The conference of young scientists «Pidstryhach readings -2024» May 27–29, 2024, Lviv

UDC 517.9

EQUILIBRIUM STATES OF DYNAMICAL CONFLICT SYSTEMS WITH A POINT SPECTRUM

Oksana Satur

Institute of Mathematics NAS of Ukraine, orlassat@gmail.com

The main task concerns the question of conditions on initial distributions of dynamical conflict systems that guarantee the emergence of a pure point spectrum in limit distributions (see [1,2]). According to Theorem 2, the key condition is the choice of at least one opponent's single-priority strategy. This means that the initial distribution of the corresponding opponent should have an advantage over the distribution of the other opponent only in a single local region (see (3)). Another task is to analyze the structure of the point spectrum. A new mathematical model of opinions formation is also constructed using abstract results on the structure of point spectrum. This type of opinions formation model was proposed in the work [3].

The subject of the study is the trajectories of dynamical conflict systems of the following form: $\{\mu^t \equiv \mu_{P^t}, \nu^t \equiv \nu_{R^t}\} \xrightarrow{*} \{\mu^{t+1} \equiv \mu_{P^{t+1}}, \nu^{t+1} \equiv \nu_{R^{t+1}}\}, t = 0, 1, \ldots$, where the measures μ^t , ν^t are associated with time-dependent stochastic matrices P^t , R^t which describe the corresponding distributions on Ω for a pair of opponents at each moment of their conflict interaction. Ω is an arbitrary set, which assumes the possibility of applying to it the procedure of infinite shredding, and \mathcal{B} denotes the (Borelian) σ -algebra of all subsets formed by shredding Ω by standard operations, which usually are used in measure theory. In addition to the compactness of \mathbb{R}^n , an arbitrary continuous network of neurons, nodes, and abstract hubs is suitable for Ω .

Next, we denote by $\mathcal{M}^{ss}(\Omega)$ the class of measures $\mu = \mu_P$ on (Ω, \mathcal{B}) associative of them with right-infinite stochastic matrices, the columns of which consist of stochastic vectors $\mathbf{p}_k \in \mathbb{R}^n_{1,+}, 2 \leq n < \infty, \mathbf{p}_k = (p_{1k}, \dots, p_{nk}),$

 $p_{ik} \ge 0, i = \overline{1,n}, \sum_{i=1}^{n} p_{ik} = 1. \mu$ -measure on cylinders is determined by the rule

 $\mu(\Omega_{i_0...i_k}) := \prod_{l=0}^k p_{i_l l}$, and to arbitrary subsets of the σ -algebra \mathcal{B} the measure μ is extended, like the measure λ , in a standard way.

The elements of the first $k \leq t$ columns of the matrices P^t, R^t are given by the coordinates $p_{ik} \equiv p_i^k, r_{ik} \equiv r_i^k, i \in \overline{1,n}$ of vectors $\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^k, \mathbf{r}^0, \mathbf{r}^1, \dots, \mathbf{r}^k$, the coordinates of which are determined according to the formulas:

$$p_i^k = p_i^{k-1} \cdot \frac{1 - r_i^{k-1}}{1 - \theta^{k-1}}, \quad r_i^k = r_i^{k-1} \cdot \frac{1 - p_i^{k-1}}{1 - \theta^{k-1}}. \tag{1}$$

The conference of young scientists «Pidstryhach readings – 2024» May 27–29, 2024, Lviv

Next, we will assume that in the general case the coordinates $p_i^0 \equiv p_{0i}$, $r_i^0 \equiv r_{0i}$ are strictly positive and different:

$$p_i^0, r_i^0 > 0, \quad p_i^0 \neq r_i^0, \quad \theta^0 = (\mathbf{p}^0, \mathbf{r}^0) \neq 1.$$
 (2)

Theorem 1. Let $\mathbf{p}^0, \mathbf{r}^0 \in \mathbb{R}^{n=2}_{+,1}$. Then, under the condition (2) both measures $\mu^{\infty}, \nu^{\infty}$ associated to the limit matrices P^{∞} , R^{∞} are purely point, $\mu^{\infty}, \nu^{\infty} \in \mathcal{M}_{DD}$.

Theorem 2. Let $\mathbf{p}^0, \mathbf{r}^0 \in \mathbb{R}^{n>2}_{+,1}$. Then, under the condition (2) one of the limit measures $\mu^{\infty}, \nu^{\infty}$ will be purely point, $\mu^{\infty} \in \mathcal{M}_{pp}$, also $\nu^{\infty} \in \mathcal{M}_{pp}$, if there exists only one index $1 \leq \mathbf{i} \leq n$, for vector \mathbf{p}^0 , or $1 \leq \mathbf{j} \leq n$, for vector \mathbf{r}^0 , such that one of the inequalities holds, respectively:

$$p_{\mathbf{i}}^0 > r_{\mathbf{i}}^0, \qquad p_{\mathbf{i}}^0 < r_{\mathbf{i}}^0.$$
 (3)

At the same time, if $\mu^{\infty} \in \mathcal{M}_{pp}$, then $\nu^{\infty} \in \mathcal{M}_{sc}$ and vice versa if $\nu^{\infty} \in \mathcal{M}_{pp}$, then $\mu^{\infty} \in \mathcal{M}_{sc}$. If none of the inequalities (3) holds, then both limit measures are singularly continuous: μ^{∞} , $\nu^{\infty} \in \mathcal{M}_{sc}$. In any case, the limit measures μ^{∞} , ν^{∞} invariant with respect to the transformation *.

The author expresses gratitude for partial financial support for the project "Mathematical modeling of complex dynamical systems and processes relevant to state security" (No. 0123U100853).

- 1. Koshmanenko V., Satur O. The point spectrum in the equilibrium states of dynamical conflict systems and its role in opinions formation models // Ukr. Math. J., 23 p. (Accepted for publication)
- 2. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods Funct. Anal. Topology. 2019. 25, № 4. P. 324–338.
- 3. Satur O.R., Kharchenko N.V. A model of dynamical system for the attainment of consensus // Ukrains'kyi Matematychnyi Zhurnal. − 2019. − 71, № 9. − P. 1271–1283.

РІВНОВАЖНІ СТАНИ ДИНАМІЧНИХ КОНФЛІКТНИХ СИСТЕМ З ТОЧКОВИМ СПЕКТРОМ

Досліджується структура точкового спектру в граничних по часу станах динамічних систем конфлікту в термінах ймовірнісних мір. Показано, що необхідною і достатньою умовою виникнення мір з точковим спектром є стратегія единого пріоритету. В цьому випадку встановлена експоненційна швидкість концентрації розподілів з точковим спектром та його щільність у фазовому просторі. Запропонована можливість застосування інформації про структуру точкового спектру в новій математичній моделі формування переконань у індивідів абстрактного суспільства.