

7

Space-Time Optimization in Natural Language Text Compression

Anatoly Anisimov1, Igor Zavadskyi2

1 Doctor of Physical and Mathematical Sciences, professor, Taras Shevchenko National University of Kyiv, 4d

Glushkov Ave., 03022, Kyiv, Ukraine, e-mail: avatatan@gmail.com
2 Doctor of Physical and Mathematical Sciences, associate professor, Taras Shevchenko National University of Kyiv,

4d Glushkov Ave., 03022, Kyiv, Ukraine, e-mail: ihorzavadskyi@knu.ua

In this paper, we discuss various problems arising in space and time optimization of natural

language text compression methods. We define a new class of variable-length universal data

compression codes with multiple delimiters — the Reverse Multi-Delimiter (RMD) codes. They are

synchronizable, allow us to perform fast Boyer-Moore-style search in a compressed file, and at the

same time provide the best compression ratio among all codes of a discussed class. In combination

with a special technique of preprocessing a natural language text and its dictionary, they improve

the performance of modern powerful achievers. Also, we construct a very fast decoding algorithm

for RMD-codes operating almost at the same speed as (s,c)-dense codes and times faster than Fi-

bonacci codes decoding. The provided experiments show that RMD-codes occupy a very attractive

position by the means of space/decoding time tradeoffs in natural language text compression.

Keywords: word-based; compression; archiver; code; multi-delimiter

Introduction. Compression of large textual databases is one of the key elements of

modern information retrieval systems. We focus on methods operating words as atomic

symbols since they rely on partitioning texts in most natural semantic units and thus

provide the best compression ratios. Well-known classical solutions based on entropy

encoding, such as Huffman codes, can be applied to word-level text compression and

operate close to the theoretical limit defined by Shannon’s entropy. However, not only

the compression ratio matters but also such features as fast search in compressed data,

high decoding speed, and code robustness in the sense of limiting possible error

propagation. As is known, Huffman codes are not well suited for such requirements.

An alternative approach stems from the use of variable-length codes with

delimiters, such as Fibonacci [1] or (s,c)-dense codes (SCDC) [2] developed in 2003.

Delimiters are special bit sequences denoting the beginning or the end of a codeword.

This implies the synchronizability of a code and allows the fast Boyer-Moore-style

pattern search in a compressed file. Of course, these properties are achieved at the cost

of compression ratio. However, on a word-based alphabet, the price is not too high as it

contains rather more elements than a character-based and distribution of their

frequencies is flatter. This equates the compression performance of different codes.

Apart from compression ratio, another important quantitative characteristic of a

compression code is the speed of decoding. It values higher than the encoding speed

since the encoding is often performed offline, while the decoding, should be done ‘on

the fly’ in most applications, e.g. in search engines. SCDC are specifically intended for

УДК 519.72: 519.688

mailto:avatatan@gmail.com
mailto:ihorzavadskyi@knu.ua

Anatoly Anisimov, Igor Zavadskyi
Space-Time Optimization in Natural Language Text Compression

8

fast decompression as their codewords comprise the whole number of bytes and can be

processed in a byte-by-byte manner. An SCDC-encoded text can be decoded twice

faster as Fibonacci-encoded text even if we apply the fastest known today decoding

method for Fibonacci codes developed in 2009 [3]. Thus, from the beginning of 2000s,

Fibonacci and (s,c)-dense codes can be considered as the two most attractive options

among codes allowing the synchronizability and fast compressed search.

In recent years, we developed a new type of variable-length data compression

codes with delimiters, which provide a better compression ratio than Fibonacci codes

and can be decoded almost at the same speed as (s,c)-dense codes. They are Multi-

Delimiter (MD) codes [4] and Reverse Multi-Delimiter (RMD) codes [5]. In this paper,

we overview the main properties of these codes and their application to natural

language text compression.

1. Codes Definition and Construction

The family of Fibonacci codes is parameterized with the length of a delimiter which is

the series of ones. In natural language text compression, the code Fib3 has the best

compression ratio, while Fib2 and Fib4 are much worse. Likely, the performance of the

Fibonacci codes can be improved further if we found the compromise between Fib3

and Fib2/ Fib4. E.g., it can be done by using more than one delimiter in the code.

However, it is impossible for delimiters 1...1 since one delimiter is a prefix of another.

By contrast, a code can contain several suffix delimiters of the form 01 . . . 10. A

variant of such code with multiple delimiters (MD-code) has been introduced and

thoroughly studied in [4]. It was proved that any multi-delimiter code is uniquely

decodable, complete, and universal. Compared with byte and Fibonacci codes, MD-

codes demonstrate a much better text compression ratio.

Nonetheless, for MD-codes, the important problem of optimal dictionary

indexing was not clarified. During encoding, a mapping word of a text codeword is

used, where words of a text are sorted in descending order of their frequencies, while

codewords are sorted in ascending order of their lengths. The decoding process is

reversed. For fast decoding, a data structure with low access time should be used to

store the words of a text, e.g. an array with integer indices. However, it requires

constructing an invertible monotonous mapping of the set of integer indices to the set

of codewords. Although for MD-codes it seems problematic, this issue can be resolved

by a simple trick: writing bit representations of MD-codewords from right to left. This

way we obtain a non-prefix but uniquely decodable code with a monotonous bijection

to the set of natural numbers — the Reverse Multi-Delimiter code.

Let us define an RMD-code. Assume is the ascending sequence of

natural numbers. The codeword set of the RMD-code consists of codewords

of the form ̅̅ ̅̅ , and also codewords that:

 start from the sequence ̅̅ ̅̅ and do not contain any of these

sequences anywhere else in the codeword;

 do not end with a sequence ̅̅ ̅̅ .

The bit sequences can be considered as delimiters. Although such

ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології
2023, вип. 36, 7-11

9

delimiters do not belong to codewords of the form these codewords constitute

delimiters together with the leading 0 of the next codeword. In this paper, we use only

RMD-codes with an infinite number of delimiters as they demonstrate a better comp-

ression ratio. By we denote the RMD-code having the delimiters with

 or more of ones. E.g. R2,4–∞ is the code with delimiters 0110 and 01
t
0, where

t ≥ 4, while R2–∞ is the code with all delimiters consisting of 2 or more ones.

2. Fast Decoding Algorithm

Any Reverse Multi-Delimiter code can be considered a regular language and thus

recognized by the finite automaton. However, it processes a text bit-by-bit, which is

quite slow. The main idea of a fast decoding algorithm is a “quantification” of a

decoding automaton so that it reads bytes of a code and produces the corresponding

output numbers. Below we present the byte-aligned decoding algorithm for RMD-

codes that operates 25–35% faster than the decoding algorithm given in [5].

The notations are the following. Assume we have processed some byte of a

code. The pointer ptr is a combination of the decoding automaton state a and the

number l of already decoded bits of the last codeword. It can be calculated as follows:

ptr = a·lmax+ l, where lmax is the maximal possible bitlength of a codeword. If we

multiply ptr by 256 and add a current byte of the text, we get the index x of lookup

tables (line 3). The lookup tables are: Pointers[x] – the pointer for decoding the next

byte; Numbers[x] – a 64-bit number, which consists of four 16-bit numbers we get

after decoding a current byte; c[x] – the number of codewords fully decoded during

processing the current byte.

Also, assume the dictionary contains no more than 2
16

 words (this case can be

easily generalized). Then, 4 sequential decoded integers can be output with one

assignment of a 64-bit value (line 5), and a byte of a code can be fully processed at one

iteration of the decoding loop without time-consuming conditional statements.

Algorithm 1. Byte-aligned decoding of the RMD-code for short texts

input: RMD-bitstream composed of bytes, Code[1…n].

output: Array of numbers, Out.

1. ptr 0; k 0; // initialize the pointer and output index

2. for i 1 to n do

3. x 256ptr + Code[i]

4. ptr Pointers[x]

5. Out[k,…,k+3] Numbers[x] + tr

6. k k + c[x]

7. tr Out[k] // value obtained from the partially decoded codeword

3. Experiments

To estimate the compression ratio and the decoding time we encoded three English

texts of different sizes: small (The Bible, 3.83 MB), middle-sized: articles randomly

taken from Wikipedia (116 MB), and large: the first half of the largest file from the

Pizza&Chili Corpus (512MB). We chose RMD-codes that have the best compression

ratio: R2–∞ for small text and R2,4–∞ for middle-size and large. For comparison, we

chose the Fibonacci code Fib3 and the byte-aligned (s, c)-dense codes. For SCDC we

Anatoly Anisimov, Igor Zavadskyi
Space-Time Optimization in Natural Language Text Compression

10

chose parameters providing the best compression ratio for each text.

In Fig. 1 small, middle-sized, and large texts are shown as small, middle-sized,

and large markers respectively. As seen, RMD-codes outperform Fibonacci code Fib3

both in decoding speed and compression ratio. Also, they outperform essentially

SCDC in compression ratio and even they are a bit faster than SCDC in decoding small

text.

Fig. 1. Experiments on compression and decoding

Let us note that the mentioned compression ratios characterize codes

themselves, without auxiliary structures, such as dictionaries required for encoding and

decoding. In contrast to character-level, in word-level text compression, a dictionary is

a more significant part that should be stored together with the compressed file. The

uncompressed word-level dictionary for 1 GB English text occupies about 2.5–3% of

the text itself and about 5% of 100 MB text. If we compare the size of a compressed

dictionary with the compressed text, the percentage becomes even higher. However, a

text already consists of dictionary elements, and thus we can save space by special

marking dictionary elements in the text. Also, some other regularities of natural

language can be exploited. This leads us to construct a word-level text preprocessor,

that is placed in front of a standard postcompressor to improve compression ratio.

Notably, the 3-level schema consisting of mentioned preprocessor, RMD-codes,

and standard archiver as postcompressor allows us to improve the compression ratio of

archivers itself. The experiments were conducted for the 1GB text from the

Pizza&Chilie corpus. The original text consists of 1,073,741,824 bytes, 189,528,100

words, 2,523,827 unique words. The file word-level entropy is 273,284,721 bytes,

13.535 bits per word. The results are shown in Table 1.

Table 1

Efficiency of using RMD-preprocessing with further archiving

Text Original text R2−∞ R2,4−∞ R3−∞

7z 258,428,183 258,705,282 257,252,378 256,751,472

Rar 290,584,311 264,645,314 261,948,637 262,563,336

Gzip 405,714,638 277,592,303 273,990,536 274,736,358

We applied 7z, version 16.02, 64-bit, RAR, and gzip archivers in the maximum

compression mode to the original and RMD-encoded texts with all mentioned above

preprocessing transformations. As observed, preliminary RMD- encoding significantly

ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології
2023, вип. 36, 7-11

11

improves RAR- or gzip-compression ratio, by more than 10% or 50% respectively.

LZMA-based 7z compresses texts much better than RAR or gzip and it is recognized

as one of the most powerful modern archivers. However, even in this case RMD-codes

open room for improvements. For example, the 7z-archiving of the R3−∞-encoded text

produces 0.7% smaller file than archiving this text without the RMD-preprocessing. It

is interesting to note that not archived RMD-encoded files are 32−34% smaller than

files archived with gzip. Considering the possibility of compressed search and ultra-

fast decoding, RMD-codes can be considered as a preferred format to store large

textual databases compared with gzip, which decodes texts 3−4 times slower.

Conclusion. The reverse multi-delimiter (RMD) compression codes can be used as a

key element for word-based natural language text compression as well as for the

compact representation of unbounded integer sequences. We constructed a very fast

byte-aligned decoding algorithm based on lookup tables, which is comparable with the

(s,c)-dense byte-aligned decoding method. Given a good compression ratio, the RMD-

codes provide an attractive point in the trade-off between the compression ratio and the

decoding speed in natural language text compression. Together with the special word-

level text preprocessing technique, the RMD-codes can serve as a preprocessing tool

improving the compression ratio of known archivers.

References

[1] A. Apostolico and A. S. Fraenkel. Robust transmission of unbounded strings using Fibonacci

representations, IEEE Trans. Inf. Theory, vol. 33, 1987, pp. 238–245.

[2] N. Brisaboa, A. Farina, G. Navarro, and M. Esteller. (s,c)-dense coding: an optimized

compression code for natural language text databases, in: Proc. Symposium on String

Processing and Information Retrieval, ser. LNCS, no. 2857. SVB, 2003, pp. 122–136.

[3] S. T. Klein and M. Ben-Nissan. On the usefulness of fibonacci compression codes, Computer

Journal, vol. 53, no. 6, pp. 701–716, 2010.

[4] A. Anisimov and I. Zavadskyi. Variable-length prefix codes with multiple delimiters, IEEE

Transactions Information Theory, vol. 63, no. 5, 2017, pp. 2885–2895.

[5] I. Zavadskyi and A. Anisimov. Reverse multi-delimiter compression codes, in: 2020 Data

Compression Conference, 2020, pp. 173–182.

Ємнісно-часова оптимізація у стисканні природномовних текстів

Анатолій Анісімов, Ігор Завадський

У роботі розглянуто різноманітні аспекти оптимізації методів стискання природномов-

них текстів за ємністю та часом. Визначено новий клас стискальних кодів змінної довжи-

ни з кількома роздільниками — реверсні мультироздільникові коди (РМР). Вони є синхроні-

зовними, дають можливість виконувати швидкий пошук типу Бойера-Мура у стиснутому

файлі й водночас забезпечують найкращий коефіцієнт стискання серед кодів описаного

типу. Як засіб передобробки тексту ці коди покращують характеристики найпотужніших

сучасних архіваторів. Також було запропоновано надшвидкий алгоритм декодування РМР-

кодів, що працює майже з тією самою швидкістю, що й декодування (s,c)-щільних кодів і в

рази швидше, ніж декодування кодів Фібоначчі. Експерименти свідчать про високу часово-

ємнісну ефективність РМР-кодів у стисканні природномовних текстів.

Received 14.03.23

