The conference of young scientists «Pidstryhach readings – 2024» May 27–29, 2024, Lviv

UDC 512.74

Normal subgroups of iterated wreath products of symmetric groups

Ruslan Skuratovskii¹

V.I. Vernadsky Taurida National University, Kyiv, Ukraine, skuratovskii.ruslan@tnu.edu.ua

Normal subgroups and there properties for finite and infinite iterated wreath products $S_{n_1} \wr \ldots \wr S_{n_m}$, $n, m \in \mathbb{N}$ and $A_n \wr S_n$ are founded.

Definition 1. The permutational subwreath product $G \otimes H$ is the semidirect product $G \ltimes \tilde{H}^X$, where G acts on the subdirect product [2] \tilde{H}^X by the respective permutations of the subdirect factors. Provided the specification of \tilde{H}^X is established separately.

Definition 2. The set of elements from $S_n \wr S_n$, $n \ge 3$ which presented by the tableaux of form: $[e]_0$, $[a_1, a_2, \ldots, a_n]_1$, satisfying the following condition

$$\sum_{i=1}^{n} dec([a_i]_1) = 2k, k \in \mathbb{N},$$
(1)

be called set of type $\widetilde{A}_n^{(1)}$ and denote this set by $e \wr \widetilde{A}_n$. Note that condition (1) uniquely identifies subdirect product.

The set $\widetilde{A}_n^{(1)}$ is subgroup having **normal rank** 2 in $S_n \wr S_n$. We spread this definition on 3-multiple wreath product by recursive way.

Definition 3. The subgroup $E \wr \widetilde{A}_n^{(1)}$ be denoted by $\widetilde{A}_n^{(2)}$.

Furthermore we prove that $E \wr \widetilde{A}_n^{(2)} \triangleleft S_n \wr S_n \wr S_n$. The order of $E \wr \widetilde{A}_n^{(2)}$ is $(n!)^{3n} : 2^3$. The subgroup $\widetilde{A}_n^{(1)}$ has **normal rank** 2 in $S_n \wr S_n$.

Definition 4. The set of elements from $S_n \wr S_n \wr S_n$, $n \ge 3$ presented by the tables [1] form:

 $[e]_1, [e, e, \ldots, e]_2, [a_1, a_2, \ldots, a_n]_3$, satisfying the following condition

$$\sum_{i=1}^{n} dec([a_i]_3) = 2k, k \in \mathbb{N},$$
(2)

be denoted by $\widetilde{A}_{n^2}^{(3)}$. Note that condition (2) uniquely identifies subdirect product in $\prod_{i=1}^{n^2} S_n$.

http://www.iapmm.lviv.ua/chyt2024

The conference of young scientists «Pidstryhach readings – 2024» May 27–29, 2024, Lviv

Proposition 1. The subgroup $\widetilde{A}_n^{(1)} \triangleleft S_n \wr S_n$ as well as $\widetilde{A}_n^{(2)} \triangleleft S_n \wr S_n \wr S_n$. **Definition 5.** A subgroup in $S_n \wr S_n$ is called $\widetilde{T_n}$ if it consists of:

- 1. elements of $E \wr A_n$,
- 2. elements with the tableau [1] presentation $[e]_1$, $[\pi_1, \ldots, \pi_n]_2$, that $\pi_i \in S_n \setminus A_n$.

One easy can validates a correctness of this definition, i.e. that the set of such elements form a subgroup and its normality. This subgroup has structure

$$T_n \simeq (\underbrace{A_n \times A_n \times \dots \times A_n}_n) \rtimes C_2 \simeq \underbrace{S_n \boxplus S_n \dots \boxplus S_n}_n,$$

where the operation \boxplus of a subdirect product is subject of item 1) and 2) [3].

Remark 1. The order of $\widetilde{T_n}$ is $\frac{(n!)^n}{2^{n-1}}$.

Theorem 1. Proper normal subgroups in $S_n \wr S_m$, where $n, m \ge 3$ with $n, m \ne 4$ are of the following types:

1. subgroups that act only on the second level are

$$E \wr \widetilde{A_m}, \, \widetilde{T_m}, \, E \wr S_m, E \wr A_n,$$

2. subgroups that act on both levels are $A_n \wr \widetilde{A_m}, S_n \wr \widetilde{A_m}, A_n \wr S_m$,

wherein the subgroup $S_n \wr \widetilde{A_m} \simeq S_n \land (\underbrace{S_m \boxtimes S_m \boxtimes S_m \dots \boxtimes S_m}_n)$ endowed with the subdirect product satisfying to condition (1).

Theorem 2. The full list of normal subgroups of $S_n \wr S_n \wr S_n$ consists of 50 normal subgroups.

Література

- Kaloujnine L. A. Sur les *p*-group de Sylow. // C. R. Acad. Sci. Paris. 1945. – **221**. – P. 222–224.
- Birkhoff, Garrett (1944), "Subdirect unions in universal algebra Bulletin of the American Mathematical Society, 50 (10): 764-768, doi:10.1090/S0002-9904-1944-08235-9, ISSN 0002-9904, MR 0010542.
- R. V. Skuratovskii. On commutator subgroups of Sylow 2-subgroups of the alternating group, and the commutator width in wreath products. / Ruslan V. Skuratovskii // European Journal of Mathematics. vol. 7: 1. (2021), P. 353-373.