘over-brightness’?

Another minor point of the classic model of SN 1006 is the rather large ambient

MF, Bo = 12µG, which is difficult to expect without MF amplification at the high

location of SN 1006 above the Galactic plane.

Our model deals with ideal gas with the adiabatic index γ = 5/3 and cannot

explain the small distance between the forward shock and the contact discontinu-

ity [106, 250]. Instead, if acceleration is so efficient that relativistic particles affect

hydrodynamics then the adiabatic index may be smaller than ours. The small dis-

tance observed may naturally be explained by such, more compressible, plasma with

the index like γ = 1.1. The shock compression factor is σ = 21. If so, then typical

ISMF of few µG may become quite large downstream even without amplification.

The two models, classical and extream NLA, are compared in Table 5.3. It is

evident that none of them explain the whole set of the SN 1006 properties.

All results presented here are obtained under assumption that SN 1006 evolve
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Table 5.3
Comparison of SN 1006 models

Properties of SN 1006 Classic model Extream NLA model [83]

(with uniform ISMF) (with uniform ISMF)

two-limbs in radio and hard X-ray image YES YES?

SN 1006 is barrel SN 1006 has polar caps

ISMF direction: SE-NW ISMF direction: SW-NE

location of TeV γ-ray limbs YES YES?

[321] criterion NO YES

radio spectrum YES as power low YES with concave shape

hard X-ray spectrum YES with 〈B〉ev = 32µG YES with 〈B〉v ≈ 150µG

TeV γ-ray spectrum YES YES

IC with 〈B〉ev ≈ 32µG IC with 〈B〉v ≈ 150µG and pp component

radio radial profile YES NO? (uniform B inside SNR)

sharpest X-ray radial profile YES with Bs ≈ 95µG YES with Bs ≈ 150µG

radio azimuthal profile YES ?

hard X-ray azimuthal profile YES ?

TeV γ-ray azimuthal and radial profiles YES ?

νbreak azimuthal profiles YES NO?

pre-shock MF strength Bo = 12µG NO YES

(if ISMF around SN 1006 is ∼ 3µG) as result of amplification (if any)

very close forward shock and contact discontinuity NO YES (with γ = 1.1)

radio ‘overbrightness’ in the SNR interior NO NO?

slanted lobes NO NO

ratio of radio Rr < 1 and X-ray brightness Rx > 1 NO NO

νbreak,NE/νbreak,SW > 1 NO NO



259

in the uniform ISMF and uniform ISM. It is shown that the scenario of classic

MHD/acceleration plus uniform ISMF/ISM strongly prefers the barell-like mor-

phology of SN 1006. However, we also see that nonuniform ISMF/ISM could be

an essential element in the model of SN 1006. In particular, slanted lobes, the in-

version of the brightness ratio between NE and SW limbs from radio to X-ray band

and the higher break frequency in NE limb may only be explained by presence of

gradient of ISMF and/or ISM. We expect that the effect of the nonuniform ISMF

might dominate the role of some nonlinear effects arising from efficient acceleration

of cosmic rays by the forward shock in SN 1006.

5.5. Conclusions

Analysis of observations of SN 1006 is presented; the experimental data are used

to put constraints on SNR and properties of magnetic field and leptonic component

of cosmic rays accelerated in this SNR.

1. Experimental spectra and maps of the supernova remnant SN 1006 have been

reported for radio, X-ray and TeV gamma-ray bands. Radio band: A new radio image

of SN 1006 is produced on the basis of archival VLA and Parkes data. The image

recovers emission from all spatial structures with angular scales from few arcseconds

to 15 arcmin. X-ray band: A combined analysis of the XMM-Newton EPIC archive

observations of SN 1006 is performed and its results are presented. The spatial

distribution of the physical properties of the X-ray emitting plasma at the shock

front are described. The contribution of thermal and non-thermal emission to the

X-ray spectrum at the rim of the remnant is investigated in order to study how

the acceleration processes affect the X-ray emitting plasma. The spatially resolved

spectral analysis of a set of regions covering the entire rim of the shell are performed

and the azimuthal variations of different parameters characterizing the thermal and

non-thermal X-ray emission are obtained. The results are applied to produce a count-

rate image of the “pure” thermal emission of SN 1006 in the 0.5-0.8 keV energy band



260

(subtracting the non-thermal contribution). This image differs significantly from the

total image in the same band, especially close to the bright limbs.

2. We propose a model-independent method to synthesize the inverse-Compton

gamma-ray image of a supernova remnant starting from the radio (or hard X-ray)

map and using results of the spatially resolved X-ray spectral analysis. The method

is based on the idea that the surface brightness distribution of the synchrotron ra-

dio and X-ray emission of SNRs contains information about the distribution and

properties of accelerated electrons which are responsible for the γ-ray emission as

well. The method is successfully applied to SN 1006. We found that synthesized

IC gamma-ray images of SN 1006 show morphology in nice agreement with that re-

ported by the HESS collaboration. The good correlation found between the observed

very-high energy gamma-ray and X-ray/radio appearance can be considered as an

evidence that the gamma-ray emission of SN 1006 observed by HESS is leptonic in

origin. However the hadronic origin cannot be ruled out in view of the measured

ISM densities, consistent with a hadronic scenario [219]. If this is the case, the ob-

served TeV brightness map could reflect the distribution of protons with energies

> 2.4TeV which interact with compressed ISM downstream of the shock.

3. A number of important processes taking place around strong shocks in super-

nova remnants (SNRs) depend on the shock obliquity. The measured synchrotron

flux is a function of the aspect angle between interstellar magnetic field (ISMF) and

the line of sight. Thus a model of non-thermal emission from SNRs should account

for the orientation of the ambient magnetic field. We develop a new method for the

estimation of the aspect angle, based on the comparison between observed and syn-

thesized radio maps of SNRs, making different assumptions about the dependence

of electron injection efficiency on the shock obliquity. We apply our method to a

radio image of SN 1006. We explore different models of injection efficiency and find

the following best-fitting values for the aspect angle of SN 1006: φo = 70o ± 4.2o

if the injection is isotropic, φo = 64o ± 2.8o for quasi-perpendicular injection (SNR

has an equatorial belt in both cases) and φo = 11o± 0.8o for quasi-parallel injection

(polar-cap model of SNR). In the last case, SN 1006 is expected to have a centrally-
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peaked morphology contrary to what is observed. Therefore, our analysis provides

some indication against the quasi-parallel injection model. Rejection of the quasi-

parallel injection model in SN 1006 means that the initial ISMF is directed from SE

to NW and SN 1006 has a barrel-shaped, rather than polar-cap, morphology.

4. A new way to compare model and observations, in order to get constraints on

the modeling the remnant is presented. Namely, it is shown that a model based on

classic MHD and acceleration theories allows one to analyze the spatially distributed

characteristics of SN 1006 and to put observational constraints on the kinetics and

MF, including for the first time the comparison of the azimuthal and radial profiles

of the surface brightness in radio, hard X-rays and TeV γ-rays as well as azimuthal

variations of the electron maximum energy. We obtain expressions for the radio, X-

ray and γ-ray spectra from the whole SNR in a form which show which parameter

of the model is responsible for the amplitude of the spectrum and which one for

its shape. It is demonstrated that the model of SN1006 also provides fits for the

broadband (radio-to-gamma-rays) spectrum. Presented model agrees with effective

MF strength in SN 1006 of 32µG, in a good agreement with the ‘leptonic’ model of

the HESS Collaboration.



262

CHAPTER 6

STATISTICAL APPROACH TO RADIO EMISSION FROM THE

SHELL-TYPE SNRS

Present chapter continues “experimental” part of the thesis. Here, in contrast to

studies of an individual SNR done above, statistical methods are applied to samples

of SNRs. Such an approach allows one to reveal common properties of CRs in most

of SNRs.

Results presented in this chapter are published in [66].

6.1. Σ−D relation for SNRs and its extension to the third dimen-

sion

Radio emission is a quite common property of the shell-type SNRs. The intensity

of the (synchrotron) radio emission is related to the magnetic field strength and

the amount of accelerated electrons. However, the mechanisms leading to both the

magnetic field amplification and the electron injection at the SNR shock and their

respective efficiencies remain poorly constrained. To investigate these processes ob-

servationally, there have been detailed studies, mostly in X-rays, of some selected

SNRs (see e.g., [105,106] and references therein). Relevant, complementary informa-

tion should also be extracted from a statistical analysis of SNR data samples.

On the observational side, a well-known (even though not widely accepted) sta-

tistical relation is the so-called “Σ–D relation”, namely the empirical correlation

discovered between the SNR size (D) and its radio surface brightness (Σ). Various

authors (e.g., [103, 107, 115, 253, 354]) have investigated this correlation. Originally

applied as a tool for estimating SNR distances, it has been found to be unreliable for

this purpose. Some authors (e.g., [174, 354]) have also argued that this correlation
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may be affected by selection effects. For Galactic SNRs, Green [174] highlighted the

selection effects: (1) in the surface brightness, with a completeness limit of about

10−20Wm−2Hz−1sr−1, while SNRs below this limit are predominantly in regions

where the Galactic background is low; (2) in the angular size, so that young but

distant SNRs may be missed. For SNRs in other galaxies, Urošević et al. [354] also

showed that there may be a selection effect in the integrated flux (valid for un-

resolved or mildly resolved SNRs), with the effect of leading to an observed slope

shallower than the intrinsic one.

Even though selection effects may affect this correlation to some level, we believe

that the relation itself has a physical origin, and that one can therefore extract from

it information about the processes involved in the SNR radio emission: therefore,

understanding its origin could eventually contribute to constraining the efficiency of

these processes. There have been several attempts (e.g., [211,290,333,355], or more

recently [77, 133]) to explain the Σ–D relation as the average evolutionary track of

a “typical” SNR. In all of these cases, the slope of the correlation is assumed to

correspond to that of the SNR evolutionary track on the Σ–D parameter plane.

However, there is clear evidence that this assumption is incorrect. Berkhuijsen [84]

has found tight correlations of both Σ and D with the ambient density (no), in the

sense that smaller (and brighter) SNRs are typically located in a denser medium

(indeed, the correlation between no and D had already been known for several

years; see e.g., Fig. 4 in [247]). The best-fit results given by Berkhuijsen are

D ≃ 15n−0.39±0.04
o pc (6.1)

Σ ≃ 6× 10−20n1.37±0.21
o Wm−2Hz−1sr−1 (6.2)

Berkhuijsen concluded that the Σ–D relation (Σ ∝ Dξ) is just a secondary effect,

while the two primary relations are those of D and Σ with no.

Although this conclusion may appear rather extreme, it is quite obvious that the

Σ–D relation contains SNRs that evolve in very different ambient conditions. We

then assume that the correlations between Σ, D, and no do not directly reflect the

evolution of a “typical” object, but are rather the combined effect of the evolution
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Figure 6.1. Distribution of SNRs from Berkhuijsen [84] sample in the lgD–lg Σ parameter plane
(D is measured in pc, while Σ is in Wm−2Hz−1sr−1). The dot sizes are proportional to lg no

values, the legend showing in order sizes corresponding to lg no from –1.5 to 1.0, in steps of 0.25
(no being measured in cm−3). It is apparent from this figure that smaller (and brighter) SNRs are
typically located in a denser medium.

of different SNRs expanding in different ambient conditions. That the correlations

with no are statistically so tight also suggests that D and Σ are more sensitive to

the ambient conditions than to the SNR evolution. The combined effect of these

correlations is that a clear trend of no across the Σ–D relation is observed (see

Fig. 6.1), namely that smaller SNRs are preferentially located in higher-density

environments.

In principle, correlations of Σ and D with no, accounting for at least qualitatively

the trend of no across Σ–D relation, could also appear in the case of the evolution of

an individual object, provided that it expands in a medium with a highly structured,

fractal, density distribution. This would reflect that, during its life, a SNR always

preferentially expands towards the direction in which the ambient density is lower.

Therefore, at any time, the “effective” ambient density would be close to the “lowest”

ambient density in the volume occupied by the SNR. In this way, one could explain

why large SNRs typically seem to expand in a low-density medium.

However, it is hard to justify, in this scenario, the absence of small SNRs in low-

density media (which would be the case, when the supernova itself is located in a

low density region), as well as that low ambient density values are measured for all

extended SNRs (which requires that such low density regions are ubiquitous in the

Galaxy, on scales of tens of parsecs or even less). In addition, if the effects of the
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fractal interstellar medium were dominant, virtually all SNRs should have a much

brighter limb on one side, which is not observed. Therefore, for all these reasons, we

conclude that the “fractal ambient density” hypothesis is implausible, and we do not

consider it any longer.

One of our goals is to show that the best-fit line usually referred to as the “Σ–D

relation” provides only a minor part of the information present in the data, while

additional information could be extracted by analyzing in detail the distribution

of points in the Σ–D–no parameter space. For this reason we propose a rather

general (parametric) scenario, with the aim of constraining the physics of the electron

injection and magnetic field behavior in SNR shocks and/or the SNR evolutionary

phase in which they are most likely to be observed in radio.

6.2. Basic ideas, assumptions, and formulae

Our analysis is based on the fundamental criterion that the observed correlation

in the Σ–D parameter plane originates from the combined effect of evolutionary

tracks in very different ambient conditions. In this subsection, we implement this

idea by adding some derived / secondary assumptions that will allow us to develop

a more general scenario, on which our subsequent statistical analyses will be based.

6.2.1. When radio SNRs are preferentially seen. A preliminary consid-

eration is that the conditions in which a given object is most likely observed, during

its evolution, are those in which it spends most of its time. Since SNR expansion

decelerates during most of their lifetime, it is statistically more likely to find them

when their size is close to its final value. We are interested in finding SNRs that

are visible in radio. Therefore, it is more important, in this case, to determine the

evolutionary stage at which the processes responsible for enhancing magnetic fields

and/or for producing high energy electrons are no longer efficient. In the following,

we refer to this phase as the “final stage” of a radio SNR, but it should be clear that

it is not the maximum size that a SNR can reach dynamically, before merging into
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the ambient medium.

We parametrize the SNR expansion by a power law (D ∝ t1/a; a > 1) up to a

maximum size (D2) beyond which the SNR is no longer detectable in radio. During

its evolution of a given SNR as a radio source, the probability of being observed

with a given size D is proportional to dt/dD, namely

P(D) = aDa−1/Da
2, where D < D2, (6.3)

(the initial diameter of this evolutionary phase, D1, not being relevant provided that

(D1/D2)
a−1 ≪ 1), so that the average value and standard deviation of the (decimal)

logarithm of D are

〈lgD〉 = lgD2 −
1

a ln 10
, (6.4)

σlgD =
1

a ln 10
. (6.5)

For instance, during the adiabatic (Sedov) phase a = 5/2, so that 〈lgD〉 = lgD2 −
0.17 and σlgD = 0.17, while, in the later radiative (pressure-driven snowplow) phase,

a = 7/2, so that 〈lgD〉 = lgD2−0.12 and σlgD = 0.12. This means that, on average,

SNR diameters should be rather close to D2, and that their dispersion should be

rather small, i.e., an individual SNR, during its evolution, is seen to migrate only

slightly in the Σ–D parameter plane. For this reason, we propose that selection

effects, while important to determining the overall distribution of points across the

Σ–D plane, should only have a marginal effect on the observed probability P(D).

6.2.2. The end of the radio phase. We consider, in particular, the end of

the Sedov phase. According to Truelove & McKee [350], it should correspond to a

size

DB ∼ 28
(

ESN/10
51 erg

)2/7
n−3/7
o pc, (6.6)

(where ESN is the energy of the supernova explosion), while the dynamical end of

the SNR, namely where it merges with the ambient medium, can be placed at much

larger sizes. The above formula has been obtained by approximating the plasma
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Figure 6.2. Distribution of SNRs (from Berkhuijsen [84] sample) in the lg no–lgD parameter
plane. For comparison, the theoretical line corresponding to the end of the Sedov phase (as from
Truelove & McKee [350]) is shown (solid line), as well as that of 〈lgD〉, as from Eq. 6.4 (dashed
line).

cooling function with a power law Λ ∝ T−1/2, where T is the gas temperature

(while other papers use different power-law approximations; for instance, Blondin

et al. [90] use Λ ∝ T−1). For a generic Λ ∝ T−α relation one may find that

DB ∝ E
(3+2α)/(11+6α)
SN n−(5+2α)/(11+6α)

o . (6.7)

For α changing from 1/2 to 1, the exponent of no in the above formula changes

from 0.429 to 0.412: namely, the numerical value of that exponent is very weakly

dependent on the power-law approximation used. In the following, we shall then use,

without loss of generality, the formula (here Eq. 6.6) of Truelove & McKee [350].

The correlation found by Berkhuijsen between D and no (Eq. 6.1) is consistent

with

D ≃ 0.54
(

ESN/10
51 erg

)−2/7
DB, (6.8)

namely with a D/DB ratio that is independent of no.

This can be also seen from Fig. 6.2, where the data points from Berkhuijsen [84]

are displayed together with DB, as evaluated for ESN = 1051 erg (solid line): we note

that the line is not a fit, namely there are no free parameters to tune. This indicates

that most of the known radio SNRs are observed close to the end of the Sedov phase,

and that in general SNRs must extinguish their radio emission somewhere close to

the end of their Sedov phase. It is then reasonable to use a Sedov law (a = 5/2) to
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approximate the expansion law during the final phases of radio SNRs: therefore, in

the following, whenever a numerical value for a is required, we shall use the Sedov

value. For a Sedov expansion, the dashed line in Fig. 6.2 applies to the value of

〈lgD〉, given by Eq. 6.4. The best-fit level (Eq. 6.8) is only 20% lower, providing a

good argument for SNRs being (statistically) mostly visible around the end of their

adiabatic stage.

It remains to be understood for which physical reason the end of the Sedov phase

should roughly correspond to the switching off of the radio emission. There is also

evidence that the extinguishing transient evolution must be rather rapid. Otherwise,

we should also see SNRs with Σ values considerably lower than that derived from the

Σ–D correlation for the same size; namely, in the Σ–D parameter plane, we should

have points spread over the half-plane below the main correlation (of course, limited

to the region of the Σ–D plane for which one expects SNRs to be detectable). This

latter piece of observational evidence is also not easy to explain. The underlying

problem is that the physical processes behind the injection of electrons are poorly

understood in the general case, and are probably even harder to model for conditions

near to marginal efficiency.

6.2.3. The “final-stage” approximation. We introduce in a parametric form

a basic set of equations to describe the observed correlations and distributions, and

eventually provide some constraints on future physical models of the injection of

electrons in SNRs. That the Σ–D empirical relation is a power law suggests (even

though it does not strictly imply) that all formulae of interest can be approximated

by power laws, thus simplifying considerably the treatment.

As a starting point, we consider the extreme approximation that each of them is

observed very close to its final stage as a radio SNR, namely that each individual

evolutionary track in the Σ–D plane can be assimilated to just one point, corre-

sponding to its final position (D2, Σ2). We also assume that the dependence of both

quantities on the ambient density (no) can be approximated by the following power
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laws:

D2(no) = K1n
m
o , (6.9)

Σ2(no) = K2n
n
o . (6.10)

In this limiting case, the slope of the Σ–D relation

Σ2(D2) = K3D
ξ
2, (6.11)

would simply be ξ = n/m. In the above formulae, the functional dependence on

other physical parameters is not given explicitely; however, other quantities may be

involved. For instance, if SNRs really are efficient radio emitters only until the end

of the Sedov phase (as suggested by Fig. 6.2), D2 should also depend on the SN

energy (see Eq. 6.7).

To describe the distribution of points along the correlation, one must also intro-

duce the function P̃(no), giving the probability of finding a SNR in a region of a

given density: this probability combines the density distribution of the interstellar

medium, the dependence of the SN rate on the local density, and how the lifetime

of a radio SNR depends on the ambient conditions. For the sake of simplicity, and

in the absence of any observational evidence against it, we also approximate this

function by a power law, namely

P̃(no) = K4n
w
o . (6.12)

This distribution is used in Sect. 6.5.1.

6.2.4. Introducing the SNR evolution. From this point on, we shall re-

move the “final-stage” approximation, introduced in the previous subsection. Nonethe-

less the evolution of individual SNRs will still be treated in a very simplified way, by

assuming that SNR evolution in different ambient conditions differ only by a scaling

law and, in practice, by only adopting power-law behaviors.

We introduce the SNR expansion in the following parametric form:

t(D, no) = K5D
anbo (6.13)
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(for instance, in the Sedov case a = 5/2, b = 1/2, and K5 ∝ E
−1/2
SN ). As for the

evolution in surface brightness, by assuming that a scaling law holds, the surface

brightness could be expressed in a rather general form as

Σ(D, no) = f(D/D2(no))Σ2(no), (6.14)

where f(x) must vanish at x > 1. We use a power-law approximation

Σ(D, no) =

(

D

D2(no)

)p

Σ2(no) = K6D
pnqo for D < D2, (6.15)

where K6 = K2/K
p
1 and q = n−mp. Parameters p and q in Eq. 6.15 can be derived

independently. If the data sample is not heavily affected by selection effects, these

parameters can be evaluated by simply applying a bilinear regression.

Determining the functional dependence of Σ(D, no) would also allow one to derive

the trajectory of individual SNRs in the parameter plane. They are simply given

by the function Σ(D) for a constant value of no, which in principle differs from the

Σ(D) relation, as traditionally obtained, because the latter relation is obtained by

combining cases with different no values. In the power-law case, the slope of the

evolutionary track of an individual SNR is then given by the exponent p. In the

following, we shall provide some evidence that the value of p is different from that of

ξ: this means that evolutionary tracks in the Σ–D parameter plane have a different

slope from that of the overall Σ–D relation.

Also m can be derived, by fitting Eq. 6.9 to the D–no data (provided that 〈D〉
is a constant fraction of D2, as from Eq. 6.4). On the other hand, there is no way

of deriving a and b (defined in Eq. 6.13) directly from the correlations between

Σ, D, and no. Coefficient a could be inferred, in principle, only by studying the

distribution of points about the main correlation, while there is no way of estimatig

the exponent b, because it would only affect the distribution of points with no along

the correlations, a piece of information that is already included in the definition of

the distribution P̃ (Eq. 6.12).

In principle, a distribution of SN energies may also contribute; but, for the present

analysis, we assume that SN energies are not correlated with any other quantity and
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therefore that a distribution of energies would just produce an additional dispersion

across the correlations, without affecting any of the above slopes. Some correlation

could be possible, in principle, if different population stars have different distribu-

tions of their SN energies. However, to our knowledge no evidence in favour of this

has been presented so far.

6.3. Data and statistical analysis

6.3.1. Data sample and best-fit parameters. We now apply the analysis

outlined above to the data published by Berkhuijsen [84]. That paper presents a

fundamental work on the subject and, although since then a great number of surveys

of higher accuracy have been performed, it still contains the most extended data

sample of SNRs in which, in addition to the SNR radio surface brightness and size,

quantities derived by other spectral bands are also tabulated. We extracted from

this data sample all SNRs with available data on Σ, D (radio), and no as well. We

excluded SN 1006, because it is now known that the bulk of its X-ray emission is

non-thermal. The total number of selected objects is 34: the original data sample

is given in Table 6.1 (for two objects, Cas A and Tycho, in which two different

values of no are given, we took their geometrical mean). Since distance estimates for

Galactic SNRs have changed with time, in the last column of Table 6.1 we list the

SNR sizes obtained from the most recent version of the Galactic SNR catalog, by

Green [175]: they differ substantially from Berkhuijsen’s values only for Kepler and

Vela. The estimated distances of the Large Magellanic Cloud (LMC) and the Small

Magellanic Cloud (SMC) have also slightly changed, from 55 kpc and 63 kpc (as in

Berkhuijsen [84]), to 48 kpc and 61 kpc [187, 238], respectively. In our calculations,

we used all of these new distances, and we revised accordingly the SNR linear size

and density estimates (being no ∝ d−1/2). The last two columns of Table 6.1 provide

the D and no values that we used.

The average ambient density is estimated by Berkhuijsen [84] in a simple way,
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Table 6.1
The data sample (extracted from [84])

Object − lg Σ D no D no
(as from (after distance

(Wm−2 Berkhuijsen) revision)

Hz−1sr−1) (pc) (cm−3) (pc) (cm−3)

GAL W44 19.409 26.0 0.22 25.0 0.22

GAL Cas A 16.721 4.1 4.94 4.9 4.52

GAL Tycho 18.921 5.4 3.64 5.6 3.57

GAL RCW103 19.377 9.6 5.04 9.0 5.21

GAL Kepler 18.481 3.8 7.70 2.5 9.49

GAL W49B 18.432 11.0 0.70 10.1 0.73

GAL VelaXYZ 20.367 36.0 0.02 18.5 0.03

GAL RCW86 20.276 35.0 0.08 28.1 0.09

LMC 0453–685 19.730 20.0 0.44 17.5 0.47

LMC 0454–665 19.629 16.0 0.44 14.0 0.47

LMC 0455–687 20.299 51.0 0.06 44.5 0.06

LMC 0500–702 20.590 30.0 0.12 26.2 0.13

LMC 0505–679 20.374 9.0 1.34 7.9 1.43

LMC 0506–680 18.976 12.0 2.14 10.5 2.29

LMC 0509–675 19.231 7.0 4.64 6.1 4.97

LMC 0519–697 19.524 24.0 0.10 20.9 0.11

LMC 0519–690 18.984 7.0 6.76 6.1 7.24

LMC 0520–694 20.435 37.0 0.20 32.3 0.21

LMC 0525–660 19.480 30.0 0.60 26.2 0.64

LMC 0525–696 18.293 22.0 4.12 19.2 4.41

LMC 0525–661 18.544 16.0 2.68 14.0 2.87

LMC 0527–658 20.807 61.0 0.12 53.2 0.13

LMC 0528–692 20.168 30.0 0.16 26.2 0.17

LMC 0532–710 19.947 43.0 0.12 37.5 0.13

LMC 0534–699 20.356 33.0 0.44 28.8 0.47

LMC 0534–705 20.481 37.0 0.08 32.3 0.09

LMC 0535–660 18.287 12.0 4.30 10.5 4.60

LMC 0536–706 20.481 30.0 0.10 26.2 0.11

LMC 0543–689 20.758 45.0 0.10 39.3 0.11

LMC 0547–697 19.736 50.0 0.10 43.6 0.11

LMC 0548–704 20.151 22.0 0.34 19.2 0.36

SMC 0045–734 19.802 27.0 0.10 26.1 0.10

SMC 0102–722 18.570 8.0 8.28 7.7 8.41

SMC 0103–726 20.807 54.0 0.26 52.3 0.26
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using the following relation (derived from [230]):

no = (6/π)1/2ǫ−1/2f 1/2L
1/2
X D−3/2, (6.16)

where ǫ (taken to be 3 × 10−23 erg cm−3 s−1) is the specific emissivity, f is the

filling factor (taken to be close to unity), and LX is the X-ray luminosity. While the

exact values of ǫ and f are not important to our statistical analysis, it is crucial

that these quantities remain constant, or at least independent of other parameters

(such as size and surface brightness). In spite of its simplicity, this formula provides

reasonably good results. Upper limits to the uncertainty in this no evaluation can be

derived from the dispersion about the lgD–lg no regression. Based on the assumption

that the measured dispersion depends only on the uncertainties in no, one obtains

σ(lgno) = 0.42; while also taking into account the dispersion in D, as modeled by

Eq. 6.5 for the case of Sedov expansion, one derives a residual dispersion σ(lgno) =

0.18, namely a typical uncertainty in the density derived by Berkhuijsen of only

about 50%.

By performing linear regressions between the logarithmic quantities (which is

equivalent to assuming constant relative errors in the measurements), we obtain:

m = −0.37± 0.04, (6.17)

ξ = −2.06± 0.34, (6.18)

p = −0.89± 0.57, (6.19)

q = +0.62± 0.25, (6.20)

(where 1-σ uncertainties are indicated). It is apparent that, while m and ξ are found

to have reasonably small uncertainties, the uncertainties of p and q are larger. The

reason is that, in the data, there is a near-degeneracy between p and q, as is well

shown by a plot of the confidence levels (Fig. 6.3). In this sense, a combined quantity

that can be far more reliably determined is:

q − 0.39p = 0.97± 0.14. (6.21)

A potential problem of this sample, and of SNR samples in general, is the presence

of selection effects. In the introduction, we mentioned the analyses of Green [174]
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Figure 6.3. Plot of the confidence levels in the p-q parameter plane. The levels plotted correspond
to 1, 2, and 3-σ confidence levels, while the line indicates the maximum spread direction (see
Eq. 6.21). For comparison, two theoretical predictions are plotted: “Model A” (−17/4, 0) indicates
the case with constant efficiency in both particle acceleration and magnetic field compression plus
amplification (Berezhko & Völk [77]); while “Model B” (−2, 0) refers to the case in which particles
are accelerated with constant efficiency but the magnetic field is constant (see text).

and Urošević et al. [354] on this subject. The points raised by Green [174] are more

appropriate to our sample, which consists only of SNRs located in our Galaxy and

the Magellanic Clouds.

Even though a detailed treatment of the selection effects is beyond the scope

of this work, for the sake of illustration we repeated the computations that led to

Fig. 6.3, but on subsamples containing, respectively, the 25 and 30 SNRs with the

highest radio surface brightness with corresponding thresholds in lg Σ of −20.356

and −20.481 respectively (see Table 6.1). Figure 6.4 shows a comparison of the

confidence levels (only 1-σ and 3–σ, for figure clarity) for the two subsamples, su-

perimposed on those for the entire sample (as in Fig. 6.3). It is apparent that any

additional selection in surface brightness does not generate any substantial differ-

ence in the results, apart from a slight terms of broadening compatible with the

lower sample size being analyzed by statistics and a slight shift toward lower p and

q values (the latter point will be discussed in the next subsection).

6.3.2. Testing the “constant efficiencies” model. Among the various the-

oretical attempts to model the radio emission from SNRs, one of the most recent

and popular is that by Berezhko & Völk [77]. This paper assumes that the kinetic

energy density entering the shock (mnoV
2
sh, where m is the mean atomic mass) is

converted with constant efficiencies into the energy densities of magnetic field and

accelerated electrons (ǫB and ǫCR, respectively): this means, for instance, that the
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Figure 6.4. Plot of the 1-σ and 3–σ confidence levels in the p-q parameter plane, for the whole
sample (solid lines), as well as for selections of the 25 and 30 SNRs with the highest surface
brightness (short-dashed and long-dashed lines, respectively).

effective magnetic field in the synchrotron emitting region decreases with time, sim-

ply because the SNR shock is slowing down. For synchrotron emission with a power

index −0.5 (namely the average index for radio SNRs), the surface brightness should

scale as

Σ ∝ KB3/2D ∝
(

ǫCRǫ
3/4
B

)

D ∝
(

noV
2
sh

)7/4
D (6.22)

A further assumption of this model is Sedov expansion, which implies thatmnoV
2
sh ∼

ESN/D
3, so that one finally obtains

Σ ∝ E
7/4
SND

−17/4, (6.23)

i.e., with p = −4.25, and q = 0 (labeled as “Model A” in Fig. 6.3). Namely, accord-

ing to this model, individual SNR tracks in the Σ–D plane must be rather steep

and “independent of the ambient density”. Since Berezhko & Völk [77] state that

the slope of the Σ–D relation should represent the slope of individual evolution-

ary tracks, they predict that ξ = −4.25 should be the slope of the Σ–D relation.

However, neither their predicted value for ξ matches the data, nor does (and at an

even higher significance level) their predicted (p, q) pair (see Fig. 6.3). It is unlikely

that this mismatch is a mere consequence of a sample incompleteness in surface

brightness. Figure 6.4 shows that for subsamples in which a further selection in sur-

face brightness has been applied the barycenter of the confidence levels moves only

mildly.

A more appropriate model (in the sense that it is “only” about 2-σ away from

the best-fit model values) would be one in which electrons are accelerated with
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constant efficiency (ǫCR ∝ noV
2
sh) but the magnetic field is taken to be constant,

not only during the evolution of an individual SNR but also among different SNRs.

This happens, for instance, if the post-shock field has been compressed only by the

shock, i.e., is proportional to the ambient field, which in turn is roughly constant

(see e.g., [123]), in near equipartition with the interstellar thermal pressure of the

diffuse interstellar medium. This case does not exclude the presence of an extra field

amplification, provided that it yields a constant factor. As in the previous case, but

assuming B to be constant, one can now write

Σ ∝ KD ∝ ǫCRD ∝
(

noV
2
sh

)

D ∝ ESND
−2, (6.24)

namely p = −2 and q = 0 (which is labeled “Model B” in Fig. 6.3).

6.3.3. The results with a more “physical” flavour. We can approach the

problem from the opposite direction, by trying to translate the information derived

in terms of (p, q) into constraints on the physics that controls the magnetic and

cosmic-ray efficiencies. We assume that

KB3/2 ∝ ngoV
h
sh, (6.25)

where g and h are free parameters. This is not the most general case, but it simply

relates the efficiencies to primary local quantities encountered by the shock. Based

on this assumption, and an expansion law t ∝ Da passing through the endpoint of

the Sedov phase (DB, tB), the equation for the surface brightness becomes

Σ ∝ E
(4a−3)/14
SN D1−(a−1)hng−(3a−4)h/7

o . (6.26)

In the case of Sedov expansion, this equation simplifies into

Σ ∝ E
1/2
SND

1−3h/2ng−h/2o . (6.27)

Figure 6.5 shows the confidence levels in this new pair of parameters. An advantage

is that the direction of maximum dispersion is almost parallel to the h axis, which

means that at least the best-fit value for g is well determined. We have

g = 1.25± 0.14, (6.28)

h = 1.26± 0.38. (6.29)
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Figure 6.5. Same as Fig. 6.3, in the g-h parameter plane.

For comparison, the “constant efficiencies” model prescribes that g = 1.75 and h =

3.5, as can easily be derived from Eqs. 6.23 and 6.27. What we have found here is

not different from the previous subsection, but is simply displayed in a more physical

way.

To summarize, in most SNRs the constant efficiency assumption (namely for

both field amplification and particle acceleration) does not hold. This may not be

surprising, in the view that the statistically most common cases are those of SNRs

close to their radio endpoint, namely when particle acceleration is close to being

halted. Using observations to test these critical cases may indeed be important to

obtaining a clearer understanding of the physical processes responsible for magnetic

amplification and particle acceleration.

6.4. Results from an independent sample: M 33

As already mentioned in the introduction, SNR samples studied in other galaxies

provide promising input to this kind of analysis. For mere comparison with what has

already been obtained using the sample of Berkhuijsen, we present here the results

for a M 33 SNR data sample, which is a sample completely independent from that

used so far.

The sample was obtained by selecting SNRs for which radio fluxes are given by

Gordon et al. [178], X-ray fluxes by Pietsch et al. [286] and (optical) diameters by

Gordon et al. [177]. The X-ray survey of Plucinsky et al. [288], based on Chandra
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data, was also used to solve some cases of uncertain identification. In this way, we

selected 22 SNRs: the data sample is shown in Table 6.2. The first 3 columns report

the SNR identification numbers in the various catalogs, respectively, [177] (labeled by

“opt” in the Table), [178] (labeled by “rad”), and [286] (labeled by “xray”), while the

next 3 columns show, respectively, the published linear (optical) diameters, 20 cm

fluxes, and measured (i.e., absorbed) 0.2–4.5 keV fluxes.

To derive 1 GHz radio fluxes, we extrapolated the 20 cm fluxes tabulated by

Gordon et al. [178], by assuming a spectral index of −0.5. For most SNRs, Gordon

et al. [178] also estimate spectral indices, but the uncertainty in these estimates is

rather large, and we therefore preferred to adopt a “standard” value for the spectral

index. We evaluated the unabsorbed X-ray fluxes by taking a column density NH =

1.0 × 1021 cm−2 towards M 33 [288], and assuming for the average SNR spectrum

a Raymond-Smith model with kT = 0.3 keV. Using WebPIMMS 1, a correction

factor of ∼ 1.94 is evaluated: the precise value of this factor is not very important

for our purposes, provided that the X-ray SNR spectra are not too different among

themselves. Finally, a M 33 distance of 817 kpc [155] is assumed here; since [177]

use a distance of 840 kpc, for consistency we applied a small correction to their

published SNR sizes.

Here are our results, to be compared with those presented above. The formulae

equivalent to Eqs. 6.17–6.20, 6.28 and 6.29 are respectively

m = −0.34± 0.07, (6.30)

ξ = −2.20± 0.46, (6.31)

p = −1.37± 0.64, (6.32)

q = +0.52± 0.30, (6.33)

q − 0.37p = 1.04± 0.20 (6.34)

g = 1.31± 0.20 (6.35)

h = 1.58± 0.42; (6.36)

while Figs. 6.6, 6.7, 6.8 and 6.9 correspond, for M 33, to Figs. 6.1, 6.2, 6.3 and
1http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html
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Table 6.2
M 33 data sample

ID ID ID D S(20 cm) Flux(0.2–4.5)

opt rad xray (pc) (mJy) (erg cm−2s−1)

9 11 93 18 0.7 4.29× 10−15

11 13 98 17 0.6 3.81× 10−15

15 20 106 27 0.6 2.79× 10−15

20 25 120 10 0.8 1.03× 10−14

21 29 121 28 0.9 1.41× 10−13

25 42 144 27 1.4 3.63× 10−15

27 47 153 23 1.2 2.99× 10−15

28 50 158 11 0.8 2.45× 10−14

29 52 161 20 0.5 1.73× 10−14

31 57 164 39 1.8 3.88× 10−14

35 64 179 32 3.5 1.01× 10−14

42 75 194 29 0.5 1.39× 10−14

47 90 207 36 0.2 7.05× 10−15

53 110 213 40 0.2 1.53× 10−15

54 111 214 16 1.3 2.08× 10−15

55 112 215 18 4.4 2.84× 10−14

57 114 220 21 0.4 1.87× 10−15

59 121 224 16 0.3 3.90× 10−15

62 125 225 29 0.4 4.87× 10−15

64 130 230 27 0.5 3.65× 10−15

73 148 250 17 0.5 1.41× 10−14

97 181 314 35 0.8 4.84× 10−15
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Figure 6.6. Distribution of the M 33 SNRs sample in the lgD–lg Σ parameter plane (to be
compared with Fig. 6.1). The dot sizes are proportional to lgno values, the legend showing in
order sizes corresponding to lg no from –1.0 to 0.5, in steps of 0.25.
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Figure 6.7. Distribution of M 33 SNRs in the lg no–lgD parameter plane (to be compared with
Fig. 6.2).

6.5, respectively. It is apparent that all results from this further sample show close

agreement, within the quoted errors, with what we found above using the data of

Berkhuijsen. A comparison of the regression results for the two samples is given in

Table 6.3.

6.5. The SNR cumulative distribution with size

6.5.1. The original paradox and how it can be solved. The cumulative

distribution of the number of SNRs with sizes smaller than a given diameter (N–D

relation) is another statistical distribution that has traditionally been studied.
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Figure 6.8. Plot, for M 33 SNRs, of the confidence levels in the p-q parameter plane (to be
compared with Fig. 6.3).
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Figure 6.9. Plot, for M 33 SNRs, of the confidence levels in the g-h parameter plane (to be
compared with Fig. 6.5).

Table 6.3
Synoptic table of the results of the regression analyses

Formula Data Samples

Berkhuijsen M 33

D2(no) ∝ nm
o m = −0.37± 0.04 −0.34± 0.07

Σ2(D2) ∝ Dξ
2 ξ = −2.06± 0.34 −2.20± 0.46

Σ(D, no) ∝ Dpnq
o p = −0.89± 0.57 −1.37± 0.64

q = +0.62± 0.25 +0.52± 0.30

q − λp = µ λ = +0.39 +0.37

µ = +0.97± 0.14 +1.04± 0.20

KB3/2 ∝ ng
oV

h
sh g = +1.25± 0.14 +1.31± 0.20

h = +1.26± 0.38 +1.58± 0.42
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Figure 6.10. Cumulative distribution, for Berkhuijsen’s sample, where the dot sizes are propor-
tional to the lg no value of the last SNR entering in the cumulative. The legenda uses for the dot
sizes the same convention as in Fig. 6.1.

For the Magellanic Clouds, Mills at al. [251] derived an almost linear relation

(N ∝ D1.2) up to sizes as large as 40 pc. They also argued that a similar relation

should be present in our Galaxy. A linear cumulative distribution is usually taken

as evidence that these SNRs are still in free expansion. However, when the SNR

diameter is 40 pc, the swept-up mass is ∼ (1000/no)M⊙. Therefore, except for

cases of exceptionally low ambient density, at those sizes SNRs should already be in

the Sedov phase, and therefore strongly decelerated.

Within our framework, the cumulative distribution with size is independent of the

expansion law of individual SNRs, but is related instead to the statistical distribution

of the ambient medium density, as defined by Eq. 6.12. Indeed

N(D) ∝ P̃(no)no ∝ D(1+w)/m. (6.37)

In this sense, it is not even necessary to account for the sample incompleteness, as

done by Green [173].

For the sake of illustration, Fig. 6.10 shows the N(D) cumulative distribution of

Berkhuijsen’s sample. Here the close to linearity of the distribution is coincidental,

since there is no reason to expect the sample of Berkhuijsen to be complete. Instead,

the trend of dot sizes with SNR diameter (which is to some extent a different way of

displaying the information contained in Fig. 6.2) clearly shows how, for increasing

size, the cumulative is more populated by SNRs located in more tenuous ISM.
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6.5.2. The case of M 82. Samples of SNRs in nearby galaxies have become

increasingly available, and the close to linearity of the N–D relation is a rather

standard property of these samples.

A particularly interesting case is that of M 82. In this nearby starburst galaxy, a

number of radio sources have been detected [217], which may be SNRs that are much

brighter and much smaller in size (a few parsec at most) than usual. Their positions

on the Σ–D parameter plane are in all cases consistent with the extrapolation to

lower sizes of the best-fit Σ–D relation for other galaxies. Chevalier & Fransson [113]

proposed that these sources are SNRs expanding in a high-density ambient medium

(with densities of order of 103 cm−3).

Kronberg et al. [218] also placed upper limits on the flux density variations in most

of the radio sources: approximately 75% of these objects are very stable, with a lower

limit of ∼ 103 yr to their characteristic radio-emitting lifetimes. Based on this upper

limit, Seaquist & Stankovic [328] suggested that they may not be SNRs, but rather

cluster wind-driven bubbles. Their main argument is that the lack of observed time

variability is inconsistent with the estimated ages of these objects. That is, if they

are SNRs in free expansion (with typical velocities of ∼ 10, 000 km s−1), their ages

should be a few hundred years at most, while to account for the lack of variability,

velocities no greater than ∼ 500 km s−1 are required [113].

A crucial point in this reasoning is the expansion regime of these objects, if they

are indeed SNRs. A linear expansion is argued in [150,261] based on the cumulative

distribution with size being almost linear. However, as we have explained above, a

linear cumulative distribution does not imply a linear expansion, if it is caused by

the combination of SNRs expanding in different ambient densities. Indeed, the data

for SNRs in M 82 agree well with the extrapolation of the Σ–D relation derived

for SNRs in other galaxies to smaller sizes. Thus, the arguments we have exposed

should also be applied to SNRs in M 82.

Even though they have small sizes in the parsec range [261], they could be close

to the end of their Sedov phase provided that the ambient densities are ∼ 103 cm−3,
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with corresponding shock velocities of ∼ 103 km s−1 compared to ∼ 104 km s−1 as in

the case of undecelerated expansion. These lower shock velocities infer characteris-

tic times of ∼ 103 yr, compatible with the average radio-emitting lifetime found by

Kronberg et al. [218]. The only exceptions are a few fast-evolving radio sources that

are probably radio SNe, namely young objects still evolving in their circumstellar

medium. Although the detailed physical conditions and processes at such high den-

sities may differ from those at densities typical of other galaxies, we are confident

that the simple estimate presented above is adequate to justify the large measured

characteristic times within our framework.

6.6. Conclusions

Studies of the statistical properties of SNR samples may provide insight into the

physics of electron acceleration and the time evolution of SNRs. A new scenario is

proposed, along the lines of previous work by Berkhuijsen [84], which interprets in

a natural way the observed correlations between radio surface brightness Σ, size D,

and ambient density no in a sample of SNRs. The main parameter of SNR evolution

that enters into these correlations is the time at which a SNR ceases to behave as

a radio source, and this endpoint is found to be located close to the end of the

Sedov phase. It otherwise is found that the observed correlations mostly reflect that

the sample consists of SNRs located in very different ambient conditions; while the

evolution of individual SNRs plays a secondary role, and cannot be extracted by

simply studying correlations between pair of quantities.

Within this framework, we present a new approach to analyzing the statistical

data, based on a 2-dimensional fit to Σ as a function of D and no. We show that the

slope of Σ(D) at constant no should represent more closely the true evolutionary

track of an individual SNR than the well known “Σ–D relation”, which is obtained

without including information about no.

As the first step, we have used data published by Berkhuijsen [84]. Although
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this data sample is rather limited, our method of analysis applied to these data is

already capable of discriminating to some level between different theoretical mod-

els. For instance, models prescribing constant efficiencies for both magnetic field

(turbulent) amplification and electron acceleration (e.g., Berezhko & Völk [77]) are

well outside the parameters region allowed by the data. On the other hand, models

assuming a constant acceleration efficiency but a constant post-shock magnetic field

are marginally (about 2-σ) consistent with the data.

We have also applied the same technique to a sample of SNRs in M 33. Although

this sample could be affected by selection effects, it is completely independent from

the sample of Berkhuijsen, and the parameters that we derive from the two samples

are in close agreement, within the statistical errors. This may indicate again that

our technique is robust and the assumptions at the basis of our statistical analysis

are correct.
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CONCLUSIONS

Present work summarizes studies on the acceleration and emission of CRs in

SNRs. It contains both theoretical modeling and analysis of observations. In its

structure, the thesis solves first a number of task on the shock dynamics and kinetics

of charged particles, then it deals with modeling of the nonthermal emission of

relativistic electrons. Theoretical models are compared with observations on example

of SN 1006 and samples of SNRs in our and neighboring galaxies.

Thesis deals with a new direction of studies, namely analysis of the surface bright-

ness distribution in SNRs. A number of methods to model dynamics of SNRs and

emission of accelerated CRs are developed.

Main results are as follows.

1. Radio and X-ray data contain information about distribution of relativistic

electrons and magnetic field in SNR. This allows us to develop a model-independent

method for synthesis of the inverse-Compton γ-ray map of SNR from the radio (or

hard X-ray) map and results of the spatially resolved X-ray spectral analysis. It is

applied to SN 1006. It is found that synthesized IC gamma-ray image of SN 1006 is

in agreement with HESS observations. This can be considered as an evidence that

the TeV gamma-ray emission of SN 1006 is leptonic in origin.

2. The analysis of the spatial distribution of non-thermal emission in SNRs is

important channel for theoretical and experimental exploration of CRs and MF in

SNRs. Theoretical maps of surface brightness of SNR due to leptonic emission in

radio, X-rays and γ-rays reveal that the main factors determining the azimuthal

profile of brightness are the dependencies of the electron injection efficiency, the

compression/amplification of ISMF and the electron maximum energy on the obliq-

uity angle; radial distribution is mostly sensitive to the time evolution of injection

efficiency, to the strength of MF and to the adiabatic constant.

3. Nonuniform ISM and/or nonuniform ISMF results in asymmetric surface bright-
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ness distribution of SNR in radio, X-ray and γ-ray bands. SNRs with two limbs of

different brightness can be explained if a gradient of ambient density or, most likely,

of ambient magnetic field strength is perpendicular to the radio limbs. Converging

arcs can be explained by the gradient running between the two arcs. The degree

of asymmetry of the remnant morphology depends on the details of the electron

injection and acceleration and is different in the radio, hard X-ray, and γ-ray bands.

In general, the non-thermal X-ray morphology is the most sensitive to the gradi-

ent of ISMF, showing the highest degree of asymmetry. The IC γ-ray emission is

weakly sensitive to the non-uniform ISMF, the degree of asymmetry of the remnant

morphology being the lowest in this band.

4. Analysis of observation data on SNR should include not only analysis of the

spectra but also the exploration of maps in different bands. Method to determine

aspect angle of ISMF from the radio map of SNR is developed. It is applied to

SN 1006; the aspect angle is 70o. The model of electron injection should be isotropic

in this SNR. Azimuthal variation of the break frequency obtained during the spa-

tially resolved X-ray spectral analysis determines the model of the electron maximum

energy; it is time-limited with the ratio of the mean free path of particle to its Lar-

mour radius 1.5. The maximum energy of electrons at the parallel shock is found

7TeV; it is 3.25 times higher at the perpendicular shock. The thickness of the ra-

dial profiles of X-ray brightness agree with the post-shock MF strength in the limbs

50µG. The average MF strength in SN 1006 is found 32µG, in a good agreement

with the ‘leptonic’ model of the HESS collaboration.

5. In the common scenario of SNR evolution, it is necessary to consider an ad-

ditional phase between the end of adiabatic and the beginning of radiative stages,

because neither adiabatic nor radiative descriptions are applicable during this pe-

riod. This post-adiabatic stage lasts about 70% of SNR age it has at the end of

adiabatic stage and this number is almost independent of the density gradient for

ISM with increasing density. The approximate analytical method for description of

the shock dynamics and hydrodynamics of the flow downstream, at this evolutionary

stage, is developed. The analytical solutions for the motion of the radiative shock
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is found and the method for flow hydrodynamics at radiative stage is developed.

Methods may be used to model SNRs in nonuniform ISM.

6. Thermal X-ray composites, a class of SNRs with a thermal X-ray centrally-

filled morphology within a radio shell, may be explained as a projection of the 2-

or 3-dimensional shell-like SNR evolved in a nonuniform medium with scale-height

≤ 10 pc. Such conditions should happen in case of SNR-cloud interaction. TXCs are

therefore promising candidates for observations of hadronic γ-ray emission.

7. The efficiency of electron injection (i.e. a fraction of accelerated particles) is

related to the post-shock level of the electron-proton thermal equilibration. The

efficiency results from the balance between two competing effects: the higher the

electron temperature, the higher the fraction of downstream electrons with enough

velocity to return to the shock and thus to be ready to cross the shock from down-

stream to upstream; at the same time, however, the higher the turbulence, which

would hinder the crossing.

8. Shell-type supernova remnants exhibit correlations between radio surface bright-

ness, SNR diameter, and ambient medium density, that between the first two quan-

tities being the well known Σ–D relation. The observed correlations are the com-

bined effect of SNRs evolving in a wide range of ambient conditions, rather than

the evolutionary track of a “typical” SNR. Statistical analysis of the data samples

demonstrates that SNRs cease to emit effectively in radio at a stage near the end

of their Sedov evolution, and that models of synchrotron emission with constant

efficiencies in particle acceleration and magnetic field amplification do not provide

a close match to the data. The slope of the cumulative distribution of SNRs in size

is not related to the expansion law of SNRs, as usually assumed, but only to the

ambient density distribution.
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APPENDICES

Appendix A

Approximation of the temperature evolution behind the adiabatic

shock in medium with power-low density variation

In order to simplify the estimation of tsag and tdyn, let us approximate the distri-

bution T̄ (ā) = T (a, t)/Ts(t) downstream close to the strong adiabatic shock; here

a is Lagrangian coordinate, T̄ = T/Ts and ā = a/R. Note, that hereafter in this

Appendix we use the normalized parameters, i.e. divided on their values on the

shock front; thus we skip the overlines in the notations. We are interested in the

approximation in the form

T (a) ≈ a−κ(γ,ω). (A.1)

The value of κ is given by

κ =

(

−∂ lnT (a)
∂ ln a

)

a=1

(A.2)

where T (a) is the profile from Sedov [21] solutions. The equation of the mass con-

servation and the equation of the adiabaticity applied for the case of the shock

motion in the medium with the power-law density distribution give the distribution

of temperature T (a) = P (a)/ρ(a) [272]

T (a) =

(

γ − 1

γ + 1

)γ−1

a2γ−5+ω
(

r(a)2ra(a)
)−γ+1

(A.3)

where r is Eulier coordinate and ra = ∂r/∂a. Instead of Sedov profiles for r(a) –

which is quite complex – we use the approximation

r(a) = a(γ−1)/γ exp (α(aβ − 1)) (A.4)

where α, β are constants; this approximation gives correct values of r and its deriva-

tives in respect to a up to the second order on the shock [272]. Substitution (A.2)
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with (A.3), (A.4) and with expressions for α, β from [272] yields

κ =
2(8− (γ + ω)(γ + 1))

(γ + 1)2
. (A.5)

For γ = 5/3, κ = 1− 3ω/4.

The approximation (A.1) underestimate Sedov temperature. The smaller a the

larger difference. It is about 20% at a ≈ 0.5 (that corresponds to r ≈ 0.8).
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Appendix B

Approximations for distributions of some parameters behind the

adiabatic shock

Let us find approximations for dependence of some parameter X̄ ≡ X/X(R) on

the Lagrangian coordinate ā ≡ a/R downstream close to the adiabatic shock. We

are interested in approximations of the form

X̄ (ā) ≈ ā κ (B.1)

where, by definition,

κ =

[

− a

X∗(a)

∂X∗(a)

∂a

]

a=R

=

[

−∂ lnX∗(a)

∂ ln a

]

a=R

(B.2)

and star marks the dependence given by the Sedov solution.

This approach yields for density

n̄(ā) ≈ āκna, κna =
5γ + 13

(γ + 1)2
, (B.3)

for the relation between Eulerian and Lagrangian coordinates

r̄ ≈ ā1/σ, r̄ā ≈ (1/σ)ā(1/σ)−1 (B.4)

where the shock compression factor is

σ =
γ + 1

γ − 1
. (B.5)

Note that the density distribution in Eulerian coordinates is much more sensitive to

γ (Table B.1):

n̄(r̄) ≈ r̄κnr, κnr = σκna =
5γ + 13

(γ + 1)(γ − 1)
. (B.6)

Magnetic field is approximately

B̄ ≈ āβ(Θo,eff), (B.7)

β(Θo,eff) =
β‖ cos

2Θo + β⊥σ2 sin2Θo

cos2Θo + σ2 sin2Θo

, (B.8)
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β‖ =
4

γ + 1
, β⊥ =

3γ + 11

(γ + 1)2
. (B.9)

Approximation for normalization K follows from the definition (Sect. 3.2.2)

K̄ = ā3b/2n̄(2+s)/3 (B.10)

and approximation for n̄.

Adiabatic losses are accounted with Ead(a) which is defined by (3.24). Its approx-

imation is therefore

Ead(ā) ≈ āκad, κad =
5γ + 13

3(γ + 1)2
, (B.11)

it is valid for r̄ > 0.8 with error less than few per cent. The value of κad is close to

unity for γ = 1.1÷ 5/3 (Table B.1).

In order to approximate Erad defined by (3.24), we substitute (3.22) with approx-

imations for n̄ and B̄. Then we use the property

lim
a→1

(

a

f(a)

df

da

)

= cy (B.12)

for function of the form f(a) = 1− cax(1− ay). In this way,

Erad(ā, E) ≈ āκrad, κrad =
5σ2

B(Θo)E

2Ef‖
. (B.13)

This expression is good for r̄ > 0.94, with error of few per cent. It depends on γ

through σ in σB which is [303]

σB =

(

1 + σ2 tan2Θo

1 + tan2Θo

)1/2

. (B.14)

Table B.1
Parameters in approximations

Expression γ = 5/3 γ = 4/3 γ = 1.1

κna =
5γ + 13

(γ + 1)2
3 3.6 4.2

κnr =
5γ + 13

(γ + 1)(γ − 1)
12 25 88

σ =
γ + 1

γ − 1
4 7 21

β‖ =
4

γ + 1
1.5 1.7 1.9

β⊥ =
3γ + 11

(γ + 1)2
2.2 2.8 3.2

κad = κna/3 1 1.2 1.4
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Note that dependence on the absolute value of the magnetic field strength Bs‖ is

present in (B.13): Ef‖ ∝ B−2
s‖ .

The values of parameters in approximations for different adiabatic index γ are

presented in Table B.1.



330

Appendix C

Approximate formulae for profiles of brightness in Sedov SNR

C.1. Approximate description of surface brightness. The surface bright-

ness of a spherical SNR projection at distance ̺ from the center and at azimuth ϕ

is

S(̺, ϕ) = 2

∫ R

a(̺)

q(a,Θo)
rrada

√

r2 − ̺2
. (C.1)

where q is emissivity, Θo = Θo(ϕ, r/̺, φo) is the shock obliquity, φo an aspect angle,

r and a are Eulerian and Lagrangian coordinates, ra the derivative of r(a) in respect

to a. The emissivity in synchrotron or IC process is

q =

∫

dEN(E)p(E, ν). (C.2)

In the δ-function approximation of the single-electron emissivity p(E, ν), we may

write that

q ∝ N(Em)B
x (C.3)

where Em is an energy of electron which gives maximum contribution to radiation

at a given frequency ν, x = 1/2 for synchrotron and x = 0 for IC emission.

Energy spectrum of electrons N(E) evolves in a different way downstream of

the shocks with different obliquity, i.e. N(Em) = N(Em; a,Θo). In Sedov SNR, this

evolution may approximately be expressed by the two independent terms (for details

see below)

N(Em; a,Θo) ≈ Na(a)NΘ(̺,Θeff) (C.4)

where Θeff = Θo(ϕ, 1, φo). The similar relation holds for MF:B(a,Θo) ≈ Bs(Θo)Ba(a)

where Bs is the immediately post-shock value. This allows Eq. (C.1) to be written

as

S(̺, ϕ) ∝ NΘ(̺,Θeff)Bs(Θeff)
x

×
∫ R

a(̺)

Na(a)Ba(a)
x rrada
√

r2 − ̺2
.

(C.5)
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where integral depends on ̺ only. In other notations,

S(̺, ϕ) ≈ qeff(̺, ϕ) · I(̺) (C.6)

where I is an integral in (C.5) divided by Na(̺). The accuracy of this approximate

formula increases toward the edge of SNR projection where the bright limbs we are

interested in are located.

It is important that the factor I is almost independent of Em, but only on the

coordinate in the projection. This means that I differs just on a constant in a

given position for the radio, X- and γ-ray images and we may use Eqs. (5.8), (5.11)

and (5.12) written for emissivities in order to relate surface brightnesses in each

‘pixel’. The factor I slightly dependent of ϕ (see below). Therefore, the azimuthal

variations of the surface brightness S at a given ̺ may approximately be represented

by the azimuthal variations of the effective emissivities. This provides justification for

discussion in Sect. 5.2.1. However, the radial contrasts in brightness should account

for the radial changes in I which is unknown until one considers detailed 3-D MHD

model of SNR.

C.2. Radio brightness. Here we derive an approximate formula for azimuthal

variation of the radio surface brightness. This formula allows one to avoid detailed

numerical simulations and may be useful in situations where the approximate esti-

mation of the aspect angle is reasonable. In addition, the formula allows us to have

deeper insight in the main factors determining the azimuthal variation of the radio

surface brightness in SNRs.

The downstream distributions of K and B in a Sedov SNR in uniform ISM and

uniform ISMF are

K ∝ ς(Θo)K̄(r̄), B ∝ σB(Θo)B̄(r̄,Θo). (C.7)

If one neglects the small differences in downstream distributions of the parallel and

perpendicular components of B (Fig. 1 in [303]), then

B̄(r̄,Θo) ≈ B̄(r̄). (C.8)
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The obliquity angle Θo is different for each radial sector of 3-D object. It is

determined, for any position within SNR, by the set (ϕ, r̄/ ¯̺, φo). Integration along

the line of sight gathers information from different radial sectors, with different

obliquities. Let us determine the ‘effective’ obliquity angle by the relation

Θo,eff(ϕ, φo) = Θo(ϕ, 1, φo). (C.9)

Actually, Θo,eff for a given azimuth equals to the obliquity angle for a sector with the

same azimuth lying in the plane of the sky (i.e. in the plane being perpendicular to

the line of sight and containing the center of SNR). Θo varies around Θo,eff during

integration along the line of sight. The closer ̺ to the edge of SNR projection

the smaller the range for variation of Θo and more accurate is our approximation.

(Actually, we used ̺ corresponding to maximum in radial brightness distribution

which happens rather close to the shock.)

The relation between the azimuthal angle ϕ, the obliquity angle Θo,eff and the

aspect angle φo is as simple as

cosΘo,eff (ϕ, φo) = cosϕ sinφo (C.10)

for the azimuth angle ϕ measured from the direction of ISMF in the plane of the

sky.

Let us consider the azimuthal profile of the radio brightness S̺ at a given radius

̺ from the center of the SNR projection.

With the use of Θo,eff , the azimuthal and radial variation of the radio brightness

for fixed ̺ may approximately be written from (5.13) as

Sr ∝ ς(Θo,eff)σB(Θo,eff)
(s+1)/2

∫ 1

¯̺

K̄(r̄)B̄(r̄)(s+1)/2r̄dr̄
√

r̄2 − ¯̺2
. (C.11)

The integral in (C.11) is the same for any azimuthal angle ϕ. The variation of the

radio brightness is therefore approximately determined by

Sr(ϕ) ∝ ς(Θo,eff(ϕ, φo)) σB(Θo,eff(ϕ, φo))
(s+1)/2Ir( ¯̺). (C.12)

where Ir is the same as for the X-ray approximation (C.30). Accuracy of this ap-

proximation for the radial profile of brightness is demonstrated on Fig. C.1 and on
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Figure C.1. Radial profile of the radio brightness S̺ (solid lines) and its approximation (C.31)
(dashed lines) for azimuth ϕ = 0o (black lines) and ϕ = 90o (gray lines), φo = 90o. For smaller
aspects, φo < 90o, the approximation agree better with the numerical profiles.

Fig. 5.19 for the azimuthal profiles. Ir varies with azimuth less than 10% (cf. e.g.

black and blue dashed lines on Fig. C.1). This variation is due only to β(Θo). Thus,

β may be taken constant with a good choice β/2 = 1 (see also Appendix C.3).

The smaller φo, the smaller differences between the radial profiles for azimuth

ϕ = 0o and 90o (black and blue solid lines approach one another with decrease of

the aspect angle).

The azimuthal profiles is sensitive to ̺ in quasi-parallel case for aspect angles

less than about 30o, i.e. for SNR with centrally-brightened radio morphology (ς ∝
cos2Θo and, for small aspect angles, Θo → π/2 on the perifery of SNR and thus

ς → 0 there). Therefore, the formula (C.12) does not give correct profiles in the case

of quasi-parallel injection for φo < 30o, unless ¯̺→ 1.

C.3. Synchrotron X-ray brightness. A formula obtained here may be use-

ful in situations when an approximate quantitative estimation for the azimuthal

variation of the synchrotron X-ray surface brightness is sufficient.

1. The emissivity due to synchrotron emission is

q(ε) =

∫

N(E)p(E, ε)dE (C.13)
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Spectral distribution of the synchrotron radiation power of electrons with energy E

in magnetic field of the strength B is

p(E, ν) =

√
3e3B sinφ

mec2
F

(

ν

νc

)

, (C.14)

where ν is frequency, νc = c1BE
2 the characteristic frequency. Most of this radiation

is in photons with energy εp = 0.29hνc. In the ’delta-function approximation’, the

special function F is substituted with

F

(

ν

νc

)

= δ

(

ν

νc
− 0.29

)

∞
∫

0

F (x)dx (C.15)

where ∞
∫

0

F (x)dx =
8π

9
√
3
. (C.16)

With this approximation, (C.13) becomes

q(ε) =
4πe3 sinφ ε1/2B1/2

9mec2 0.29c
1/2
1 h1/2

N(Em) (C.17)

where Em is the energy of electrons which give maximum contribution to synchrotron

emission at photons with energy ε: Em = ε1/2 (0.29hc1B)−1/2.

2. Let the energy of relativistic electrons is E in a given fluid element at present

time. Their energy was Ei at the time this element was shocked. These two energies

are related as

E = EiEadErad (C.18)

where Ead accounts for the adiabatic losses and Erad for the radiative losses (Appendix

3.2.2). There are approximations valid close to the shock (Appendix B):

Ead ≈ āκad, Erad ≈ ā5σ
2

B
E/2Ef,‖ (C.19)

where ā = a/R, a is Lagrangian coordinate of the fluid element, Ef,‖ is the fiducial

energy for parallel shock, κad depends on γ and is given by (B.11); κad = 1 for

γ = 5/3 (for other γ see Table B.1). The factor σB represents compression in the

classical MHD [303] but may be interpreted also as amplification-plus-compression

factor. In the latter case, it should be written in a way to be unity at parallel shock.
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The downstream evolution of K in a Sedov SNR is (Appendix 3.2.2)

K ∝ ς(Θo)K̄(ā) (C.20)

where ς is injection efficiency. With the approximations (C.19) and s close to 2, the

distribution N(E) may be written from (3.28) as

N(E,Θo) ∝ ς(Θo)K̄(ā)E−s exp

[

−
(

Eā−ψ(E,Θo)

Emax,‖F(Θo)

)α
]

(C.21)

where

ψ(E,Θo) = κad +
5σB(Θo)

2E

2Ef,‖
− 3q

2
(C.22)

and s is allowed to vary with E.

3. Let us consider the azimuthal profile of the synchrotron X-ray brightness S̺

at a given radius ̺ from the center of the SNR projection.

Like in Paper II, we consider the ‘effective’ obliquity angle Θo,eff which, for a

given azimuth, equals to the obliquity angle for a sector with the same azimuth in

the plane of the sky (see details in Paper II). The relation between the azimuthal

angle ϕ, the obliquity angle Θo,eff and the aspect angle φo is as simple as

cosΘo,eff (ϕ, φo) = cosϕ sinφo (C.23)

for the azimuth angle ϕ measured from the direction of ISMF in the plane of the

sky.

The surface brightness of SNR projection at distance ̺ from the center and at

azimuth ϕ is

S( ¯̺, ϕ) = 2

∫ 1

ā(¯̺)

q(ā)
r̄r̄ādā

√

r̄2 − ¯̺2
. (C.24)

where r̄ā is the derivative of r̄(ā) in respect to ā. The azimuthal variation of the

synchrotron X-ray brightness is approximately

Sx ∝ ς(Θo,eff)σB(Θo,eff)
(s+1)/2Irx(Θo,eff, ¯̺)

× exp

[

−
(

Ems(ε,Θo,eff)

Emax,‖F(Θo,eff)

)α]
(C.25)
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where

Irx =

∫ 1

ā(¯̺)

K̄B̄(s+1)/2r̄r̄ā
√

r̄2 − ¯̺2

× exp

[

−
(

Ems

Emax,‖F

)α
(

ā−αψ(Em)B̄−α/2 − 1
)

]

dā,

(C.26)

reflects the dependence on ρ, Ems is Em for B̄ = 1:

Ems(ε,Θo,eff) =

(

ε

0.29hc1BoσB(Θo,eff)

)1/2

. (C.27)

Note, that Ems ∝ ε1/2, i.e. S̺ depends in our approximation on the energy ε of

observed X-ray photons.

4. Let us approximate Irx. First, we use the approximations ā ≈ r̄σ, K̄B̄(s+1)/2r̄ā ≈
āκr/σ, which are valid close to the shock (Appendix B), σ is the shock compression

ratio. Next, we expand r̄/
√

r̄2 − ¯̺2 in powers of the small parameter (r − 1) and

consider the only first term of the decomposition:

r̄
√

r̄2 − ¯̺2
≈ 1
√

1− ¯̺2
. (C.28)

The exponential term in the integral expands in powers of the small parameter

(1− a):

exp
(

−x1(a−x2 − 1)
)

≈ 1− x1x2(1− a). (C.29)

In addition, Ems is used instead of Em.

Close to the shock, the integral of interest is therefore

Irx(ϕ, ¯̺) ≈ Ir(ρ̄)Ix(ϕ, ¯̺) (C.30)

where

Ir =
1

σ
√

1− ¯̺2
1− ¯̺σ(κr+1)

κr + 1
, (C.31)

Ix =

[

1− ǫαm(ψ + β/2)α

Fα

(

1− 1− ¯̺σ(κr+2)

1− ¯̺σ(κr+1)

κr + 1

κr + 2

)]

. (C.32)

The parameter

ψ = κad +
5σ2

Bǫm
2ǫf‖

− 3q

2
(C.33)
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is responsible for the losses of emitting electrons and the time evolution of Emax on

the shock. The value of κad is rather close to unity for γ = 1.1÷ 5/3 (Table B.1);

unless radiative losses (the second term in ψ) are negligible, one may use κad ≈ 1

for any γ. Other parameters are

ǫm =
Ems

Emax,‖
=

(

ε̃

0.29σB

)1/2

, (C.34)

β is given by Eq. (B.8),

κr =
3b

2
+

2 + s

3
κna +

s+ 1

2
β +

1

σ
− 1. (C.35)

Parameters ψ, ǫm, σB, F and β depend on Θo,eff and therefore on the aspect

angle φo and the azimuth angle ϕ.

The parameter β reflects differences between MF distribution downstream the

shock of the different obliquity. It varies from β‖ at parallel shock to β⊥ at perpen-

dicular one, Eq. (B.8). In the approximate formulae, it appears in the combination

β/2; the role of β ∈ [β‖; β⊥] is minor in modification of the approximate azimuthal

and radial profiles. Therefore, in order to simplify the approximation, we may take

β/2 ≈ 1.

The index s in (C.21), in general, is allowed to vary with E, e.g. to be s(E) =

s + δs(E). In our approximation, due to (C.15), s reflects the ’local’ slope of the

electron spectrum appropriate to ǫm. Therefore, if one assumes s(E) 6= const, the

index s(ǫm) may vary with azimuth because ǫm varies, Eq. (C.34).

5. The final formula is

Sx(ϕ, ¯̺) ∝ ς(ϕ)σB(ϕ)
(s+1)/2 exp

[

−
(

ǫm(ϕ)

F(ϕ)

)α]

Irx(ϕ, ¯̺; ǫf‖) (C.36)

where only Ix depends on ¯̺ and ǫf‖.

The formula Eq. (C.36) gives us the possibility to approximate both the azimuthal

and the radial brightness profiles of X-ray brightness for ¯̺ close to unity. It may be

used (with a bit larger errors compared to the case of IC emission; Fig. C.2, cf.

Fig. C.3), for those azimuth ϕ where ǫm <∼ 1 and ǫf >∼ 0.1, in the range of ¯̺ from

1− 2∆¯̺m to 1, where ∆¯̺m = 1 − ¯̺m, ¯̺m is the radius where the maximum in the



338

Figure C.2. Azimuthal (upper panels) and radial (lower panels) profiles of the X-ray surface
brightness Sx (solid lines) and its approximations (C.36) (dashed lines). Calculations are done for
φo = 90o, b = 0, isotropic injection, γ = 5/3, s = 2, α = 1. Models of Emax: F = const (left and
middle panels) and time-limited one with η = 1.5 (right panels). The reduced electron energy is
ǫm = 1 and the reduced fiducial energy is ǫf‖ = 3 (left), ǫf‖ = 1 (middle), ǫf‖ = 5 (right panels).

radial profile of brightness happens. We have in mind the maximum which is close

to the shock, say ¯̺m > 0.95; therefore, in order to determine ¯̺m, one should look for

the azimuth with the largest radiative losses. This is discussed in details on example

of the IC emission in Sect. C.4.

Adiabatic index γ affects the approximation through σ, κr, κad.

C.4. IC γ-ray brightness. Electrons with Lorentz factor γ emit most of their

IC radiation in photons with energy εm. Let us use the ’delta-function approxima-

tion’ [280]:

pic(γ, ε) ≈ pm(γ)δ(ε− εm), pm(γ) =

∞
∫

0

pic(γ, ε)dε. (C.37)

In the Thomson limit, which is valid for SNRs in most cases, εm(γ) ≈ 4kTγ2 [280]

and pm(γ) = (4/3)cσTωγ
2 [326], T and ω are the temperature and the energy

density of initial black-body photons, σT is the Thomson cross-section.

Substitution (3.57) with (C.37) yields

qic =
cσTωmec

2ε1/2

12ǫ
3/2
c

N(Em) (C.38)
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where

Em =
mec

2ε1/2

2(kT )1/2
(C.39)

is the energy of electrons which give maximum contribution to IC emission at pho-

tons with energy ε.

Adopting the approach from the Appendix C.3 to IC emission, we come to the

approximation

Sic(ϕ) ∝ ς(Θo,eff) exp

[

−
(

Em(ε)

Emax,‖F(Θo,eff)

)α]

Iic(Θo,eff, ρ̄). (C.40)

The factor

Iic =

∫ 1

ā(¯̺)

K̄r̄r̄ādā
√

r̄2 − ¯̺2
exp

[

−
(

Em

Emax,‖F

)α
(

ā−αψ − 1
)

]

(C.41)

is approximately

Iic(ϕ, ¯̺) ≈
1

σ
√

1− ¯̺2
1− ¯̺σ(κic+1)

κic + 1

×
[

1− ǫαmψα

Fα

(

1− 1− ¯̺σ(κic+2)

1− ¯̺σ(κic+1)

κic + 1

κic + 2

)]

.

(C.42)

where κic and σ comes from the approximations ā ≈ r̄σ, K̄r̄ā ≈ āκic/σ,

ψ = κad +
5σ2

Bǫm
2ǫf‖

− 3q

2
, (C.43)

ǫm =
Em

Emax,‖
=

ε1/2

2(kT )1/2γmax‖
, (C.44)

κic =
3b

2
+

2 + s

3
κna +

1

σ
− 1. (C.45)

The final formula is

Sic(ϕ, ¯̺) ∝ ς(ϕ) exp

[

−
(

ǫm
F(ϕ)

)α]

Iic(ϕ, ¯̺; ǫf‖) (C.46)

It gives us the possibility to approximate both the azimuthal and the radial bright-

ness profiles for ¯̺ close to unity.
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Figure C.3. Azimuthal (upper panels) and radial (lower panels) profiles of the IC surface bright-
ness Sic (solid lines) and its approximations (C.46) (dahsed lines). Calculations are done for
φo = 90o, b = 0, isotropic injection, γ = 5/3, s = 2, α = 1. Models of Emax: F = const (left
and middle panels) and time-limited one with η = 1.5 (right panels). The reduced electron energy
is ǫm = 1 and the reduced fiducial energy is ǫf‖ = 3 (left), ǫf‖ = 1 (middle), ǫf‖ = 5 (right panels).

Accuracy of the approximation. Fig. C.3 demonstrates accuracy of the ap-

proximation (C.46) (left and middle panels show in fact the variation of Iic because

both ς and F are constant there). Our calculations may be summarized as follows:

this approximation may be used, with errors less than ∼ 30%, for those azimuth ϕ

where ǫm <∼ 1 and ǫf >∼ 0.1, in the range of ¯̺ from 1−2∆¯̺m to 1, where ∆¯̺m = 1− ¯̺m,

¯̺m is the radius (close to the shock) where the maximum in the radial profile of

brightness happens; in addition, approximation may not be used for ¯̺ <∼ 0.9. If for

some azimuth, the above conditions on ǫm and ǫf do not hold, the accuracy of ap-

proximation gradually decreases because the role of the exponent in N(E) and of

the radiative losses may not be described by the first terms in the decompositions

used for derivation of the formula.

Let’s consider Fig. C.3. The photon energy ǫm does not change with azimuth for

IC process. On the left panels, the reduced fiducial energy ǫf(ϕ) = ǫf‖/(Fσ2
B)
>∼ 0.1

for any azimuth: ǫf‖ = 3 at the parallel shock and ǫf⊥ = 0.19 at the perpendicular

shock. The approximation is accurate for any azimuth, for 0.98 <∼ ¯̺≤ 1 at ϕ = 90o

and for a wider range of ̺ at ϕ = 0o. Middle panels on Fig. C.3 show the same
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case except of ǫf‖ = 1. At parallel shock (i.e. ϕ = 90o), the range for ¯̺ is smaller,

0.99 <∼ ¯̺ ≤ 1 (lower panel). Therefore, the approximation of the azimuthal profile

for ¯̺ = 0.98 is inaccurate (upper panel, blue line), especially for ϕ > 45o where

ǫf decreases; it is ǫf⊥ = 0.06. The azimuthal profile is however accurate for ¯̺ =

0.99 (black line). Similar situation is for variable Emax (right panels on Fig. C.3).

Emax⊥/Emax‖ = 3.25 for considered model, therefore ǫf‖/ǫf⊥ = 52. Therefore, in

order to obtain a representative approximation, the lowest possible ǫf‖ should be

about 0.1×52 = 5.2. We see from the figure that accuracy decreases toward smaller

ǫf (i.e. where the role of radiative losses are very efficient in modification of the

electron distribution) and for smaller ¯̺.

In general, the accuracy of the approximation is better for larger ǫf and smaller

ǫm. With decreasing of the aspect angle φo, the accuracy of the approximations for

the azimuthal profile increases at the beginning (because contrasts in σB, ǫf and

F are lower) and then decreases again, for the case of the quasi-parallel injection,

because SNR becomes centrally-brightened while our approximation is developed

for regions close to the edge of SNR.
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Appendix D

Calculation of integral in Eq. (3.42)

The function I(a, t) in Eq. (3.42) is expressed as [303]

I(a, t) = σ2
B

∫ t

ti

Beff(a, t
′)2

Beff,s(t)2

(

ρ(a, t′)

ρ(a, t)

)1/3
dt′

t
, (D.1)

where B2
eff = B2 + B2

CMB is the “effective” magnetic field introduced to account for

the energy losses of electrons due to IC scatterings on the photons of CMB.

The integral (D.1) is rather CPU consuming because it requires to know, with

high enough time resolution, the history of each parsel of gas inside the SNR since

its shocking time. To reduce the computational cost, we calculate it approximately,

changing integration on dt′ to dR′ = Vsh(t
′)dt′, where R and Vsh are the shock

position and velocity, respectively, and using some MHD properties of the fluid.

We calculate I(a, t) using an analytic description of mass density and magnetic

field evolution inside the SNR which expands through a non-uniform ISM and/or

ISMF. The continuity equation ρo(a)a
2da = ρ(a)r2dr results in

ρ(a, t) = ρo(a)

(

a

r(a, t)

)2

ra(a, t)
−1 (D.2)

where ra(a, t) is the derivative of r(a, t) with respect to a; the density term in Eq.

(D.1) is
ρ(a, t′)

ρ(a, t)
=
r(a, t)2

r(a, t′)2
ra(a, t)

ra(a, t′)
. (D.3)

The magnetic field in Eq. (D.1) can be expressed as B(a, t)2 = B‖(a, t)
2+B⊥(a, t)2,

where B‖ and B⊥ are the components of magnetic field parallel and perpendicular

to the shock normal, respectively. These two components follow the magnetic flux

conservation B‖dσS = const, where dσS ia a surface element, and the flux-frozen

condition B⊥(r)rdr = const:

B‖(a, t) = B‖,o(a)
a2

r(a, t)2
, (D.4)
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B⊥(a, t) = B⊥,o(a)
r(a, t)

a

ρ(a, t)

ρo(a)
= B⊥,o(a)

a

r(a, t)ra(a, t)
. (D.5)

Thus, the magnetic field and the mass density in Eq. (D.1) can be expressed through

the relation r(a, t) between Eulerian and Lagrangian coordinates of a parcel of gas

and its derivative, ra(a, t). Considering that r(a, t) and ra(a, t) can be expressed in

terms of the dynamical characteristics of the shock (i.e. as r(a, R) and ra(a, R)), the

integral (D.1) may be calculated as follows:

I(a, t) = σ2
B

t

∫ R

Ri

B(a, R′)2

Bs(R)2

(

r(a, R)2ra(a, R)

r(a, R′)2ra(a, R′)

)1/3
dR′

Vsh(R′)
. (D.6)

Now, the relation r(a, R) is approximated2, using the method described in [195]:

r(a, R)

R
=
( a

R

)ψ

(1 + a1υ + a2υ
2 + a3υ

3 + a4υ
4) (D.7)

where υ = (R − a)/R and ψ = (γ − 1)/γ. The parameters a1, a2, a3, and a4 are

expressed as:

a1 = −ra,s + ψ , (D.8)

a2 =
1

2
(Rraa,s − 2ψra,s + ψ(ψ + 1)) , (D.9)

a3 =
1

6

(

−R2raaa,s + 3ψRraa,s − 3ψ(ψ + 1)ra,s + ψ(ψ + 1)(ψ + 2)
)

, (D.10)

a4 = C − (1 + a1 + a2 + a3) , (D.11)

where C reflects the variation of r(a) around the center of the SNR. We adopt C = CA
where CA is given by the self-similar Sedov solution for a spherical shock (for details

see Appendix in [272] and references therein):

CA =

[

γ

γ + 1
P̄ (0)−1/γ

]1/3

, (D.12)

P̄ (0) is the plasma pressure at the center of the remnant divided by its post-shock

value

P̄ (0) =

(

1

2

)6/5(
γ + 1

γ

)6/5−γ/(2−γ)(
(2γ + 1)(γ + 1)

γ(7− γ)

)(−2+5/(2−γ))·ζ
, (D.13)

2The approximation (D.7) is developed to give exact values of derivatives up to the third order at the shock

and to the first order at the center.
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Figure D.1. Self-similar approximate and exact radial profiles of the integral I(a) when the
ambient magnetic field is either parallel (upper panel) or perpendicular (lower panel) to the shock
normal, and γ = 5/3.

ζ =
γ + 1

3(γ − 1) + 2
− 2

5
+

γ − 1

2γ + 1
. (D.14)

Thus, we derive CA(γ = 5/3) = 1.083, CA(γ = 4/3) = 1.055 and CA(γ = 1.1) =

1.021. The expressions for the derivatives ra,s, raa,s, raaa,s in Eqs. (D.8)-(D.10) as

functions of R, Ṙ, R̈ and R(3) are given in Appendix A2 of [195].

Finally, we calculate Vsh(R) in Eq. (D.1) as well as R̈ and R(3), using the Hnatyk

[193] approximate analytical formula for the strong shock in a non-uniform medium

(see also Sect. 2.1 in [195]).

Integral I(a, t) can be calculated rather simply in the case of a SNR expanding

through uniform ISM and ISMF. We therefore test our calculation of I(a, t) by com-

paring the approximate values derived from Eq. (D.6) with the exact ones derived

from the Sedov solution in the case of γ = 5/3. Figure D.1 compares the exact and

approximate values of I(a, t) in the limits of parallel and perpendicular shocks.
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Appendix E

Surface brightness of Sedov SNR

Surface brightness of a spherical SNR is an integral of volume emissivity q along

the line of sight

Ssyn = 2

R
∫

0

qdl = 2R

1
∫

ā(ρ̄)

q
r̄r̄ādā

√

r̄2 − ρ̄2
, (E.1)

where ρ is distance from the center of projection, r̄ = r/R, a Lagrangian coordinate,

ra = dr/da,

q =

∫

N(E)p(E, ε)dE, (E.2)

where E and ε are the electron and photon energies, p the radiation power of a single

electron. In case of Sedov SNR in uniform medium the electron energy distribution

downstream of the shock is (Sect. 3.2)

N(E) = KE−sEs−2
rad exp

(

− E

Emax‖EadEradfE

)

, (E.3)

the normalizationK = Ks‖(t)fK(Θo)K̄(ā), the magnetic fieldB = Bs‖(t)σB(Θo)B̄(ā)

and the electron maximum energy Emax = Emax‖fE(Θo).

E.1. Synchrotron emission. The synchrotron radiation power is

p =

√
3e3 〈sinφ〉
mec2

BFsyn

(

ν

νc

)

, (E.4)

where all notations have their common meaning. The synchrotron surface brightness

of Sedov SNR is therefore

Ssyn =
2
√
3e3 〈sinφ〉
mec2

Ssyn(ν̃, ρ̄, ϕ;φo, b, ǫf‖) E
1−s
maxKs‖BoR. (E.5)
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where Ssyn(ν̃, ρ̄, ϕ) is a universal dimensionless function

Ssyn =

1
∫

ā(ρ̄)





∞
∫

0

Fsyn

(

ν̃

ǫ2σBB̄

)

ǫ−sEs−2
rad exp

(

− ǫ

EadEradfE

)

dǫ





×σBB̄fKK̄
r̄r̄ādā

√

r̄2 − ρ̄2
,

(E.6)

where ǫ = E/Emax‖. It depends on the dimensionless models of obliquity variations

of K, B and Emax (i.e. on fK, σB, fE) but is independent of the actual values of

Emax, Ks, Bo and R.

In the limit ǫf‖ ≫ 1 and/or ν̃ ≪ 1, Eq. (E.5) transforms to

Ssyn =
2
√
3e3 〈sinφ〉A(s)

mec2
Sr(ρ̄, ϕ;φo, b)ν̃

−(s−1)/2E1−s
maxKs‖BoR. (E.7)

where

Sr =

1
∫

ā(ρ̄)

(

σBB̄
)(s+1)/2

fKK̄
r̄r̄ādā

√

r̄2 − ρ̄2
, (E.8)

or, in other form,

Sr =
2
√
3e3 〈sinφ〉A(s)

mec2
Sr(ρ̄, ϕ;φo, b) (ν/c1)

−(s−1)/2Ks‖B
(s+1)/2
o R. (E.9)

E.2. IC emission. The IC radiation power is

p =
2e4m2

ec
2kT

π~3
E−2I(E, ε), (E.10)

where all notations have their common meaning, I is a special integral [280]. The

IC brightness is therefore

Sic =
4e4m2

ec
2kT

π~3
Sic(ε, ρ̄, ϕ;φo, b, ǫf‖, Emax) Ks‖R. (E.11)

The function Sic(ρ̄, ϕ) is not so universal as in case of the synchrotron emission;

it depends on the absolute values of the photon energy and the maximum electron

energy; we do not present it here.
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Appendix F

Nonthermal spectrum of Sedov SNR

Flux is defined as

F (ν) =
(

4πd2
)−1
∫

P (ν)dV (F.1)

where V is the volume of SNR and P the volume emissivity. We assume that the

energy spectrum of electrons in the form

N(E)dE = KE−s exp(−E/Emax)dE (F.2)

are created at the shock. The volume emissivity is

P (ν) =

∫

N(E)p(E, ν)dE (F.3)

where p is the spectral distribution of radiation power of ‘single’ electron with energy

E. Let us consider adiabatic SNR in uniform ISM and uniform ISMF.

In general, the efficiency of injection may depend on the shock obliquity angle

Θo. If particles are injected easier at quasiparallel shocks then Ks(Θo) is decreasing

function of Θo with decrement rate dependent on the level of turbulence, shock

strength etc. [137]. Let us consider parametric representation Ks = Ks‖fK(Θo) with

approximation fK = exp
(

− (Θo/ΘK)
2
)

where Ks‖ the normalization for region

immediately after the parallel shock, ΘK the parameter. ΘK = π/6 approximates the

classical quasiparallel dependence, ς ∝ cos2(Θo). In case of the isotropic injection,

ΘK = ∞.

F.1. Synchrotron emission. The radio flux (F.1) from Sedov SNR may be

written as (for details, see [17])

Fr(ν) = Cν−(s−1)/2ζ(b,ΘK)Ks‖B
(s+1)/2
o R3d−2 (F.4)

where

C = (4π)−1A(s)c2µφc
(s−1)/2
1 , (F.5)
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c1 = 3e/(4πm3
ec

5), c2 =
√
3e3/(mec

2),

A(s) =
2(s−1)/2

s+ 1
Γ

(

3s+ 19

12

)

Γ

(

3s− 1

12

)

, (F.6)

µφ =
〈

sin(ϕ)(s+1)/2
〉

, (C = 3.493× 10−14 cgs in case s = 2), ϕ the angle between

MF and the line of sight,

ζ(b,ΘK) =

2π
∫

0

dϕ

π
∫

0

dθ sin θfK

1
∫

0

dār̄2r̄āK̄
(

σBB̄
)(s+1)/2

, (F.7)

σB(Θo) is the compression factor for MF, r and a are Eulerian and Lagrangian

coordinates respectively, ra = dr/da, bar represents parameter divided by its post-

shock value, (ϕ, θ) spherical coordinates. Thanks to the self-similarity, the constant

ζ ‘compactifies’ the whole downstream evolution of fluid elements [21], magnetic

field and relativistic electrons [303].

In a similar fasion, the X-ray flux is [18]

Fx(ν̃) = C2ζx(ν̃; b,ΘK, ǫf‖)Ks‖BoE
1−s
max‖R

3d−2 (F.8)

where ν̃ = ν/νc(Emax‖, Bo), νc(E,B) ∝ E2B is the synchrotron characteristic fre-

quency, C2 = c2 〈sinϕ〉 /(4π) a constant, ǫf‖ = 637
(

B2
s‖tEmax‖

)−1

is the reduced

fiducial energy. The energy ǫf is a measure of importance of radiative losses in mod-

ification of the electron spectrum [303]. The function

ζx(ν̃; b,ΘK, ǫf‖) =

2π
∫

0

dϕ

π
∫

0

dθ sin θfK

1
∫

0

dār̄2r̄āK̄σBB̄

×
∞
∫

0

dǫǫ−sEs−2
rad exp

(

− ǫ

EadEradfE

)

Fsyn

(

ν̃

ǫ2σBB̄

)

,

(F.9)

where Ead(a), Erad(a; ǫf‖,Θo) represent adiabatic and radiative losses of relativistic

electrons (Sect. 3.2), Fsyn the function known in the theory of synchrotron radiation,

ǫ = E/Emax‖.

With ν̃, the radio flux (F.4) may be written in a form similar to (F.8):

Fr(ν̃) = C2A(s)ν̃−(s−1)/2ζ(b,ΘK)Ks‖BoE
1−s
max‖R

3d−2. (F.10)
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Comparison of (F.8) and (F.10) demonstrates that, for ν much smaller than X-ray

frequencies, ζx transforms to ζ, as expected:

ζx(ν̃) = A(s) ν̃−(s−1)/2ζ. (F.11)

This transition may also be shown analytically from (F.9), in the limit E ≪ Emax

and E ≪ ǫfEmax [18].

Let us introduce the modification factor for the synchrotron spectrum

η(ν̃, ǫf‖) =
ζx(ν̃, ǫf‖)ν̃

(s−1)/2

A(s)ζ
. (F.12)

It is defined to be η ≤ 1 and ensure η → 1 for ν ≪ νc(Emax‖, Bo), as it is given

by (F.11). In terms of ν̃, the modification factor is almost universal (i.e. allows for

scaling with frequency).

With the modification factor, the expression (F.8) which describes the broad-

band (radio-to-X-ray) synchrotron spectrum from Sedov SNR becomes

F (ν) = Cν−(s−1)/2ζ(b,ΘK)η(ν̃; ǫf‖)Ks‖B
(s+1)/2
o R3d−2. (F.13)

The values of ζ are shown on Fig. F.1. The parameter ζ is important in nor-

malization of synchrotron spectrum: it varies in about 8 times over the parameter

space. If injection is considerably larger at parallel shocks (ΘK ≤ π/3), the value

of b is almost unimportant for amplitude of the synchrotron spectrum, but rather

small changes in ΘK may cause differences in ζ in few times. In contrast, if injection

tends to be isotropic (ΘK ≥ 2π/3), b plays the dominant role.

In order to explore the parameter space, we made several runs to calculate the

modification factors for different sets of parameters. Results are shown on Fig. F.2

where we also plot the experimental data in order to demonstrate relevance of the

parameters for SN 1006. The modification factor depends on ǫf‖, b, ΘK and s as well

as on the function fE(Θo).

F.2. IC emission. The inverse-Compton flux (F.1) from electrons in a black-

body photon field with temperature TCMB, at photon energies far below TeV (i.e.

when the Thomson regime and power-law electron distribution are assumed, see
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Figure F.1. ζ for different values of parameters b and ΘK. s = 2

Figure F.2. Modification factor ηsyn. Calculations are done for s = 2, the time-limited model of
Emax with η = 1.5, isotropic injection (thick lines) and quasiparallel injection (thin lines), three
values of b, ǫf‖ = 100 (upper panel) and ǫf‖ = 3.2 (lower panel). Experimental modification factor
for SN 1006 are shown for comparison. It is obtained from the SUZAKU spectrum (Fig. 6 [64]) for
photon energies ≥ 2 keV, with the use of Eq. (5.25). MF strength is given by Eq. (5.21): Bo = 3µG
(upper panel) and Bo = 30µG (lower panel).
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Sect. 3.3 for details), is

FT(ε) = CTε
−(s−1)/2ζT(b,ΘK)Ks‖R

3d−2 (F.14)

where ε is the photon energy,

ζT(b,ΘK) =

2π
∫

0

dϕ

π
∫

0

dθ sin θfK

1
∫

0

dār̄2r̄āK̄, (F.15)

reflects the evolution of relativistic electrons downstream and

CT =
2s−1π2σTmeAT(s)

(s+1)/2 (kTCMB)
(s+5)/2

(s+ 1)h3(mec2)s
(F.16)

where σT is the Thomson cross-section,

AT(s) =





12

π2
(s2 + 4s+ 11)

(s+ 5)(s+ 3)2

∞
∫

0

z(s+3)/2dz

exp(z)− 1





2/(s+1)

. (F.17)

The contribution from electrons with energies around Emax may be important for

TeV γ-photons. The full expression for IC process is

Fic(ε) = Cicζic(ε; b,ΘK, ǫf‖, Emax‖)Ks‖R
3d−2 (F.18)

where

Cic =
3σTkTCMB(mec

2)3−s

2h3c2
, (F.19)

ζic(ε; b,ΘK, ǫf‖, Emax‖) =

2π
∫

0

dϕ

π
∫

0

dθ sin θfK

1
∫

0

dār̄2r̄āK̄

×
∞
∫

γmin(ε)

dγγ−2−sEs−2
rad exp

(

− γ

γmax‖EadEradfE

)

I(ε, E),

(F.20)

where γ is the electron Lorentz factor, I is an integral appearing in the theory of

inverse-Compton process (Sect. 3.3); it accounts for the KN decline where nesessary.

In case s = 2 and TCMB = 2.75, AT = 0.710 and CT = 1.304 × 10−14 cgs,

Cic = 1.186× 1012 cgs.
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In the limit E ≪ Emax and E ≪ ǫfEmax, one has Erad = 1 and I ∝ ε, Emin ∝ ε1/2

(Sect. 3.3) and (F.18) transforms to (F.14). Therefore

ζic(ε) = coε
−(s−1)/2ζT (F.21)

in this limit; co = CT/Cic.

Let us introduce the modification factor for IC spectrum:

ηic(ε, ǫf‖, Emax‖) =
ζic(ε, ǫf‖, Emax‖)ε

(s−1)/2

coζT
. (F.22)

It is also defined to be ηic ≤ 1 and ensure ηic → 1 well below TeV energies. However,

it is not so universal as for the synchrotron emission, Eq. (F.12): it does not scaled

with the frequency and it depends on the absolute value of Emax. The expression for

the broadband IC spectrum is

Fic(ε) = CTε
−(s−1)/2ζT(b,ΘK)ηic(ε, ǫf‖, Emax‖)Ks‖R

3d−2. (F.23)

The parameter ζT behaves like ζ (Fig. F.3): it mostly depends on ΘK for quasi-

parallel injection and on b for isotropic injection. However, the role of ζT is less

important for normalization of IC spectrum because it varies in about 4 times over

the parameter space.

The modification factor of the IC specrum ηic is shown on Fig. F.4, in comparison

with the observational data for SN 1006. It depends on ǫf‖, b, ΘK, s and Emax as

well as on the function fE(Θo).
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Figure F.3. ζT for different values of parameters b and ΘK. s = 2

Figure F.4. Modification factor ηic. Lines are the same as on Fig. F.2. Experimental modification
factor for SN 1006 are shown for comparison. It is obtained from the HESS data [28] with the use
of Eq. (5.26) and MF strength Bo = 3µG (upper panel) and Bo = 30µG (lower panel).


