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Let Ω = R/2πZ be a unit circle and let D = (−α, β)× Ω be a cylindrical
domain of the variables (t, x), that is separated by the hyperplane {t = 0}×Ω
into nonoverlapping cylindrical subdomains D− = (−α, 0) × Ω and D+ =
(0, β)× Ω, where α and β are positive real numbers.

The problem we aim to solve is �nding a pair of functions u1 = u(t, x) and
u2 = u2(t, x), de�ned in D− and D+, respectively, which satisfy the following
di�erential equations
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and initial conditions
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= φm+j(x), j = 1, . . . , n−m, x ∈ Ω, (4)

where n,m ∈ N, 1 ≤ m ≤ n, λj , µj ∈ R\{0}, γj , νj ∈ C, φj(x) are given
functions. Moreover, we suppose that numbers λ1, . . . , λn as well as µ1, . . . , µm

are pairwise di�erent, respectively.
In general, this problem are conditionally well-posed and its solvability

is related with the problem of small denominators and may be unstable wi-
th respect to small variations in the coe�cients of the problem and in the
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parameters of the domain. Using the Fourier method of separation of variable
and metric approach [1,2], we will be discuss the conditions for the solvability
of the problem (1)�(4) in Sobolev spaces and the proving estimates for small
denominators for almost all (with respect to the Lebesgue measure in space
Rm) vectors (µ1, . . . , µm) or almost all (with respect to the Lebesgue measure
in space Rn) vectors (λ1, . . . , λn).
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ÇÀÄÀ×À ËIÍIÉÍÎÃÎ ÑÏÐßÆÅÍÍß Ç ÍÅËÎÊÀËÜÍÈÌÈ
ÓÌÎÂÀÌÈ ÄËß ÌIØÀÍÈÕ ÔÀÊÒÎÐÈÇÎÂÀÍÈÕ

ÐIÂÍßÍÜ ÂÈÑÎÊÎÃÎ ÏÎÐßÄÊÓ

Iç âèêîðèñòàííÿì ìåòðè÷íîãî ïiäõîäó äîñëiäæóþòüñÿ óìîâè ¹äèíîñòi òà

iñíóâàííÿ ðîçâ'ÿçêó ó ïðîñòîðàõ Ñîáîë¹âà çàäà÷i ëiíiéíîãî ñïðÿæåííÿ ç

íåëîêàëüíèìè óìîâàìè äëÿ ìiøàíèõ ôàêòîðèçîâàíèõ ðiâíÿíü âèñîêîãî ïî-

ðÿäêó ó öèëiíäðè÷íié îáëàñòi.
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