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We show that there are sampling projections onto arbitrary n-dimensional
subspaces of the space of bounded functions with at most 2n samples and
norm of order

√
n. The result is based on a speci�c type of discretization of

the uniform norm which might be of independent interest and is connected to
the Marcinkiewicz-Zygmund inequalities.

The theorem of Kadets and Snobar asserts that for any n-dimensional
subspace Vn of a normed space G, there is a linear projection P : G → Vn with
∥P∥ ≤

√
n. However, it is not clear what information of f ∈ G is required to

compute its projection.
We consider the case where f is a function and only function evaluations

of f are allowed as information. We therefore restrict to G = B(D), i.e., the
space of all bounded complex-valued functions on a set D equipped with the
sup-norm ∥f∥∞ := supx∈D |f(x)|.

Theorem 1. [1] There is an absolute constant C > 0 such that the followi-
ng holds. Let D be a set and Vn be an n-dimensional subspace of B(D). Then
there are 2n points x1, . . . , x2n ∈ D and functions φ1, . . . , φ2n ∈ Vn such that
P : B(D) → Vn with Pf =

∑2n
i=1 f(xi)φi is a projection with ∥P∥ ≤ C

√
n.

Theorem 1 is sharp in the following sense:

� Using m = O(n) samples, the norm bound C
√
n cannot be replaced

with a lower-order term.

� If we want to use m = n samples, the norm bound C
√
n has to be

replaced by a linear term in n.

Note also, that the oversampling factor 2 in Theorem 1 can be replaced
by any constant c > 1.

Theorem 1 is based on the following discretization result.
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Theorem 2. [1] There is an absolute constant C > 0 such that the followi-
ng holds. Let D be a set and Vn be an n-dimensional subspace of B(D). Then
there are points x1, . . . , x2n ∈ D such that, for all f ∈ Vn, we have

∥f∥∞ ≤ C
( 2n∑

i=1

|f(xi)|2
)1/2

≤ C
√
2n max

i=1,...,2n
|f(xi)|.

Further in the talk, we will discuss consequences for optimal recovery in Lp

and new sharp bounds for the n-th linear sampling numbers [2].
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