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We discuss applications of the Besov distribution spaces B, q(Q) to a linear
differential elliptic boundary-value problem

Au(z) = Z a,(x)D*u(z) = f(z) whenever z €,
|nl<21
) = Z bju(x)D*u(x) = gj(x) whenever z €T,
|| <m;

j=1,...1,

given in a bounded Euclidean domain  with infinitely smooth boundary I'
and having arbitrary distributions g; in the right-hand sides of the boundary
conditions. The elliptic PDO A is of even order 2] > 2, whereas each boundary
PDO B; is of order mj; > 0. All coefficients a, and b;, of these PDOs are
infinitely smooth complex-valued functions on Q and T, respectively. We put
B:=(By,...,B;) and m := max{my,...,m;}. The case m > 2l is possible.

As to the above spaces, we suppose that 0 < p < oo and 0 < ¢ < co. Thus,
we also involve quasi-normed spaces if 0 < p < 1 and/or 0 < ¢ < 1. Given
real numbers s and a > s — 2[, we introduce the linear space

s (A, BS

p,q’

Q):={ueB; (Q):Aue B ()}
endowed with the graph quasi-norm
[u, By o ()] + [|Au, By, (Q)]].

Here, Au is understood in the sense of the theory of distributions. This space
is complete, and C°°(2) is dense in it.

Put
w(pn) = % + maX{O, (n—1) <; - 1) }

where n is the dimension of 2, with n > 2.
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Theorem 1. Let 0 < p < 0o and 0 < q¢ < co. Suppose that real numbers
s and « satisfy the conditions

s<m+mn(p,n) and a>m—2+x(p,n).

Then the mapping v — (Au, Bu), with u € C®(Q), extends uniquely (by
continuity) to a bounded linear operator

!

(A,B): By (A, Bg ;) — By () x [ [ By /(D).
j=1

This operator is Fredholm one. Its kernel N C C*°(Q) and index do not depend

on the parameters s, a, p, and q. Moreover, the range of this operator has a

finite-dimensional complement M C C°°(Q) x (C°°(T"))! that does not depend

on these parameters as well.

The theorem 1 is applied to the elliptic problem with boundary data of
arbitrarily low (specifically, negative) regularity (so called, rough data) pro-
vided that f is sufficiently regular. Moreover, f is allowed to have a certain
negative regularity if m < 20 — 1 and p > 1. This theorem is proved in [1].
The case of normed Besov spaces, where p > 1 and ¢ > 1, was covered in [2,
Section 3] under assumption that m <20 —1 and o > 2] — 1.

This theorem remains valid in the ¢ = oo case excepting the density of
C>°(9) in the space B} (A, BY ., ). In this case, the relevant Fredholm op-
erator is considered as a restriction of any bounded operator from the theorem
with ¢ < oo and smaller s (cf. [3, Section 2]).
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IIPO EJIIIITUYHI 3AJAYI 3 TPYBUMU KPATOBUMMU
JAHNUMN Y ITPOCTOPAX BECOBA PO3IIO/I1JIIB

Zlonosidv npucesvena 3acmocysarnam npocmopis Becosa B} des € R
p,q € (0,00), do eaminmunnur 3a0ay, Y AKUT NPAGE HACMUNY KPATOBUL YMOG
e dosinvHumu posnodisamu. Taxi 3adayi Mopodotcyromo Hemeposi obmestceri
onepamopu Ha 6i0nosidkuxr napar mnpocmopie bBecosa sk 3a6200H0 Ma.n020
(30Kxpema, 610°emro20) NOPAdKY S 3a YMOBU, WO NPAGA HACTNUHG EAINMUNHOZO

DIBHAHHA € JOCMATNHBO PERYAADHUM PO3NOLAOM.
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