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Normal subgroups and there properties for finite and infinite iterated
wreath products Sn1

≀ . . . ≀ Snm
, n,m ∈ N and An ≀ Sn are founded. Speci-

al classes of normal subgroups are investigated, their generators are found
and presented as in the form of Kaloujnine [1] tables as well as in the form of
wreath recursion.

Inverse limit of wreath product of permutation groups is found.

Definition 1. The set of elements from Sn ≀Sn, n > 3 which presented by
the tableaux of form: [e]0, [a1, a2, . . . , an]1, satisfying the following condition

n∑
i=1

dec([ai]1) = 2k, k ∈ N, (1)

be called set of type Ã
(1)
n and denote this set by e ≀ Ãn.

Definition 2. The permutational subwreath product G ≀≀H is the semi-
direct product Gn H̃X , where G acts on the subdirect product [2] H̃X by the
respective permutations of the subdirect factors.

Definition 3. The subgroup E ≀ Ã(2)
n be denoted by Ã

(3)
n .

Furthermore we prove that E ≀ Ã(2)
n ▹ Sn ≀ Sn ≀ Sn. The order of E ≀ Ã(2)

n is
(n!)3n : 23.

Definition 4. The set of elements from Sn ≀ Sn ≀ Sn, n > 3 presented by
the tables [1] form:
[e]0, [e, e, . . . , e]1, [a1, a2, . . . , an]2, satisfying the following condition

n∑
i=1

dec([ai]2) = 2k, k ∈ N, (2)

be denoted by Ã
(3)
n2 .

Definition 5. A subgroup in Sn ≀ Sn is called T̃n if it consists of:
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1. elements of E ≀An ,

2. elements with the tableau [1] presentation [e]0, [π1, . . . , πn]1, that πi ∈
Sn \An.

One easy can validates a correctness of this definition, i.e. that the set of such
elements form a subgroup and its normality. This subgroup has structure

T̃n ≃ (An ×An × · · · ×An︸ ︷︷ ︸
n

)o C2 ≃ Sn � Sn . . .� Sn︸ ︷︷ ︸
n

,

where the operation � of a subdirect product is subject of item 1) and 2).

Theorem 1. The monolith of Sn ≀ Sm is e ≀Am.

Proposition 1. The order of T̃n is (n!)n

2n−1 .

Theorem 2. The subgroup Ã
(1)
3 of S3 ≀ S3 has the structure Ã

(1)
3 ≃ (C3 ×

C3 × C3)o (C2 × C2).
The structure of subgroup Ã

(1)
n ▹Sn ≀Sn is Ã

(1)
n ≃ (

∏n
i=1 An)o (

∏n−1
i=1 C2).

Theorem 3. Proper normal subgroups in Sn ≀ Sm, where n,m ≥ 3 with
n,m ̸= 4 are of the following types:

1. subgroups that act only on the second level are

Ã(1)
m , T̃m, E ≀ Sm, E ≀Am,

2. subgroups that act on both levels are An ≀≀Ã(1)
m , Sn ≀≀B̃(1)

m , An ≀ Sm,

wherein the subgroup Sn ≀≀Ãm ≃ Sni (Sm � Sm � Sm . . .� Sm︸ ︷︷ ︸
n

) endowed with

the subdirect product satisfying to condition (1).

The subgroup E ≀ Ã(1)
n be denoted by Ã

(2)
n .

Proposition 1. The subgroup Ã
(2)
n ▹ Sn ≀ Sn ≀ Sn.

Theorem 4. The subgroup Ã
(1)
n has normal rank n−1 [3] in Sn ≀Sn, n >

3 provided n ≡ 1(mod2) and normal rank n iff n ≡ 0(mod2) and n > 3.

Definition 5. A subgroup in Sn ≀ Sn ≀ Sn is denoted by T̃
(3)
n2 if it consists

of:

1. elements of the form E ≀ E ≀An ,
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2. elements with the tableau [1] presentation [e]1, [e . . . , e]2, [π1 . . . , πn, πn+1 . . . , πn2 ]3,
wherein ∀i = 1, . . . , n: πi ∈ Sn \An.

Definition 6. The set of elements from
k

≀
i=1

Sni
, ni > 3 with depth m

satisfying the following condition

nj∑
i=1

dec([ai]j) = 2t, t ∈ N, m ≤ j ≤ k, [ai]j = e, whenever j = 1,m− 1 (3)

be called Ã
(m,k)
nj , where m < k.

Theorem 5. The order of normal subgroup Ã
(0,k−1)
nj is ( 12 )

k ·(n!)(
n(k+1)−1

n−1 )

and the order of the quotient
k

≀
i=1

Sni

/
Ã

(0,k−1)
nj is 2k. The order of generalized

alternating group of k-th level Ã(k)

nk is 2n
k−1.

Theorem 6. The quotient
k

≀
i=1

Sni by Ã
(0,k−1)
nj is the following group

k∏
i=1

Z2.

The set of normal subgroup of Sn ≀Sn is denoted by N(Sn ≀Sn). Subgroup
with number i from N(Sn ≀ Sn) is denoted by Ni(Sn ≀ Sn).

Theorem 2. The full list of normal subgroups of Sn ≀ Sn ≀ Sn consists of
50 normal subgroups. These subgroups are the following:

1 Type T023 contains: E ≀Ãn ≀H, T̃n ≀H, where H ∈ {Ãn, Ãn2 , Sn}. There
are 6 subgroups.

2 The second type of subgroups is subclass in T023 with new base
of wreath product subgroup Ãn2 : E ≀ Sn ≀ Ãn2 , E ≀ Ni(Sn ≀ Sn).
Therefore this class has 12 new subgroups. Thus, the total number of
normal subgroups in Type T023 is 18.

3 Type T003: A
(3)
00(n2) = E ≀ E ≀ Ãn2 , T̃n2 , T̃n

(3)
. Hence, here are 3 new

subgroups.

4 Type T123: Ni(Sn ≀ Sn) ≀ Sn, Ni(Sn ≀ Sn) ≀ Ãn and Ni(Sn ≀ Sn) ≀ Ãn2 .
Thus, there are 29 new normal subgroups in T123, taking into account
repetition.
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