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To study the behavior of solutions of dissipative systems vital is the question of
approaches to astimating the randomness of solutions and their classification. The
Sammon method of data visualization [1] is used to classify different types of
solutions of reaction-diffusion systems:
0 ,0% o .. 0™ 3
8t_l ax2+9 n+1, Py =L 52 nm-(©-4)"). (1)
Suppose that we have N vectors in an L-space designated X;, i=1/,.., N and
respectively we define N vectors in a d-space (d = 2 or 3) designated Y;, i=[,..,N.
Let the distance between the vectors X; and X; in the L-space be defined by
d;*=dist [X; X;] and the distance between the corresponding vectors — Y; and Y;in
the d-space be defined by d;= dist [Y,, Y}].
Let us now randomly choose an initial d-space configuration for the Y
vectors and denote the configuration as follows: Y; = [ Vils-s Vid ], i=1..,N.

Next we compute all the d-space interpoint distances d;;, which are then used
to define an error £, which represents how well the present configuration of N
points in the d-space fits the N points in the L-space, i.¢.,

Ez[l/Z[dijﬂZ[dij—dﬂ /dy. )
i<j i<j

Note that the error is a function of the d x N variables y,, p=1, ..., N and
g=1,...d. The next step in the Summon algorithm is to adjust the y,, variables or
equivalently change the d-space configuration so as to decrease the error. In
Sammon method [1] used an iterative optimization Newton method:

Y pgk+1) =y, (k) =CA, (k) A3)
where & — coefficient of training (in the interval [0.3, 0.4]), and A, (k) is the
quotient of the corresponding component of the gradient and Hessian diagonal
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component defined in the k-th iteration: A _(k)=(8E /8y, )/(8%E/&%y,,%).
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Fig.1 Graphs of the numerical system (1) and Sammon projection if 2=0.05,

v=-0.375 -a) I>=0.01, v=—0.75 -b) and if /> =0.01, v=-0.375 -¢), I> =1.
Sammon mapping on a plane was conducted for different types of solutions
of (1) [2]. The result of this mapping is shown in Fig. 1. The first graph shows the
projection of data corresponding to regular oscillations, the next one - the projection of
data obtained for the bifurcation parameter 4, close to the critical value when the
oscillations lose their regularity, and the last graph corresponds to chaotic oscilla-
tions. As one can see, the method is sensitive to changes in the nature of oscillations
and makes it possible to clearly delineate the chaotic oscillations from the regular one.
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BI3YAJIBAILIS PO3B'SI3KIB CHCTEM PEAKIIII-TA®Y3Ii
3 JOIIOMOI'OI0O METOAY CAMMOHA

Jlns 0ocniooncenus nogediHKuy po3e a3Kie OUCUNAMUBHUX CUCTEM AKMYATbHUM € NUMAHHS
nioxo0ie 00 OYIHKU XaomuuHocmi po3s’siskie ma ix knacugixayii. Memoo eizyanizayii
Odanux Cammona euxopucmano Ons Kiacu@ikayii pizHux munie pose’si3Kie cucmemu
pearyii-ougysii, wo UA8UNOCH 0OCMAMHLO epeKMUSHUM.
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