QUALITATIVE PROPERTIES OF LINEAR AND NONLINEAR FOURTH-ORDER HYPERBOLIC EQUATIONS

Kateryna Buryachenko

Vasyl' Stus Donetsk National University

k.buriachenko@donnu.edu.ua

The talk is devoted to the questions of qualitative properties of solutions to hyperbolic fourth-order linear (and quasilinear) equations with constant complex coefficients in the plane bounded domain. The main question is to prove analogue of maximum principle, energetic estimates for initial and boundary value problems, the Goursat problem as a particular case of boundary value problems on characteristics:

$$
\begin{equation*}
L\left(\partial_{x}\right) u=a_{0} \frac{\partial^{4} u}{\partial x_{1}^{4}}+a_{1} \frac{\partial^{4} u}{\partial x_{1}^{3} \partial x_{2}}+a_{2} \frac{\partial^{4} u}{\partial x_{1}^{2} \partial x_{2}^{2}}+a_{3} \frac{\partial^{4} u}{\partial x_{1} \partial x_{2}^{3}}+a_{4} \frac{\partial^{4} u}{\partial x_{2}^{4}}=f(x) . \tag{1}
\end{equation*}
$$

We assume, that Eq. (1) is hyperbolic, that means that all roots of characteristics equation $a_{0} \lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4}=0$ are real. More over we will assume that they are different. That means that the angles $\varphi_{i}-\varphi_{j}$ between characteristics not equal to zero. We call the angle of characteristics slop the solution to the equation $-\tan \varphi_{j}=\lambda_{j}$, where λ_{j} are real and different roots of the characteristics equation above.

Let us rewrite Eq. (1) in the following form:

$$
<\nabla, a^{1}><\nabla, a^{2}><\nabla, a^{3}><\nabla, a^{4}>u=f(x)(f(x, u)) .
$$

Here the vectors $a^{j}=\left(a_{1}^{j}, a_{2}^{j}\right), j=1,2,3,4$ are determined by the coefficients $a_{i}, i=0,1,2,3,4$, and $\langle a, b\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}$ is a scalar product.

It is easy to see that vector a^{j} is a tangent vector of $j-$ th characteristic, slope φ_{j} of which is determined by $-\tan \varphi_{j}=\lambda_{j}, j=1,2,3,4$.

In what follows, we also consider the vectors $\tilde{a}^{j}=\left(-\bar{a}_{2}^{j}, \bar{a}_{1}^{j}\right), j=1,2,3,4$. It is obvious that $<\tilde{a}^{j}, a^{j}>=0$, so \tilde{a}^{j} is a normal vector of j-th characteristic.

[^0]Let $C_{j}, j=1,2,3,4$ are characteristics lines of the Eq. (1). For Eq. (1) we consider several problems in the plane domain $D=:\left\{\left(x_{1}, x_{2}\right): x_{1} \in\right.$ $\left.(-\infty,+\infty), x_{2}>0\right\}$ and obtain local properties of the solution on the arbitrary point $C \in D$.

Let $\Gamma_{0}:=\left\{x_{1} \in[a, b], x_{2}=0\right\}$ and consider the Cauchy problem on Γ_{0}

$$
\begin{equation*}
\left.u\right|_{\Gamma_{0}}=\varphi(x),\left.\frac{\partial u}{\partial \nu}\right|_{\Gamma_{0}}=\psi(x),\left.\frac{\partial^{2} u}{\partial \nu^{2}}\right|_{\Gamma_{0}}=\sigma(x),\left.\frac{\partial^{3} u}{\partial \nu^{3}}\right|_{\Gamma_{0}}=\xi(x) . \tag{2}
\end{equation*}
$$

We define domain Ω as a domain which is restricted by the characteristics $C_{j}, j=1,2,3,4$ and Γ_{0}. Then from Green formula, we have:

$$
\begin{equation*}
\int_{\Omega}\left\{L u \cdot \bar{v}-u \cdot \overline{L^{+} v}\right\} d x=\sum_{k=0}^{3} \int_{\partial \Omega} L_{(3-k-1)} u \cdot v_{\nu}^{(k)} d s \tag{3}
\end{equation*}
$$

Here $L_{(3-k-1)} u, k=0,1,2,3$ are L-traces of the solution u, which are defined by the boundary value of u.

For operator (1) in domain Ω restricted by characteristics C_{j} and Γ_{0} Green formula takes the form:

$$
\begin{gathered}
\int_{\Omega} L u \cdot \bar{v} d x=\int_{\Omega}<\nabla, a^{1}><\nabla, a^{2}><\nabla, a^{3}><\nabla, a^{4}>u \cdot \bar{v} d x= \\
\int_{\partial \Omega}<\nu, a^{1}><\nabla, a^{2}><\nabla, a^{3}><\nabla, a^{4}>u \cdot \bar{v} d s- \\
\int_{\Omega}<\nabla, a^{2}><\nabla, a^{3}><\nabla, a^{4}>u \cdot \overline{<\nabla, a^{1}>v} d x .
\end{gathered}
$$

Put $v=1$ and calculate $L_{(3)} u=<\nu, a^{1}><\nabla, a^{2}><\nabla, a^{3}><\nabla, a^{4}>u$, $L_{(3)}$ - trace on $\partial \Omega=C_{1} \cap C_{2} \cap C_{3} \cap C_{4}$.

The main result is the following analog of the maximum principle for the fourth-order hyperbolic equations:

Theorem 1. Let $u \in H^{m}(\Omega), m \geq 4$, satisfy the following inequalities:

$$
L u \geq 0,
$$

in Ω,

$$
\begin{gathered}
\left.u\right|_{\Gamma_{0}} \leq 0,\left.u_{\nu}\right|_{\Gamma_{0}} \leq 0,\left.u_{\nu \nu}\right|_{\Gamma_{0}} \leq 0, \\
\left.L_{(3)} u\right|_{\Gamma_{0}} \leq 0,
\end{gathered}
$$

then $u \leq 0$ in Ω.

[^0]: http://iapmm.lviv.ua/mpmm2023/materials/ma09_12.pdf

