The conference of young scientists «Pidstryhach readings – 2025» May 27–29, 2025, Lviv

UDC 512.74

Normal subgroups of iterated wreath products of symmetric groups

Ruslan Skuratovskii¹

Institute of applied mathematics and mechanics of the NASU, Kyiv, Ukraine, skuratovskii@nas.gov.ua

Normal subgroups and there properties for finite and infinite iterated wreath products $S_{n_1} \wr \ldots \wr S_{n_m}$, $n, m \in \mathbb{N}$ and $A_n \wr S_n$ are founded. Special classes of normal subgroups are investigated, their generators are found and presented as in the form of Kaloujnine [1] tables as well as in the form of wreath recursion.

Inverse limit of wreath product of permutation groups is found.

Definition 1. The set of elements from $S_n \wr S_n$, $n \ge 3$ which presented by the tableaux of form: $[e]_0$, $[a_1, a_2, \ldots, a_n]_1$, satisfying the following condition

$$\sum_{i=1}^{n} dec([a_i]_1) = 2k, k \in \mathbb{N},$$
(1)

be called set of type $\widetilde{A}_n^{(1)}$ and denote this set by $e \wr \widetilde{A}_n$.

Definition 2. The permutational subwreath product $G \wr H$ is the semidirect product $G \ltimes \tilde{H}^X$, where G acts on the subdirect product [2] \tilde{H}^X by the respective permutations of the subdirect factors.

Definition 3. The subgroup $E \wr \widetilde{A}_n^{(2)}$ be denoted by $\widetilde{A}_n^{(3)}$.

Furthermore we prove that $E \wr \widetilde{A}_n^{(2)} \triangleleft S_n \wr S_n \wr S_n$. The order of $E \wr \widetilde{A}_n^{(2)}$ is $(n!)^{3n} : 2^3$.

Definition 4. The set of elements from $S_n \wr S_n \wr S_n$, $n \ge 3$ presented by the tables [1] form:

 $[e]_0, [e, e, \ldots, e]_1, [a_1, a_2, \ldots, a_n]_2$, satisfying the following condition

$$\sum_{i=1}^{n} dec([a_i]_2) = 2k, k \in \mathbb{N},$$
(2)

be denoted by $\widetilde{A}_{n^2}^{(3)}$.

Definition 5. A subgroup in $S_n \wr S_n$ is called $\widetilde{T_n}$ if it consists of:

http://www.iapmm.lviv.ua/chyt2025

The conference of young scientists «Pidstryhach readings – 2025» May 27–29, 2025, Lviv

- 1. elements of $E \wr A_n$,
- 2. elements with the tableau [1] presentation $[e]_0$, $[\pi_1, \ldots, \pi_n]_1$, that $\pi_i \in S_n \setminus A_n$.

One easy can validates a correctness of this definition, i.e. that the set of such elements form a subgroup and its normality. This subgroup has structure

$$\tilde{T_n} \simeq (\underbrace{A_n \times A_n \times \dots \times A_n}_n) \rtimes C_2 \simeq \underbrace{S_n \boxplus S_n \dots \boxplus S_n}_n,$$

where the operation \boxplus of a subdirect product is subject of item 1) and 2).

Theorem 1. The monolith of $S_n \wr S_m$ is $e \wr A_m$.

Proposition 1. The order of $\widetilde{T_n}$ is $\frac{(n!)^n}{2^{n-1}}$.

Theorem 2. The subgroup $\widetilde{A}_3^{(1)}$ of $S_3 \wr S_3$ has the structure $\widetilde{A}_3^{(1)} \simeq (C_3 \times C_3 \times C_3) \rtimes (C_2 \times C_2).$

The structure of subgroup $\widetilde{A}_n^{(1)} \triangleleft S_n \wr S_n$ is $\widetilde{A}_n^{(1)} \simeq (\prod_{i=1}^n A_n) \rtimes (\prod_{i=1}^{n-1} C_2).$

Theorem 3. Proper normal subgroups in $S_n \wr S_m$, where $n, m \ge 3$ with $n, m \ne 4$ are of the following types:

1. subgroups that act only on the second level are

$$\tilde{A}_m^{(1)}, T_m, E \wr S_m, E \wr A_m,$$

2. subgroups that act on both levels are $A_n \wr \widetilde{A}_m^{(1)}$, $S_n \wr \widetilde{B}_m^{(1)}$, $A_n \wr S_m$,

wherein the subgroup $S_n \wr \widetilde{A_m} \simeq S_n \land (\underbrace{S_m \boxtimes S_m \boxtimes S_m \dots \boxtimes S_m}_n)$ endowed with the subdirect product satisfying to condition (1).

The subgroup $E \wr \widetilde{A}_n^{(1)}$ be denoted by $\widetilde{A}_n^{(2)}$. **Proposition 1.** The subgroup $\widetilde{A}_n^{(2)} \lhd S_n \wr S_n \wr S_n$.

Theorem 4. The subgroup $\widetilde{A}_n^{(1)}$ has normal rank n-1 [3] in $S_n \wr S_n$, $n \ge 3$ provided $n \equiv 1 \pmod{2}$ and normal rank n iff $n \equiv 0 \pmod{2}$ and $n \ge 3$.

Definition 5. A subgroup in $S_n \wr S_n \wr S_n$ is denoted by $\widetilde{T}_{n^2}^{(3)}$ if it consists of:

1. elements of the form $E \wr E \wr A_n$,

http://www.iapmm.lviv.ua/chyt2025

The conference of young scientists «Pidstryhach readings – 2025» May 27–29, 2025, Lviv

2. elements with the tableau [1] presentation $[e]_1, [e \dots, e]_2, [\pi_1 \dots, \pi_n, \pi_{n+1} \dots, \pi_{n^2}]$ wherein $\forall i = 1, \dots, n: \pi_i \in S_n \setminus A_n$.

Definition 6. The set of elements from $\underset{i=1}{\overset{k}{\underset{i=1}{\wr}}} S_{n_i}, n_i \ge 3$ with depth m satisfying the following condition

$$\sum_{i=1}^{n^j} dec([a_i]_j) = 2t, t \in \mathbb{N}, \ m \le j \le k, \ [a_i]_j = e, \ whenever \ j = \overline{1, m - 1} \ (3)$$

be called $\widetilde{A}_{n^j}^{(m,k)}$, where m < k.

Theorem 5. The order of normal subgroup $\widetilde{A}_{nj}^{(0,k-1)}$ is $(\frac{1}{2})^k \cdot (n!)^{(\frac{n(k+1)-1}{n-1})}$ and the order of the quotient $\underset{i=1}{\overset{k}{\underset{i=1}{\overset{l}{\underset{i=1}{\overset{l}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\overset{k}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=$

Theorem 6. The quotient $\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{j=1}{\underset{i=1}{\overset{k}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\overset{k}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\overset{k}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{\atopj=1}{\underset{j=1}{$

The set of normal subgroup of $S_n \wr S_n$ is denoted by $N(S_n \wr S_n)$. Subgroup with number *i* from $N(S_n \wr S_n)$ is denoted by $N_i(S_n \wr S_n)$.

Theorem 2. The full list of normal subgroups of $S_n \wr S_n \wr S_n$ consists of 50 normal subgroups. These subgroups are the following:

- 1 **Type** T_{023} contains: $E \wr \tilde{A}_n \wr H$, $\widetilde{T_n} \wr H$, where $H \in {\{\tilde{A}_n, \tilde{A}_{n^2}, S_n\}}$. There are 6 subgroups.
- 2 The second type of subgroups is subclass in T_{023} with new base of wreath product subgroup \tilde{A}_{n^2} : $E \wr S_n \wr \tilde{A}_{n^2}$, $E \wr N_i(S_n \wr S_n)$. Therefore this class has 12 new subgroups. Thus, the total number of normal subgroups in **Type** T_{023} is 18.
- 3 **Type** T_{003} : $A_{00(n^2)}^{(3)} = E \wr E \wr \tilde{A}_{n^2}, \ \widetilde{T_{n^2}}, \ \widetilde{T_n}^{(3)}$. Hence, here are 3 new subgroups.
- 4 **Type** T_{123} : $N_i(S_n \wr S_n) \wr S_n$, $N_i(S_n \wr S_n) \wr \tilde{A}_n$ and $N_i(S_n \wr S_n) \wr \tilde{A}_{n^2}$. Thus, there are 29 new normal subgroups in T_{123} , taking into account repetition.

The conference of young scientists «Pidstryhach readings – 2025» May 27–29, 2025, Lviv

Література

- 1. Kaloujnine L. A. Sur les *p*-group de Sylow. // C. R. Acad. Sci. Paris. 1945. **221**. P. 222–224.
- 2. Skuratovskii R. V., Birkhoff, Garrett (1944), "Subdirect unions in universal algebra Bulletin of the American Mathematical Society, 50 (10): 764-768, doi:10.1090/S0002-9904-1944-08235-9, ISSN 0002-9904, MR 0010542.
- Dashkova O. Yu. On groups of finite normal rank. Algebra Discrete Math. 1: 1, (2002), 64–68.
- R. Grigorchuk, V. Nekrashevich, V. Sushchanskii, Automata, Dynamical Systems, and Groups, *Trudy mat. inst. imeny Steklova.* №231. (2000) 134– 214.
- 5. Aviv Rotbart. Generator sets for the alternating group. Seminaire Lotharingien de Combinatoire 65 (2011), Article B65b.
- R. V. Skuratovskii. On commutator subgroups of Sylow 2-subgroups of the alternating group, and the commutator width in wreath products. / Ruslan V. Skuratovskii // European Journal of Mathematics. vol. 7: 1. (2021), P. 353-373. doi.org/10.1007/s40879-020-00418-9.
- Drozd, Y.A., Skuratovskii R.V. Generators and relations for wreath products of groups. Ukr. Math. J. (2008), 60, pp. 1168–1171.
- Skuratovskii R.V. Normal subgroups of iterated wreath products of symmetric groups and alternating with symmetric groups. [Submitted on 8 Aug 2021 (v1), last revised 25 Aug 2023 (this version, v6)] Source: [https://arxiv.org/pdf/2108.03752.pdf]