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We propose certain semi-discrete splitting scheme for two-dimensional 
diffusion-advection-reaction initial-boundary value problem. Proposed approach 
admits further parallelizable full discretization with usage of the finite element 
method. 

Denote by   a bounded domain with a Lipschitz boundary    . Let us 
define model parameters: diffusion const 0   , advection velocity 
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, reaction speed const 0    and source term ( )f f x . Let us 

consider the following problem: 
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Problem (1) can be used in modeling of air pollution transfer over some 
geographical region. For this we should have known distribution of winds, or we 

can consider one-way coupled problem, where velocity 


 is a solution of Navier-

Stokes equations.   
We represent (1) in the corresponding variational formulation: 
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where 1
0: ( )V H   is a standard Sobolev space, ( , ) :w q wqdx
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 Let us denote by ( ) : /b x   
  

. Define vector field 2 1( ) ( ( ), ( ))x x x   


 

and corresponding normalized field /p   
 

. Let us define time step t  and 
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parameter (0,1) . Let us denote by ju  (for integer j ) an approximation to the 

function ( , )ju x t  at the time :jt j t  . 

 With certain restrictions on the vector 


, we introduce semi-discretization in 

time of the variational problem (2) with the following multi-step recurrent scheme: 
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where 
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   (5) 

 We suppose that the problem data is quite regular, so all considered above 
variational problems have unique solutions.   
 We show, that we can build efficient parallelizable discretization procedure 
for finding the solution of each one of two variational subproblems of (4), in 
particular, with leveraging finite element method. 
 Proposed method uses typical approaches of building recurrent time 
integration schemes for variational problems [2]. The general idea of splitting the 
scheme and introducing intermediate fractional steps is known in the literature. For 
example, we can note famous Chorin’s splitting method for Navier-Stokes 
equations [1]. 
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