УДК 517.98

WEAKLY SYMMETRIC FUNCTIONS ON SPACES OF LEBESGUE INTEGRABLE FUNCTIONS

Taras Vasylyshyn, Vasyl Zahorodniuk

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine

taras.vasylyshyn@pnu.edu.ua, vasyl.zahorodniuk@pnu.edu.ua

Let X and Y be nonempty sets. Let F be a set of mappings which act from X to itself. A function $f: X \to Y$ is called F-symmetric if f(a(x)) = f(x) for every $a \in F$ and $x \in X$.

Let $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a family of sets F_{α} of mappings which act from X to itself, indexed by elements of some index set Λ , such that for every $\alpha, \beta \in \Lambda$ there exists $\gamma \in \Lambda$ such that $F_{\gamma} \subset F_{\alpha} \cap F_{\beta}$. A function $f : X \to Y$ is called \mathcal{F} -weakly symmetric if there exists $\alpha \in \Lambda$ such that f is F_{α} -symmetric.

Let $L_p[0,1]$, where $p \in [1, +\infty)$, be the complex Banach space of all Lebesgue measurable functions $x : [0,1] \to \mathbb{C}$ for which the *p*th power of the absolute value is Lebesgue integrable with norm

$$||x||_p = \left(\int_{[0,1]} |x(t)|^p \, dt\right)^{1/p}.$$

Let $n \in \mathbb{N}$. Let $\Xi_{[0,1]}^{(n)}$ be the set of all bijections $\sigma : [0,1] \to [0,1]$ such that

$$\sigma(t+1/n) = \sigma(t) + 1/n$$

for every $t \in [0, 1 - 1/n]$ and, for every Lebesgue measurable set $E \subset [0, 1]$, both sets $\sigma(E)$ and $\sigma^{-1}(E)$ are Lebesgue measurable and

$$\mu(\sigma(E)) = \mu(\sigma^{-1}(E)) = \mu(E),$$

where μ is the Lebesgue measure.

Let $n \in \mathbb{N}$ and $p \in [1, +\infty)$. For $\sigma \in \Xi_{[0,1]}^{(n)}$, let the operator $s_{\sigma,p}$ be defined by

$$s_{\sigma,p}: x \in L_p[0,1] \mapsto x \circ \sigma \in L_p[0,1].$$

Let $S_{n,p} = \{s_{\sigma,p} : \sigma \in \Xi_{[0,1]}^{(n)}\}$ and $S_p = \{S_{2^n,p} : n \in \mathbb{N}\}$. We shall consider S_p -weakly symmetric functions on $L_p[0,1]$.

This research was funded by the National Research Foundation of Ukraine, $2020.02/0025,\,0120U103996.$

http://iapmm.lviv.ua/mpmm2023/materials/ma08_19.pdf