The conference of young scientists «Pidstryhach readings – 2024» May 27–29, 2024, Lviv

UDC 512.74

Extended special linear $ESL_2(\mathbb{F}_p)$ group and matrix equations.

Ruslan Skuratovskii¹

V.I. Vernadsky Taurida National University, Kyiv, Ukraine, skuratovskii.ruslan@tnu.edu.ua

We generalize the group of unimodular matrices [1] and find its structure. For this goal we propose one extension of the special linear group.

Let $SL_2(\mathbb{F}_p)$ denotes the special linear group of degree 2 over a finite field of order p.

Definition 1. The set of matrices

$$\{M_i: Det(M_i) = \pm 1, M_i \in GL_2(\mathbb{F}_p)\}\$$

forms extended special linear group in $GL_2(\mathbb{F}_p)$ and is denoted by $ESL_2(\mathbb{F}_p)$.

As it is studied by us $ESL_2(\mathbb{F}_p)$ has a structure of semidirect product $SL_2(\mathbb{F}_p) \rtimes \mathbb{C}_2$, where $\mathbb{C}_2 \simeq \left\langle \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle$.

Theorem 1. Let A be a simple matrix and $A \in SL_2(\mathbb{F})$ [2], then for A there is a solution $B \in SL_2(\mathbb{F})$ of the matrix equation

$$X^2 = A \tag{1}$$

if and only if

$$trA + 2$$
 (2)

is quadratic element in \mathbb{F} or 0, where \mathbb{F} is a field.

If $X \in ESL_2(\mathbb{F})$ then the matrix equation (1) has a solutions iff

$$trA \pm 2$$
 (3)

is a quadratic element in \mathbb{F} or 0. This solution $X \in ESL_2(\mathbb{F}) \setminus SL_2(\mathbb{F})$ iff (trA-2) is quadratic element or 0 in \mathbb{F} but (trA+2) is not. Conversely $X \in SL_2(\mathbb{F})$ iff (trA+2) is quadratic element. Solutions belong to $ESL_2(\mathbb{F})$ and $SL_2(\mathbb{F})$ iff (trA+2) and (trA-2) are quadratic elements. In the case $A \in GL_2(\mathbb{F})$ this condition (2) takes form:

$$trA \pm 2\sqrt{detA}$$
 (4)

is quadratic element in \mathbb{F} or 0 and detA is quadratic too.

http://www.iapmm.lviv.ua/chyt2024

The conference of young scientists «Pidstryhach readings – 2024» May 27–29, 2024, Lviv

Theorem 2. If a matrix $A \in GL_2(\mathbb{F}_p)$ is semisimple [2] with different eigenvalues and at least one an eigenvalue $\lambda_i \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$, $i \in \{1, 2\}$, p > 2, then $\sqrt{A} \in GL_2(\mathbb{F}_p)$ iff of A satisfies:

$$(\frac{\lambda_i}{p}) = 1$$
 in the square extention that is \mathbb{F}_{p^2} .

Matrices with a determinant -1 correspond to the elements changing Euclidean space orientation.

Corollary 1. Let A be simple matrix and $A \in SL_2(\mathbb{F}_p)$ [2], then for matrix $A \in SL_2(\mathbb{F}_p)$ there is a solution $B \in SL_2(\mathbb{F}_p)$ of the matrix equation

$$X^2 = A \tag{5}$$

if and only if

$$\left(\frac{\operatorname{tr} A+2}{p}\right) \in \{0,1\}.$$
(6)

If $X \in ESL_2(\mathbb{F}_p)$ then the matrix equation (5) has a solution iff

$$\left(\frac{\operatorname{tr} A \pm 2}{p}\right) \in \{0, 1\}.$$
(7)

This solution $X \in ESL_2(\mathbb{F}_p) \setminus SL_2(\mathbb{F}_p)$ iff $\left(\frac{\operatorname{tr} A - 2}{p}\right) = 1$ or 0, but $\left(\frac{\operatorname{tr} A + 2}{p}\right) = -1$. Conversely $X \in SL_2(\mathbb{F}_p)$ iff $\left(\frac{\operatorname{tr} A + 2}{p}\right) = 1$. Solutions $X_i \in ESL_2(\mathbb{F})$ and $SL_2(\mathbb{F})$ iff $\left(\frac{\operatorname{tr} A + 2}{p}\right) = 1$ and $(\operatorname{tr} A - 2) = 1$. In the case $A \in GL_2(\mathbb{F}_p)$ this condition (2) takes form:

$$\left(\frac{\operatorname{tr} A \pm 2\sqrt{\det A}}{p}\right) \in \{0,1\}.$$
(8)

Corollary 2. If $A \in GL(F_2)$ the condition 2 takes the form: $\left(\frac{\operatorname{tr} A}{p}\right) \in \{0,1\}.$

Література

- Amit Kulshrestha and Anupam Singh. Computing n-th roots in SL₂ and Fibonacci polynomials. Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:31 https://doi.org/10.1007/s12044-020-0559-8.
- Klyachko Anton A., Baranov D. V. Economical adjunction of square roots to groups. Sib. math. journal, Volume 53 (2012), Number 2, pp. 250-257.