APPROXIMATION RELATIONS ON THE POSETS OF PSEUDOULTRAMETRICS

Svyatoslav Nykorovych

Vasyl Stefanyk Precarpathian National University
svyatoslav.nyk@gmail.com

Recall that a poset (D, \leq) is directed (resp., filtered) if for all $d_{1}, d_{2} \in D$ there is $d \in D$ such that $d_{1}, d_{2} \leq d$ (resp., $d_{1}, d_{2} \geq d$).

Definition 1. An element x_{0} is called to be way below an element x_{1} (or approximates x_{1} from below) in a poset (X, \leq) (denoted $x_{0} \ll x_{1}$) if for every non-empty directed subset $D \subset X$ such that $x_{1} \leq \sup D$ there is an element $d \in D$ such that $x_{0} \leq d$.

Definition 2. An element x_{0} is called to be way above an element x_{1} (or approximates x_{1} from above) in a poset (X, \leq) (denoted $\left.x_{0} \gg x_{1}\right)$ if for every non-empty filtered subset $D \subset X$ such that $x_{1} \geq \inf D$ there is an element $d \in D$ such that $x_{0} \geq d$.

Obviously $x_{0} \ll x_{1}$ or $x_{0} \gg x_{1}$ imply respectively $x_{0} \leq x_{1}$ or $x_{0} \geq$ x_{1}. A poset is called continuous if each element is the least upper bound of the directed set of all elements approximating it from below (resp., the greatest lower bound of the filtered set of all elements approximating it from above). In this paper we are not interested in "way above" relation and adopt the following definition.

Definition 3. An element x_{0} is called weakly way below an element x_{1} in a poset (X, \leq) (denoted $x_{0} \nless x_{1}$) if for every non-empty directed subset $D \subset X$ such that $x_{1}=\sup D$ there is an element $d \in D$ such that $x_{0} \leq d$.

The partial orders on the set $\operatorname{PsU}(X)$ of all pseudoultrametrics on X and its subsets $\operatorname{CPsU}(X)$ and $\operatorname{LCPsU}(X)$ are defined pointwise: a pseudoultrametric d_{1} precedes a pseudoultrametric d_{2} (written $d_{1} \leq d_{2}$ or $d_{2} \geq d_{1}$) if $d_{1}(x, y) \leq d_{2}(x, y)$ holds for all points $x, y \in X$. The trivial pseudometric $d \equiv 0$ is the least element of $\operatorname{PsU}(X), \operatorname{CPsU}(X)$, and of $\operatorname{LCPsU}(X)$. We write $d_{1}<d_{2}$ or $d_{2}>d_{1}$ if $d_{1} \leq d_{2}$ and $d_{1} \neq d_{2}$ (this does not mean that $d_{1}(x, y)<d_{2}(x, y)$ for all $\left.x, y\right)$.

Theorem 1. Let d, d_{0} be pseudoultrametrics on $X, d_{0} \notin \operatorname{CPsU}(X)$. Then d_{0} is not weakly way below d (hence is not way below d) neither in $\operatorname{PsU}(X)$ nor in $L C P s U(X)$.
http://iapmm.lviv.ua/mpmm2023/materials/ma10_23.pdf

