The conference of young scientists «Pidstryhach readings - 2024» May 27-29, 2024, Lviv

UDC 512.74

Extended special linear $E S L_{2}\left(\mathbb{F}_{p}\right)$ group and matrix equations.

Ruslan Skuratovskii ${ }^{1}$

V.I. Vernadsky Taurida National University, Kyiv, Ukraine, skuratovskii.ruslan@tnu.edu.ua

We generalize the group of unimodular matrices [1] and find its structure. For this goal we propose one extension of the special linear group.

Let $S L_{2}\left(\mathbb{F}_{p}\right)$ denotes the special linear group of degree 2 over a finite field of order p.

Definition 1. The set of matrices

$$
\left\{M_{i}: \operatorname{Det}\left(M_{i}\right)= \pm 1, M_{i} \in G L_{2}\left(\mathbb{F}_{p}\right)\right\}
$$

forms extended special linear group in $G L_{2}\left(\mathbb{F}_{p}\right)$ and is denoted by $E S L_{2}\left(\mathbb{F}_{p}\right)$.
As it is studied by us $E S L_{2}\left(\mathbb{F}_{p}\right)$ has a structure of semidirect product $S L_{2}\left(\mathbb{F}_{p}\right) \rtimes \mathbb{C}_{2}$, where $\mathbb{C}_{2} \simeq\left\langle\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\right\rangle$.

Theorem 1. Let A be a simple matrix and $A \in S L_{2}(\mathbb{F})[2]$, then for A there is a solution $B \in S L_{2}(\mathbb{F})$ of the matrix equation

$$
\begin{equation*}
X^{2}=A \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{tr} A+2 \tag{2}
\end{equation*}
$$

is quadratic element in \mathbb{F} or 0 , where \mathbb{F} is a field.
If $X \in E S L_{2}(\mathbb{F})$ then the matrix equation (1) has a solutions iff

$$
\begin{equation*}
\operatorname{tr} A \pm 2 \tag{3}
\end{equation*}
$$

is a quadratic element in \mathbb{F} or 0 . This solution $X \in E S L_{2}(\mathbb{F}) \backslash S L_{2}(\mathbb{F})$ iff $(\operatorname{tr} A-2)$ is quadratic element or 0 in \mathbb{F} but $(\operatorname{tr} A+2)$ is not. Conversely $X \in S L_{2}(\mathbb{F})$ iff $(\operatorname{tr} A+2)$ is quadratic element. Solutions belong to $E S L_{2}(\mathbb{F})$ and $S L_{2}(\mathbb{F})$ iff $(\operatorname{tr} A+2)$ and $(\operatorname{tr} A-2)$ are quadratic elements. In the case $A \in G L_{2}(\mathbb{F})$ this condition (2) takes form:

$$
\begin{equation*}
\operatorname{tr} A \pm 2 \sqrt{\operatorname{det} A} \tag{4}
\end{equation*}
$$

is quadratic element in \mathbb{F} or 0 and $\operatorname{det} A$ is quadratic too.

The conference of young scientists «Pidstryhach readings - 2024» May 27-29, 2024, Lviv

Theorem 2. If a matrix $A \in G L_{2}\left(\mathbb{F}_{p}\right)$ is semisimple [2] with different eigenvalues and at least one an eigenvalue $\lambda_{i} \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}, i \in\{1,2\}, p>2$, then $\sqrt{A} \in G L_{2}\left(\mathbb{F}_{p}\right)$ iff of A satisfies:

$$
\left(\frac{\lambda_{i}}{p}\right)=1 \text { in the square extention that is } \mathbb{F}_{p^{2}} .
$$

Matrices with a determinant -1 correspond to the elements changing Euclidean space orientation.

Corollary 1. Let A be simple matrix and $A \in S L_{2}\left(\mathbb{F}_{p}\right)$ [2], then for matrix $A \in S L_{2}\left(\mathbb{F}_{p}\right)$ there is a solution $B \in S L_{2}\left(\mathbb{F}_{p}\right)$ of the matrix equation

$$
\begin{equation*}
X^{2}=A \tag{5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\left(\frac{\operatorname{tr} A+2}{p}\right) \in\{0,1\} . \tag{6}
\end{equation*}
$$

If $X \in E S L_{2}\left(\mathbb{F}_{p}\right)$ then the matrix equation (5) has a solution iff

$$
\begin{equation*}
\left(\frac{\operatorname{tr} A \pm 2}{p}\right) \in\{0,1\} . \tag{7}
\end{equation*}
$$

This solution $X \in E S L_{2}\left(\mathbb{F}_{p}\right) \backslash S L_{2}\left(\mathbb{F}_{p}\right)$ iff $\left(\frac{\operatorname{tr} A-2}{p}\right)=1$ or 0 , but $\left(\frac{\operatorname{tr} A+2}{p}\right)=$ -1. Conversely $X \in S L_{2}\left(\mathbb{F}_{p}\right)$ iff $\left(\frac{\operatorname{tr} A+2}{p}\right)=1$. Solutions $X_{i} \in E S L_{2}(\mathbb{F})$ and $S L_{2}(\mathbb{F})$ iff $\left(\frac{\operatorname{tr} A+2}{p}\right)=1$ and $(\operatorname{tr} A-2)=1$. In the case $A \in G L_{2}\left(\mathbb{F}_{p}\right)$ this condition (2) takes form:

$$
\begin{equation*}
\left(\frac{\operatorname{tr} A \pm 2 \sqrt{\operatorname{det} A}}{p}\right) \in\{0,1\} \tag{8}
\end{equation*}
$$

Corollary 2. If $A \in G L\left(F_{2}\right)$ the condition 2 takes the form: $\left(\frac{\operatorname{tr} A}{p}\right) \in$ $\{0,1\}$.

Література

1. Amit Kulshrestha and Anupam Singh. Computing n-th roots in $S L_{2}$ and Fibonacci polynomials. Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:31 https://doi.org/10.1007/s12044-020-0559-8.
2. Klyachko Anton A., Baranov D. V. Economical adjunction of square roots to groups. Sib. math. journal, Volume 53 (2012), Number 2, pp. 250-257.
