The conference of young scientists «Pidstryhach readings - 2024» May 27-29, 2024, Lviv

UDC 517.54

EXTREMAL PROBLEM ON DOMAINS CONTAINING ELLIPSE POINTS

Iryna Denega and Yaroslav Zabolotnyi

Institute of mathematics of the National Academy of Sciences of Ukraine, iradenega@gmail.com, yaroslavzabolotnii@gmail.com

Let \mathbb{N}, \mathbb{R} be the sets of natural and real numbers, respectively, \mathbb{C} be the complex plane, $\overline{\mathbb{C}}=\mathbb{C} \bigcup\{\infty\}$ be its one point compactification, U be the open unit disk in \mathbb{C}. A function $g_{B}(z, a)$ which is continuous in $\overline{\mathbb{C}}$, harmonic in $B \backslash\{a\}$ apart from z, vanishes outside B, and in the neighborhood of a has the following asymptotic expansion

$$
g_{B}(z, a)=-\ln |z-a|+\gamma+o(1), \quad z \rightarrow a,
$$

is called the (classical) Green function of the domain B with pole at $a \in$ B. The inner radius $r(B, a)$ of the domain B with respect to a point a is the quantity e^{γ}. Let G be a domain in extended complex plane $\overline{\mathbb{C}}_{z}$. By a quadratic differential in G we mean the expression $Q(z) d z^{2}$, where $Q(z)$ is a meromorphic function in G [2].

The following result was established by G.M. Goluzin [1] using the variational method.

Theorem 1. For functions $f_{k}(z)$ which univalently map the disc $|z|<1$ onto mutually non-overlapping domains, $k \in\{1,2,3\}$, exact estimate holds

$$
\left|\prod_{k=1}^{3} f_{k}^{\prime}(0)\right| \leqslant \frac{64}{81 \sqrt{3}}\left|\left(f_{1}(0)-f_{2}(0)\right)\left(f_{1}(0)-f_{3}(0)\right)\left(f_{2}(0)-f_{3}(0)\right)\right| .
$$

Equality is attained only for functions $w=f_{k}(z)$ which conformally and univalently map the disc $|z|<1$ onto the angles $2 \pi / 3$ with vertex at point $w=0$ and bisectors of which pass through points $f_{k}(0),\left|f_{k}(0)\right|=1$.
E.V. Kostyuchenko (see, for example, [2]) proved that the maximum value of multiplication of inner radiuses for three simply connected non-overlapping domains in the disk is attained for three equal sectors. However, this statement remains valid for multiply connected domains D_{k}. It follows from V.N. Dubinin's generalization of Theorem 1 inequality to the case of arbitrary meromorphic functions [2].

Using above-posed results, the following theorem is valid.
Let $M=\left\{z=x+i y: \frac{x^{2}}{d^{2}}+\frac{y^{2}}{t^{2}}=1, d^{2}-t^{2}=1\right\}$ and let $d^{*}=d-\sqrt{d^{2}-1}$.

The conference of young scientists «Pidstryhach readings - 2024» May 27-29, 2024, Lviv

Theorem 2. Let $n \in \mathbb{N}, n \geqslant 3$. Then, for any system of different points a_{k} such that $a_{k} \in M, k=\overline{1, n}$, and for any collection of mutually non-overlapping domains $\left\{B_{k}\right\}_{k=1}^{n}, a_{k} \in B_{k} \subset \overline{\mathbb{C}} \backslash[-1,1], k=\overline{1, n}$, the inequality

$$
\begin{gathered}
\prod_{k=1}^{n} r\left(B_{k}, a_{k}\right) \\
\leqslant\left(\frac{4\left(d-\sqrt{d^{2}-1}\right)}{n}\right)^{n}\left(\frac{1-\left(d-\sqrt{d^{2}-1}\right)^{n}}{1+\left(d-\sqrt{d^{2}-1}\right)^{n}}\right)^{n} \prod_{k=1}^{n}\left|\frac{\sqrt{a_{k}^{2}-1}}{a_{k}-\sqrt{a_{k}^{2}-1}}\right|
\end{gathered}
$$

holds. The sign of equality is attained, if a_{k} and $B_{k}, k=\overline{1, n}$, are, respectively, the poles and circular domains of the quadratic differential

$$
Q(z) d z^{2}=-\frac{\left(\frac{z}{2}+\frac{1}{2 z}\right)^{n-2}\left(\left(\frac{z}{2}+\frac{1}{2 z}\right)^{n}+1\right)\left(\frac{1}{4}-\frac{1}{2 z^{2}}+\frac{1}{z^{4}}\right)}{\left(\left(\frac{z}{2}+\frac{1}{2 z}\right)^{n}-\left(d^{*}\right)^{n}\right)^{2}\left(1-\left(\frac{z}{2}+\frac{1}{2 z}\right)^{n}\left(d^{*}\right)^{n}\right)^{2}} d z^{2} .
$$

Note, that by some linear transformation $w=p z+z_{0}$ we can transform an arbitrary ellipse $\frac{x-x_{0}}{d_{0}^{2}}+\frac{y-y_{0}}{t_{0}^{2}}=1$ on the complex plane onto an ellipse of the form $\frac{x^{2}}{d^{2}}+\frac{y^{2}}{t^{2}}=1$ for which $d^{2}-t^{2}=1$. Moreover, the inner radii of respective domains in this transformation will be treated as $|p|: 1$. Therefore, in order to obtain an estimate of the product of inner radii of non-overlapping domains containing points of an arbitrary ellipse, it is necessary to transform it onto the ellipse M by an appropriate linear transformation and apply Theorem 2.

1. Goluzin G.M. Geometric theory of functions of a complex variable. Amer. Math. Soc. Providence, R.I., 1969.
2. Dubinin V.N. Condenser capacities and symmetrization in geometric function theory. Birkhäuser/Springer, Basel, 2014.
3. Zabolotnii Ya.V., Denega I.V. An extremal problem on non-overlapping domains containing ellipse points. Eurasian Math. J. 2021, 12 (4), 82-91.
4. Denega I.V., Zabolotnii Ya.V. Inequalities for the inner radii of domains containing an arbitrary ellipse points and infinity. Trends in Mathematics (in print).

ЕКСТРЕМАЛЬНА ЗАДАЧА ДЛЯ ОБЛАСТЕЙ, ЩО МІСТЯТЬ ТОЧКИ ЕЛІПСА

В роботі одержано розв'язок екстремалъної задачі про максимум добутку внутрішніх радіусів на системі багатозв'язних областей $B_{k}, k=\overline{1, n}$, які взаємно не перетинаються, i містять точки $a_{k}, k=\overline{1, n}$, розташовані на довільному еліпсі $\frac{x^{2}}{d^{2}}+\frac{y^{2}}{t^{2}}=1$ для якого $d^{2}-t^{2}=1$.

