On the one-dimensional boundary-value problems with parameter in Slobodetsky spaces

Hanna Masliuk

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", masliuk@matan.kpi.ua

We arbitrarily choose a compact interval $[a, b] \subset \mathbb{R}$ and numbers

$$
p \in(1, \infty), \quad m \geq 1, \quad r \geq 2, \quad s \in \mathbb{R}_{+} \backslash \mathbb{Z}_{+}, \quad s:=[s]+\{s\},
$$

where $[s] \in \mathbb{Z}_{+}$is the integer part of a number and $\{s\} \in(0,1)$ is it fractional part. We use the complex Slobodetsky spaces $\left(W_{p}^{s}\right)^{m}:=W_{p}^{s}\left([a, b], \mathbb{C}^{m}\right)$ and $\left(W_{p}^{s}\right)^{m \times m}:=W_{p}^{s}\left([a, b], \mathbb{C}^{m \times m}\right)$, formed by functions, vector functions and matrix functions, respectively.

Let a real number $\varepsilon_{0}>0$ be fixed, and let a real parameter ε range over the interval $\left[0, \varepsilon_{0}\right)$. We investigate a parameter-dependent linear boundary-value problem of the form

$$
\begin{gather*}
L(\varepsilon) y(t, \varepsilon) \equiv y^{(r)}(t, \varepsilon)+\sum_{j=1}^{r} A_{r-j}(t, \varepsilon) y^{(r-j)}(t, \varepsilon)=f(t, \varepsilon), \quad a \leq t \leq b, \tag{1}\\
B(\varepsilon) y(\cdot, \varepsilon)=c(\varepsilon) . \tag{2}
\end{gather*}
$$

For every fixed $\varepsilon \in\left[0, \varepsilon_{0}\right)$, the solution $y(\cdot, \varepsilon)$ to the problem is considered in the class $\left(W_{p}^{s+r}\right)^{m}$. We suppose that $A_{r-j}(\cdot, \varepsilon) \in\left(W_{p}^{s}\right)^{m \times m}$ for each $j \in$ $\{1, \ldots, r\}$ and that $f(\cdot, \varepsilon) \in\left(W_{p}^{s}\right)^{m}$. Thus, (1) is a system of m scalar linear r th order differential equations given on $[a, b]$. Note we do not assume $A_{r-j}(\cdot, \varepsilon)$ to have any regularity in ε. As to the boundary condition (2), we suppose that $B(\varepsilon)$ is an arbitrary continuous linear operator

$$
B(\varepsilon):\left(W_{p}^{s+r}\right)^{m} \rightarrow \mathbb{C}^{r m}
$$

and that $c(\varepsilon) \in \mathbb{C}^{r m}$.
For the boundary-value problem (1), (2) we introduce the following limit conditions as $\varepsilon \rightarrow 0+$:
(0) The homogeneous boundary-value problem as $\varepsilon=0$ has only the trivial solution.
(I) $A_{r-j}(\cdot, \varepsilon) \rightarrow A_{r-j}(\cdot, 0)$ in $\left(W_{p}^{s}\right)^{m \times m}$ for each $j \in\{1, \ldots, r\}$;
(II) $B(\varepsilon) y \rightarrow B(0) y$ in $\mathbb{C}^{r m}$ for every $y \in\left(W_{p}^{s+r}\right)^{m}$;
(III) $f(\cdot, \varepsilon) \rightarrow f(\cdot, 0)$ in $\left(W_{p}^{s}\right)^{m}$;
(IV) $c(\varepsilon) \rightarrow c(0)$ in $\mathbb{C}^{r m}$.

Definition. We say that the solution to the boundary-value problem (1), (2) depends continuously on the parameter ε at $\varepsilon=0$ in space $\left(W_{p}^{s+r}\right)^{m}$ if the following two conditions are satisfied:
$(*)$ There exists a positive number $\varepsilon_{1}<\varepsilon_{0}$ that this problem has a unique solution $y(\cdot, \varepsilon) \in\left(W_{p}^{s+r}\right)^{m}$ for arbitrarily chosen $\varepsilon \in\left[0, \varepsilon_{1}\right), f(\cdot, \varepsilon) \in$ $\left(W_{p}^{s}\right)^{m}$, and $c(\varepsilon) \in \mathbb{C}^{r m}$.
(**) It follows from Limit Conditions (III) and (IV) that

$$
y(\cdot, \varepsilon) \rightarrow y(\cdot, 0) \text { in }\left(W_{p}^{s+r}\right)^{m} \text { as } \varepsilon \rightarrow 0+.
$$

In paper [1], we proved problems (1), (2) are Fredholm, and obtained conditions that are sufficient for their well-posedness and continuity in the parameter of their solutions in Slobodetsky spaces.

Now, we proved that earlier found constructive sufficient conditions are also necessary.

Theorem. The solution to the boundary-value problem (1), (2) depends continuously on the parameter ε at $\varepsilon=0$ in space $\left(W_{p}^{s+r}\right)^{m}$ if and only if this problem satisfies Condition (0) and Limit Conditions (I) and (II).

Also a two-sided estimate for the degree of convergence of these solutions was obtained.

The case $r=1$ was investigated earlier in [2].

1. Masliuk H. O., Mikhailets V. A. Continuity in the parameter for the solutions of one-dimensional boundary-value problems for differential systems of higher orders in Slobodetskii spaces // Ukrainian Math. J. - 2018. - V. 70, № 3. - C. 467-476.
2. Гнип Є. В., Михайлецъ B. А. Фредгольмові крайові задачі з параметром на просторах Слободецького // Диференціальні рівняння і суміжні питання: Зб. праць Ін-ту математики НАН України. - 2016. - Т. 13, № 1. - С. 76 - 87.

ПРО ОДНОВИМІРНІ КРАЙОВІ ЗАДАЧІ З ПАРАМЕТРОМ У ПРОСТОРАХ СЛОБОДЕЦЬКОГО

Досліджено найбільш широкий клас лінійних крайових задач для систем
звичайних диферениіальних рівнянь, порядку $r \geq 2$, розв'язки яких на-
лежсать комплексному простору Слободецкого W_{p}^{s+r}, де $\in \in \mathbb{R}_{+} \backslash \mathbb{Z}_{+}{ }^{2}$
$p \in(1, \infty)$. Для таких задач встановлено конструктивний критеріи непе-
рервності за параметром розв'язків у нормованому просторі W_{p}^{s+r}. Такожс
отримана двостороння оцінка для швидкості збіжсності цих розв'лзків.

